[1]
|
Jiang, M., Wang, H., Zhu, M., Luo, X., He, Y., Wang, M., et al. (2024) Review on Strategies for Improving the Added Value and Expanding the Scope of CO2 Electroreduction Products. Chemical Society Reviews, 53, 5149-5189. https://doi.org/10.1039/d3cs00857f
|
[2]
|
Do, V. and Lee, J. (2024) Surface Engineering for Stable Electrocatalysis. Chemical Society Reviews, 53, 2693-2737. https://doi.org/10.1039/d3cs00292f
|
[3]
|
Lai, W., Qiao, Y., Wang, Y. and Huang, H. (2023) Stability Issues in Electrochemical Co2reduction: Recent Advances in Fundamental Understanding and Design Strategies. Advanced Materials, 35, Article ID: 2306288. https://doi.org/10.1002/adma.202306288
|
[4]
|
Wang, X., Tang, Y., Lee, J. and Fu, G. (2022) Recent Advances in Rare-Earth-Based Materials for Electrocatalysis. Chem Catalysis, 2, 967-1008. https://doi.org/10.1016/j.checat.2022.02.007
|
[5]
|
Zhou, X., Shan, J., Chen, L., Xia, B.Y., Ling, T., Duan, J., et al. (2022) Stabilizing Cu2+ Ions by Solid Solutions to Promote CO2 Electroreduction to Methane. Journal of the American Chemical Society, 144, 2079-2084. https://doi.org/10.1021/jacs.1c12212
|
[6]
|
Liang, Z., Song, L., Sun, M., Huang, B. and Du, Y. (2023) Atomically Dispersed Indium and Cerium Sites for Selectively Electroreduction of CO2 to Formate. Nano Research, 16, 8757-8764. https://doi.org/10.1007/s12274-023-5481-9
|
[7]
|
Liu, H., Li, B., Liu, Z., Liang, Z., Chuai, H., Wang, H., et al. (2023) Ceria-Mediated Dynamic Sn0/Snδ+ Redox Cycle for CO2 Electroreduction. ACS Catalysis, 13, 5033-5042. https://doi.org/10.1021/acscatal.2c06135
|
[8]
|
Yang, Z., Ji, D., Li, Z., He, Z., Hu, Y., Yin, J., et al. (2023) CeO2/CuS Nanoplates Electroreduce CO2 to Ethanol with Stabilized Cu+ Species. Small, 19, Article ID: 2303099. https://doi.org/10.1002/smll.202303099
|
[9]
|
Yu, R., Qiu, C., Lin, Z., Liu, H., Gao, J., Li, S., et al. (2022) CeOx Promoted Electrocatalytic CO2 Reduction to Formate by Assisting in the Critical Hydrogenation Step. ACS Materials Letters, 4, 1749-1755. https://doi.org/10.1021/acsmaterialslett.2c00512
|
[10]
|
Duan, Y., Zhou, Y., Yu, Z., Liu, D., Wen, Z., Yan, J., et al. (2021) Boosting Production of HCOOH from CO2 Electroreduction via Bi/CeOx. Angewandte Chemie International Edition, 60, 8798-8802. https://doi.org/10.1002/anie.202015713
|
[11]
|
Wu, S., Tian, M., Hu, Y., Zhang, N., Shen, W., Li, J., et al. (2023) CeO2 Promotes CO2 Electroreduction to Formate on Bi2S3 via Tuning of the *OCHO Intermediate. Inorganic Chemistry, 62, 4088-4096. https://doi.org/10.1021/acs.inorgchem.2c03844
|
[12]
|
Liu, J., Li, P., Bi, J., Jia, S., Wang, Y., Kang, X., et al. (2023) Switching between C2+ Products and Ch4 in CO2 Electrolysis by Tuning the Composition and Structure of Rare-Earth/Copper Catalysts. Journal of the American Chemical Society, 145, 23037-23047. https://doi.org/10.1021/jacs.3c05562
|
[13]
|
Feng, J., Wu, L., Liu, S., Xu, L., Song, X., Zhang, L., et al. (2023) Improving CO2-to-C2+ Product Electroreduction Efficiency via Atomic Lanthanide Dopant-Induced Tensile-Strained CuOx Catalysts. Journal of the American Chemical Society, 145, 9857-9866. https://doi.org/10.1021/jacs.3c02428
|
[14]
|
