PCSK9及其抑制剂在急性缺血性卒中预防和治疗中的应用
Application of PCSK9 and Its Inhibitors in the Prevention and Treatment of Acute Ischemic Stroke
DOI: 10.12677/acm.2025.152394, PDF, HTML, XML,   
作者: 韩东倩*, 池 琦, 董琬玥, 黄忆晴, 孟 珩#:暨南大学附属第一医院神经内科,广东 广州
关键词: PCSK9缺血性卒中降脂PCSK9 Ischemic Stroke Lipid-Lowering
摘要: 在缺血性卒中的多种风险原因中,高脂血症特别是高胆固醇血症始终占有着很关键的地位,通过降低血浆中胆固醇特别是低密度脂蛋白胆固醇的水平,可以很有效地减少缺血性卒中发生的风险,这一观点已是世界神经科专家的普遍共识。他汀类药物是缺血性卒中二级预防的基石,被广泛应用于临床,然而,他汀类药物也有其自身的局限性。首先,如果他汀类药物剂量增加一倍,其降脂效果仅增加6%,这使得许多患者仅靠他汀类药物很难达到LDL-C目标。其次,有些患者不能耐受他汀类药物,这一现象在接受大剂量他汀类药物治疗的中国患者中尤为明显。近几年新上市的新型降脂药物–前蛋白转化酶枯草溶菌素9 (proprotein convertase subtilisin/kexin type 9, PCSK9)抑制剂则为缺血性卒中的治疗提供了新的策略。
Abstract: Among the myriad risk factors for ischemic stroke, hyperlipidemia, particularly hypercholesterolemia, consistently holds a pivotal role. The reduction of plasma cholesterol levels, notably low-density lipoprotein cholesterol (LDL-C), has been recognized as an effective strategy to mitigate the risk of ischemic stroke. This perspective has garnered widespread acceptance among neurology experts globally. Statins, as the mainstay of secondary prevention for ischemic stroke, are extensively utilized in clinical settings. However, statins are not without their inherent limitations. Firstly, the lipid-lowering efficacy of statins plateaus with increased dosage; doubling the dose results in a mere 6% increase in cholesterol reduction, making it challenging for many patients to achieve their LDL-C targets with statin monotherapy. Secondly, statin intolerance is not uncommon, with a pronounced incidence observed among Chinese patients undergoing high-dose statin therapy. In this context, the advent of proprotein convertase subtilisin/kexin type 9 (PCSK9) inhibitors, a novel class of lipid-lowering agents, offers a promising alternative for the management of ischemic stroke, presenting a new therapeutic horizon in the field.
文章引用:韩东倩, 池琦, 董琬玥, 黄忆晴, 孟珩. PCSK9及其抑制剂在急性缺血性卒中预防和治疗中的应用[J]. 临床医学进展, 2025, 15(2): 672-679. https://doi.org/10.12677/acm.2025.152394

1. PCSK9和PCSK9抑制剂的介绍

PCSK9是前蛋白转化酶家族的第9个成员,是一组丝氨酸蛋白酶,主要表达于肾脏、肠道、肝脏和中枢神经系统。PCSK9最显著的功能是通过降解肝细胞表面的低密度脂蛋白受体(LDLR)来调节血脂代谢,PCSK9与LDLR结合促进其降解,使肝细胞膜上结合LDL-C的LDLR更少,最终导致循环LDL-C清除率下降[1]。PCSK9抑制剂通过抑制PCSK9的表达,可显著降低血液中LDL-C的水平,减缓动脉粥样硬化的形成,降低心血管病(CVD)和卒中的发生风险[2]

2. PCSK9在急性缺血性卒中的作用和表达

2.1. PCSK9基因与卒中风险显著相关

尽管PCSK9功能丧失突变携带者的LDL-C和冠心病发病率终生降低,但最初并未发现卒中风险显着降低[3],英国生物数据库的一项更大规模的研究描述了第一个PCSK9上的R46L功能丧失突变对缺血性卒中具有保护作用的遗传证据[4]。一项荟萃分析显示,PCSK9 rs505151的共显性模型与缺血性卒中相关,其中G等位基因在缺血性中风患者中的分布较高[5]。中国的一项关于PCSK9基因多态性与新疆汉族、维吾尔族人群缺血性脑卒中的相关性的研究显示,PCSK9的rs1711503和2479408均与中国汉族人群中的缺血性卒中相关。AC单倍型可能是中国汉族缺血性卒中的危险遗传标记。rs17111503的A等位基因和rs2479408的C等位基因可能是缺血性卒中的风险标记[6]。比利时卒中研究发现PCSK9基因的E670G SNP与比利时人群的大动脉粥样硬化型(LVA)卒中风险显着相关[7]。突尼斯队列中的IS亚组和从比利时中风研究中选择的LVA中风患者(0.108)中,G等位基因的发生率往往较高。这一发现显然是G670多态性对脑血管疾病(尤其是IS)的直接影响,并表明该风险是由颅内动脉粥样硬化的严重程度介导的[8]。基于早期对PCSK9基因序列变异对血浆LDL浓度和冠心病风险的主要影响的观察以及当前研究的结果,PCSK9无疑是开发新型抗动脉粥样硬化疗法的一个极具潜力的新靶点。

2.2. PCSK9参与缺血性卒中早期血管内炎性反应

对PCSK9在心肌缺血中的调节功能的研究表明,PCSK9激活NF-κB信号传导,导致促炎细胞因子的分泌更加明显,例如肿瘤坏死因子-α (TNF-α)、白介素-6 (巨噬细胞介导的IL-6)和IL-1β会加剧心肌细胞缺氧-复氧诱导的损伤[9]。PCSK9已被证明可通过TLR4/NF-κB通路激活动脉粥样硬化炎症反应,并增加巨噬细胞释放促炎细胞因子、TNF-α、IL-6、IL-1β、干扰素-γ (IFN-γ)、C-X-C基序配体2和单核细胞趋化蛋白-1 [10]。PCSK9调节Toll样受体4表达和NF-κB激活以及细胞凋亡和自噬的发展。PCSK9还与氧化LDL受体1 (LOX-1)以相互促进的方式相互作用[11]。在一项观察性研究中,PCSK9抑制剂在动脉粥样硬化病变部位具有抗炎作用,可以有力地改善并重塑斑块内炎症因子内容物,接受PCSK9抑制剂治疗的患者在斑块内也表现出更低的PCSK9表达和更高的SIRT3表达,而后者在PCSK9抑制剂对内皮炎症的改善方面起到介导作用。同时,接受PCSK9抑制剂治疗的患者表现出更低的心血管事件发生风险。这一结果提示,相比其它口服降脂药(oLLD),PCSK9抑制剂可能通过降低斑块炎症负担和促进斑块稳定性来减轻心血管事件的发生风险[12]。这些观察结果表明,PCSK9抑制剂不仅可以降低LDL-C水平,还可以通过抑制PCSK9参与的炎症反应,从而减少动脉粥样硬化疾病的发生,很可能具有抑制急性缺血性卒中早期血管内炎性反应及卒中进展的作用。

2.3. PCSK9参与缺血性卒中早期血管内皮细胞凋亡

急性缺血性卒中的发展过程中常伴随血管内皮细胞的凋亡,而后者可引起血管内新生内膜形成、炎症细胞浸润、脂质转运和斑块破裂等病理过程[13]。多种蛋白酶与细胞凋亡密切相关,分为caspase依赖性途径和非caspase依赖性途径。一些研究表明ox-LDL通过caspase依赖性途径诱导人血管平滑肌细胞凋亡;Bcl-2和Bax是重要的凋亡蛋白,在此通路中发挥关键作用[14]。Bax是加速细胞凋亡的蛋白质。Bcl-2则相反,抑制细胞凋亡。有研究证实了PCSK9siRNA通过Bcl/Bax-CytC-caspase9-caspase3线粒体途径抑制ox-LDL诱导的人脐静脉内皮细胞(HUVEC)凋亡,降低Bcl-2/Bax蛋白比例,抑制ox-LDL对caspase9和3激活的作用。但目前尚不清楚PCSK9是直接降解凋亡相关蛋白启动细胞凋亡,还是通过其他途径激活凋亡级联反应,从而影响凋亡途径相关因子的表达[15]。对ACS患者冠脉搭桥术中获取的多段左乳内动脉(LIMA)片段样本的免疫组化和免疫荧光分析显示,PCSK9与血小板和内皮细胞在动脉内皮表面的共定位加剧了血栓的形成与斑块的不稳定性,而在梗死后急性期给予PCSK9抑制剂依洛尤单抗治疗,可以降低血小板激活和内皮功能障碍相关的标记物水平[16]。关于PCSK9在急性缺血性卒中早期的作用和表达,仍需更多的研究来探索。