Zhang, H., Wang, X., Sun, Y., Wang, X., Tang, Z., Li, S., et al. (2024) Targeted C-O Bond Cleavage of *CH2CHO at Copper Active Sites for Efficient Electrosynthesis of Ethylene from CO2 Reduction. Applied Catalysis B: Environment and Energy, 351, Article 123992. https://doi.org/10.1016/j.apcatb.2024.123992
|
[15]
|
Li, H., Huang, H., Huang, W., Zhang, X., Hai, G., Lai, F., et al. (2024) Interfacial Accumulation and Stability Enhancement Effects Triggered by Built‐in Electric Field of SnO2/LaOCL Nanofibers Boost Carbon Dioxide Electroreduction. Small, 20, Article ID: 2402654. https://doi.org/10.1002/smll.202402654
|
[16]
|
Jia, S., Zhu, Q., Wu, H., Han, S., Chu, M., Zhai, J., et al. (2022) Preparation of Trimetallic Electrocatalysts by One-Step Co-Electrodeposition and Efficient CO2 Reduction to Ethylene. Chemical Science, 13, 7509-7515. https://doi.org/10.1039/d1sc06964k
|
[17]
|
Chen, S., Su, Y., Deng, P., Qi, R., Zhu, J., Chen, J., et al. (2020) Highly Selective Carbon Dioxide Electroreduction on Structure-Evolved Copper Perovskite Oxide toward Methane Production. ACS Catalysis, 10, 4640-4646. https://doi.org/10.1021/acscatal.0c00847
|
[18]
|
Zhao, Y., Li, Y., Chen, J., Sun, B., Fan, L., Chen, J., et al. (2024) Cu/LaF3 Interfaces Boost Electrocatalytic Co-to-Acetate Conversion. ACS Catalysis, 14, 8366-8375. https://doi.org/10.1021/acscatal.3c06014
|
[19]
|
Hu, S., Chen, Y., Zhang, Z., Li, S., Liu, H., Kang, X., et al. (2023) Ampere‐Level Current Density CO2 Reduction with High C2+ Selectivity on La(OH)3‐Modified Cu Catalysts. Small, 20, Article ID: 2308226. https://doi.org/10.1002/smll.202308226
|
[20]
|
Wang, J., Cheng, C., Huang, B., Cao, J., Li, L., Shao, Q., et al. (2021) Grain-Boundary-Engineered La2CuO4 Perovskite Nanobamboos for Efficient CO2 Reduction Reaction. Nano Letters, 21, 980-987. https://doi.org/10.1021/acs.nanolett.0c04004
|
[21]
|
Zhao, J., Zhang, P., Yuan, T., Cheng, D., Zhen, S., Gao, H., et al. (2023) Modulation of *CHxO Adsorption to Facilitate Electrocatalytic Reduction of CO2 to CH4 over Cu-Based Catalysts. Journal of the American Chemical Society, 145, 6622-6627. https://doi.org/10.1021/jacs.2c12006
|
[22]
|
Feng, J., Wu, L., Song, X., Zhang, L., Jia, S., Ma, X., et al. (2024) CO2 Electrolysis to Multi-Carbon Products in Strong Acid at Ampere-Current Levels on La-Cu Spheres with Channels. Nature Communications, 15, Article No. 4821. https://doi.org/10.1038/s41467-024-49308-8
|
[23]
|
Dong, X., Chen, H., Wang, S., Zou, R., Zang, S. and Cai, J. (2024) Introducing La into a Customized Dual Cu Covalent Organic Framework to Steer CO2 Electroreduction Selectivity from C2H4 to CH4. Advanced Materials. https://doi.org/10.1002/adma.202413710
|
[24]
|
Chen, R., Jiang, Y., Zhu, Y., Zhang, L., Li, Y. and Li, C. (2024) Atomically Dispersed Scandium in Cuprous Oxide Weakens *Co Adsorption to Boost Carbon Dioxide Electroreduction toward C2 Products. Advanced Functional Materials. https://doi.org/10.1002/adfm.202415940
|
[25]
|
Liu, J., Sun, L., Sun, Y., Sun, J., Pan, Y., Xu, M., et al. (2024) Theoretical Insights into Lanthanide Rare Earth Single-Atom Catalysts for Electrochemical CO2 Reduction. Journal of Materials Chemistry A, 12, 16183-16189. https://doi.org/10.1039/d4ta02381a
|