3. PCSK9抑制剂在急性缺血性卒中中的应用

3.1. PCSK9抑制剂对急性缺血性卒中疗效

多项临床研究证实,PCSK9抑制剂能有效降低血清LDL-C水平,并降低后续血管事件发生的风险。FOURIER研究将27564例ASCVD患者随机分为依洛尤单抗组和安慰剂组,随访期平均持续2.2年。PCSK9抑制剂的给药使主要终点即心血管疾病、心肌梗塞、卒中、不稳定心绞痛住院和经皮冠状动脉介入治疗导致的死亡率发生的风险降低了15%。次要终点,例如心血管疾病导致的死亡相对风险降低了20%,心肌梗死降低了27%,中风降低了21%,重复血运重建降低了22%。依洛尤单抗(Evolocumabe)将LDL幅度降低了59%,82%的患者LDL水平低于70 mg/dL,研究组中42%的LDL-C水平低于25 mg/dL [17]。ODYSSEY研究将18924例急性冠状动脉综合征发生后1至12个月并且正接受强化他汀治疗患者随机分为阿利西尤单抗组和安慰剂组,结果显示无论基线LDL-C和脑血管疾病史如何,阿利西尤单抗(alirocumab)在中位随访2.8年中均降低了卒中风险[18]。另一项荟萃分析结果显示PCSK9抑制剂可以显著降低主要不良心血管事件、非致命性心肌梗死和中风的风险,并显著降低任何类型卒中的相对危险达25% [19]。SPIRE-1研究的随访期为7个月,纳入了16,817名LDL > 70 mg/dl的患者接受每2周皮下注射一次Bococizumab,在主要不良心血管事件方面没有获益。另一方面,在SPIRE-2研究中,10,621名LDL > 100 mg/dL的患者受益于Bovacizumabe的给药,主要终点下降了21% [20]。虽然PCSK9抑制剂可以降低心血管风险被广泛认可,但是是否可以降低卒中风险有待更大规模的临床试验来验证。

3.2. PCSK9抑制剂预防缺血性卒中的发生

3.2.1. 抗动脉粥样硬化作用

多项临床前和临床研究表明,PCSK9与动脉粥样硬化的关系可能部分独立于其高脂血症作用。Atheroma IVUS研究显示,冠状动脉粥样硬化中坏死核心组织的分数和数量与血清PCSK9水平呈线性相关,与血清LDL胆固醇水平和他汀类药物的使用无关[21]。GLAGOV (通过IVUS测量的PCSK9抗体对斑块消退的全球评估)试验表明,PCSK9抑制剂可以有效减少动脉粥样硬化斑块的体积[22]。HUYGENS研究结果证实ACS后早期联用依洛尤单抗,治疗1年,可显著增加冠脉粥样硬化斑块最小纤维帽厚度(FCT),降低最大脂质弧度,受益程度与降脂强度成正比[23]。EPIC研究显示,依洛尤单抗可显著降低LDL-C、改善血脂谱,并进而显著降低IPN (斑块内新生血管)、稳定斑块[24]。通过高分辨MRI,骆翔教授团队首次揭示了,相较于单独使用他汀类药物治疗,PCSK9抑制剂联合中等剂量他汀类药物治疗12周,显著降低颅内动脉粥样硬化性狭窄(ICAS)患者的狭窄程度,并显著改善患者的斑块负荷(以标准化壁管指数(NWI)评估)。这些结果支持PCSK9抑制剂可能具有稳定斑块的作用,但仍需要随机临床试验来确定因果关系。

3.2.2. 抗血小板聚集与抗血栓形成

血小板粘附在破裂的动脉粥样硬化斑块的血栓形成内皮下基质的能力及其随后的激活和聚集强烈增加了缺血性事件的风险[25]。在ATHERO-AF研究中,观察到血液中PCSK9水平升高可预测房颤患者罹患心脑血管事件。PCSK9浓度与尿11-脱氢血栓烷B2(血小板活化标志物)之间的显著相关性表明,PCSK9可能通过增加(至少部分增加)血小板活化而导致心脑血管事件的发生[26]。在PCSK9-REACT研究中,PCSK9水平升高与接受替格瑞洛治疗的ACS患者的血小板反应性显著升高相关;与一年随访中动脉粥样硬化血栓事件发生率显著升高相关;可预测血小板活化程度和临床缺血事件的发生率升高[27]。抗PCSK9单克隆抗体(mAb)治疗对家族性高胆固醇血症患者血小板影响的研究证明,使用抗PCSK-9单克隆抗体alirocumab或evolocumab治疗2至12个月后,血小板聚集性和活化性有所降低。在阿司匹林联合治疗的情况下,这种改善很明显,表明PCSK9抑制剂治疗在提高阿司匹林抗血小板作用的敏感性方面发挥着有效作用[28]。在下腔静脉结扎术构建的静脉血栓小鼠模型中,与野生型相比,PCSK9基因敲除的小鼠静脉血栓较小,这种保护与白细胞募集和中性粒细胞胞外陷阱形成形成减少有关,进而解释PCSK9基因敲除小鼠中静脉血栓形成能力的下降[29]。这样,理论上,PCSK9抑制应该具有抗血栓形成作用。血栓形成是发生缺血性脑卒中等血栓性疾病的主要病理原因。这些证据提示,PCSK9抑制剂可能具有抗血小板聚集与抗血栓形成的功能,但其具体机制仍有待进一步研究揭示。

3.3. PCSK9抑制剂的安全性和风险评估

在PCSK9抑制剂注册并将其引入日常临床实践之前,已经进行了许多研究,除了评估治疗效果外,还检查了药物的安全性和耐受性。FOURIER研究显示evolocumab不会增加糖尿病发病风险,也不会加重血糖[30]。OSLER-1研究显示服用evolocumab的患者新发糖尿病病例没有增加[31]。ODYSSEY LONG研究显示alirocumab治疗78周后空腹血糖和糖化血红蛋白(HbA1c)水平保持稳定[32]。对38项随机对照试验进行的荟萃分析与上述结果一致,表明PCSK9抑制剂治疗可降低糖尿病患者和非糖尿病患者的LDL胆固醇并减少不良心血管事件,并且不会增加患糖尿病的风险[33]。由此可见,PCSK9抑制剂治疗不会影响葡萄糖代谢和糖尿病新病例的增加。DESCARTES研究显示服用evolocumab和安慰剂的患者之间肌酸激酶(CK)值增加和肌肉疼痛的发生率相似[34]。ODYSSEY ALTERNATIVE研究显示与阿托伐他汀组相比,alirocumab组发生骨关节不良事件的频率最低[35]。GAUSS-3研究显示使用依折麦布治疗的患者比使用evolocumab治疗的患者更频繁地出现肌肉症状[36]。由此可见,与他汀类药物和依折麦布相比,PCSK9抑制剂治疗产生肌肉副作用的风险较低。FOURIER试验的子研究EBBINGHAUS研究显示,与安慰剂组相比,接受evolocumab治疗的患者的不良神经认知事件没有显着差异[37]。由此可见,PCSK9抑制剂治疗不会影响认知功能。然而,需要对更多样化的人群进行更长随访期的研究。一项纳入了7项随机对照试验,共有57,440名参与者的系统回顾和荟萃分析表明,PCSK9抑制剂与较低的完全性脑卒中和缺血性脑卒中风险相关,并且不会增加出血性脑卒中和神经认知障碍事件的发生率。此外,PCSK9抑制剂与心血管死亡率没有显着相关性[38]。因此,PCSK9抑制剂对于初级和二级脑卒中预防可能是安全有效的。目前,尚无关于PCSK9抑制剂导致严重不良反应的相关报道,但仍需进一步观察评估。

3.4. PCSK9抑制剂的指南推荐

多个指南均对PCSK9抑制剂进行了肯定和推荐,多个临床试验均证明PCSK9抑制剂能更有效地使LDL-C水平。FOURIER研究要点:ASCVD患者他汀 + PCSK9抑制剂(依洛尤单抗)进一步降低LDL-C和CVE风险[17];ODDESSEY OUTCOMES研究要点:急性冠状动脉综合征(ACS)患者他汀 + PCSK9抑制剂(阿里西尤单抗)降低LDL-C和CVE风险[18];FOURIER-OLE研究要点:PCSK9抑制剂(单克隆抗体)治疗的长期安全性与有效性[39]。美国ACC/AHA指南推荐稳定性或进展性动脉粥样硬化性心血管疾病、LDL-C ≥ 4.9 mmol/L的家族性高胆固醇血症、极高危且他汀类药物不耐受的患者可优先使用PCSK9抑制剂[40]。欧洲的指南则强调更低的降脂目标与早期联合用药,在极高危患者的二级预防中,推荐LDL-C降低至少50%,LDL-C目标为 < 1.4 mmol/L,在他汀类药物加依折麦布降低LDL-C效果不理想时,建议联合PCSK9抑制剂[41]。《中国血脂管理指南(2023年)》:新指南尚补充了基线LDL-C水平较高(服用他汀类药物者LDL-C ≥ 2.6 mmol/L,未服用他汀类药物者LDL-C ≥ 4.9 mmol/L),且预计他汀类药物联合胆固醇吸收抑制剂难以达标的超高危患者,可直接启动他汀类药物联合PCSK9抑制剂治疗之新的策略,以保证患者LDL-C早期快速达标[42]。由此可见,血脂管理联合治疗是大趋势,他汀类药物治疗后LDL-C未达标时应考虑联合胆固醇吸收抑制剂和(或) PCSK9抑制剂。然而临床上需综合患者耐受性、依从性和实际情况,个体化选择适当的血脂控制策略尤为重要。依洛尤单抗治疗较基线LDL-C降低70.2%,阿利西尤单抗降低48.6%,英克司兰降低33%~35% [2]。若患者需要更强的降脂效果,可优先选择依洛尤单抗;对于降脂需求相对较低的患者,可考虑阿利西尤单抗或英克司兰。部分患者可能因工作、生活等原因,对注射频率有特殊要求。对于希望注射频率低的患者,可选择英克司兰;若患者能接受相对较高的注射频率,则可选择依洛尤单抗、阿利西尤单抗等。

4. 展望

一直以来,PCSK9抑制剂因其较强的降脂效果,较低的应用频率,得到了临床医师的认可。但PCSK9抑制剂的最大缺点是价格昂贵。在美国,每年evolocumab和arilocumab的治疗费用总计超过14,000美元。成本效益分析表明,当前价格需要降低85%才能使PCSK9抑制剂的普遍使用变得可行[2]。但随着医学的发展,未来可能将出现更长效的新型PCSK9抑制剂注射剂型,甚至出现更方便的口服剂型,使PCSK9抑制剂在缺血性卒中的二级预防中应用更为广泛。

NOTES

*第一作者。

#通讯作者。

参考文献

[1] Cui, C., Li, S. and Li, J. (2015) PCSK9 and Its Modulation. Clinica Chimica Acta, 440, 79-86.
https://doi.org/10.1016/j.cca.2014.10.044
[2] Moustafa, B. and Testai, F.D. (2021) Efficacy and Safety of PCSK9 Inhibitors in Stroke Prevention. Journal of Stroke and Cerebrovascular Diseases, 30, Article 106057.
https://doi.org/10.1016/j.jstrokecerebrovasdis.2021.106057
[3] Kent, S.T., Rosenson, R.S., Avery, C.L., Chen, Y.I., Correa, A., Cummings, S.R., et al. (2017) PCSK9 Loss-of-Function Variants, Low-Density Lipoprotein Cholesterol, and Risk of Coronary Heart Disease and Stroke. Circulation: Cardiovascular Genetics, 10, 1-9.
https://doi.org/10.1161/circgenetics.116.001632
[4] Rao, A.S., Lindholm, D., Rivas, M.A., Knowles, J.W., Montgomery, S.B. and Ingelsson, E. (2018) Large-Scale Phenome-Wide Association Study of PCSK9 Variants Demonstrates Protection against Ischemic Stroke. Circulation: Genomic and Precision Medicine, 11, e002162.
https://doi.org/10.1161/circgen.118.002162
[5] Au, A., Griffiths, L.R., Cheng, K., Wee Kooi, C., Irene, L. and Keat Wei, L. (2015) The Influence of OLR1 and PCSK9 Gene Polymorphisms on Ischemic Stroke: Evidence from a Meta-Analysis. Scientific Reports, 5, Article No. 18224.
https://doi.org/10.1038/srep18224
[6] Lei, J. (2014) Correlation of PCSK9 Gene Polymorphism with Cerebral Ischemic Stroke in Xinjiang Han and Uygur Populations. Medical Science Monitor, 20, 1758-1767.
https://doi.org/10.12659/msm.892091
[7] Abboud, S., Karhunen, P.J., Lütjohann, D., Goebeler, S., Luoto, T., Friedrichs, S., et al. (2007) Proprotein Convertase Subtilisin/Kexin Type 9 (PCSK9) Gene Is a Risk Factor of Large-Vessel Atherosclerosis Stroke. PLOS ONE, 2, e1043.
https://doi.org/10.1371/journal.pone.0001043
[8] Slimani, A., Harira, Y., Trabelsi, I., Jomaa, W., Maatouk, F., Hamda, K.B., et al. (2014) Effect of E670G Polymorphism in PCSK9 Gene on the Risk and Severity of Coronary Heart Disease and Ischemic Stroke in a Tunisian Cohort. Journal of Molecular Neuroscience, 53, 150-157.
https://doi.org/10.1007/s12031-014-0238-2
[9] Andreadou, I., Tsoumani, M., Vilahur, G., Ikonomidis, I., Badimon, L., Varga, Z.V., et al. (2020) PCSK9 in Myocardial Infarction and Cardioprotection: Importance of Lipid Metabolism and Inflammation. Frontiers in Physiology, 11, Article 602497.
https://doi.org/10.3389/fphys.2020.602497
[10] Tang, Z., Peng, J., Ren, Z., Yang, J., Li, T., Li, T., et al. (2017) New Role of PCSK9 in Atherosclerotic Inflammation Promotion Involving the TLR4/NF-κB Pathway. Atherosclerosis, 262, 113-122.
https://doi.org/10.1016/j.atherosclerosis.2017.04.023
[11] Ricci, C., Ruscica, M., Camera, M., Rossetti, L., Macchi, C., Colciago, A., et al. (2018) PCSK9 Induces a Pro-Inflammatory Response in Macrophages. Scientific Reports, 8, Article No. 2267.
https://doi.org/10.1038/s41598-018-20425-x
[12] Marfella, R., Prattichizzo, F., Sardu, C., Paolisso, P., D’Onofrio, N., Scisciola, L., et al. (2023) Evidence of an Anti-Inflammatory Effect of PCSK9 Inhibitors within the Human Atherosclerotic Plaque. Atherosclerosis, 378, Article 117180.
https://doi.org/10.1016/j.atherosclerosis.2023.06.971
[13] Libby, P., Ridker, P.M. and Hansson, G.K. (2011) Progress and Challenges in Translating the Biology of Atherosclerosis. Nature, 473, 317-325.
https://doi.org/10.1038/nature10146
[14] Kataoka, H., Kume, N., Miyamoto, S., Minami, M., Morimoto, M., Hayashida, K., et al. (2001) Oxidized LDL Modulates Bax/Bcl-2 through the Lectinlike Ox-LDL Receptor-1 in Vascular Smooth Muscle Cells. Arteriosclerosis, Thrombosis, and Vascular Biology, 21, 955-960.
https://doi.org/10.1161/01.atv.21.6.955
[15] Wu, C., Tang, Z., Jiang, L., Li, X., Jiang, Z. and Liu, L. (2011) PCSK9 siRNA Inhibits HUVEC Apoptosis Induced by ox-LDL via Bcl/Bax-Caspase9-Caspase3 Pathway. Molecular and Cellular Biochemistry, 359, 347-358.
https://doi.org/10.1007/s11010-011-1028-6
[16] Ziogos, E., Chelko, S.P., Harb, T., Engel, M., Vavuranakis, M.A., Landim-Vieira, M., et al. (2023) Platelet Activation and Endothelial Dysfunction Biomarkers in Acute Coronary Syndrome: The Impact of PCSK9 Inhibition. European Heart JournalCardiovascular Pharmacotherapy, 9, 636-646.
https://doi.org/10.1093/ehjcvp/pvad051
[17] Sabatine, M.S., Giugliano, R.P., Keech, A.C., Honarpour, N., Wiviott, S.D., Murphy, S.A., et al. (2017) Evolocumab and Clinical Outcomes in Patients with Cardiovascular Disease. New England Journal of Medicine, 376, 1713-1722.
https://doi.org/10.1056/nejmoa1615664
[18] Jukema, J.W., Zijlstra, L.E., Bhatt, D.L., Bittner, V.A., Diaz, R., Drexel, H., et al. (2019) Effect of Alirocumab on Stroke in ODYSSEY Outcomes. Circulation, 140, 2054-2062.
https://doi.org/10.1161/circulationaha.119.043826
[19] Du, H., Li, X., Su, N., Li, L., Hao, X., Gao, H., et al. (2019) Proprotein Convertase Subtilisin/Kexin 9 Inhibitors in Reducing Cardiovascular Outcomes: A Systematic Review and Meta-Analysis. Heart, 105, 1149-1159.
https://doi.org/10.1136/heartjnl-2019-314763
[20] Ridker, P.M., Revkin, J., Amarenco, P., Brunell, R., Curto, M., Civeira, F., et al. (2017) Cardiovascular Efficacy and Safety of Bococizumab in High-Risk Patients. New England Journal of Medicine, 376, 1527-1539.
https://doi.org/10.1056/nejmoa1701488
[21] Cheng, J.M., Oemrawsingh, R.M., Garcia-Garcia, H.M., Boersma, E., van Geuns, R., Serruys, P.W., et al. (2016) PCSK9 in Relation to Coronary Plaque Inflammation: Results of the ATHEROREMO-IVUS Study. Atherosclerosis, 248, 117-122.
https://doi.org/10.1016/j.atherosclerosis.2016.03.010
[22] Nicholls, S.J., Puri, R., Anderson, T., Ballantyne, C.M., Cho, L., Kastelein, J.J.P., et al. (2016) Effect of Evolocumab on Progression of Coronary Disease in Statin-Treated Patients. Journal of the American Medical Association, 316, 2373-2384.
https://doi.org/10.1001/jama.2016.16951
[23] Nicholls, S.J., Kataoka, Y., Nissen, S.E., Prati, F., Windecker, S., Puri, R., et al. (2022) Effect of Evolocumab on Coronary Plaque Phenotype and Burden in Statin-Treated Patients Following Myocardial Infarction. JACC: Cardiovascular Imaging, 15, 1308-1321.
https://doi.org/10.1016/j.jcmg.2022.03.002
[24] Chen, J., Zhao, F., Lei, C., Qi, T., Xue, X., Meng, Y., et al. (2023) Effect of Evolocumab on the Progression of Intraplaque Neovascularization of the Carotid Based on Contrast-Enhanced Ultrasonography (EPIC Study): A Prospective Single-Arm, Open-Label Study. Frontiers in Pharmacology, 13, Article 999224.
https://doi.org/10.3389/fphar.2022.999224
[25] Barale, C., Melchionda, E., Morotti, A. and Russo, I. (2021) PCSK9 Biology and Its Role in Atherothrombosis. International Journal of Molecular Sciences, 22, Article 5880.
https://doi.org/10.3390/ijms22115880
[26] Pastori, D., Nocella, C., Farcomeni, A., Bartimoccia, S., Santulli, M., Vasaturo, F., et al. (2017) Relationship of PCSK9 and Urinary Thromboxane Excretion to Cardiovascular Events in Patients with Atrial Fibrillation. Journal of the American College of Cardiology, 70, 1455-1462.
https://doi.org/10.1016/j.jacc.2017.07.743
[27] Navarese, E.P., Kolodziejczak, M., Winter, M., Alimohammadi, A., Lang, I.M., Buffon, A., et al. (2017) Association of PCSK9 with Platelet Reactivity in Patients with Acute Coronary Syndrome Treated with Prasugrel or Ticagrelor: The PCSK9-REACT Study. International Journal of Cardiology, 227, 644-649.
https://doi.org/10.1016/j.ijcard.2016.10.084
[28] Barale, C., Bonomo, K., Frascaroli, C., Morotti, A., Guerrasio, A., Cavalot, F., et al. (2020) Platelet Function and Activation Markers in Primary Hypercholesterolemia Treated with Anti-PCSK9 Monoclonal Antibody: A 12-Month Follow-Up. Nutrition, Metabolism and Cardiovascular Diseases, 30, 282-291.
https://doi.org/10.1016/j.numecd.2019.09.012
[29] Wang, H., Wang, Q., Wang, J., Guo, C., Kleiman, K., Meng, H., et al. (2017) Proprotein Convertase Subtilisin/Kexin Type 9 (PCSK9) Deficiency Is Protective against Venous Thrombosis in Mice. Scientific Reports, 7, Article No. 14360.
https://doi.org/10.1038/s41598-017-14307-x
[30] Sabatine, M.S., Leiter, L.A., Wiviott, S.D., Giugliano, R.P., Deedwania, P., De Ferrari, G.M., et al. (2017) Cardiovascular Safety and Efficacy of the PCSK9 Inhibitor Evolocumab in Patients with and without Diabetes and the Effect of Evolocumab on Glycaemia and Risk of New-Onset Diabetes: A Prespecified Analysis of the FOURIER Randomized Controlled Trial. The Lancet Diabetes & Endocrinology, 5, 941-950.
https://doi.org/10.1016/s2213-8587(17)30313-3
[31] Koren, M.J., Sabatine, M.S., Giugliano, R.P., Langslet, G., Wiviott, S.D., Kassahun, H., et al. (2017) Long-Term Low-Density Lipoprotein Cholesterol-Lowering Efficacy, Persistence, and Safety of Evolocumab in Treatment of Hypercholesterolemia. JAMA Cardiology, 2, 598-607.
https://doi.org/10.1001/jamacardio.2017.0747
[32] Taskinen, M., Del Prato, S., Bujas-Bobanovic, M., Louie, M.J., Letierce, A., Thompson, D., et al. (2018) Efficacy and Safety of Alirocumab in Individuals with Type 2 Diabetes Mellitus with or without Mixed Dyslipidaemia: Analysis of the Odyssey Long Term Trial. Atherosclerosis, 276, 124-130.
https://doi.org/10.1016/j.atherosclerosis.2018.07.017
[33] Monami, M., Sesti, G. and Mannucci, E. (2018) PCSK9 Inhibitor Therapy: A Systematic Review and Meta-Analysis of Metabolic and Cardiovascular Outcomes in Patients with Diabetes. Diabetes, Obesity and Metabolism, 21, 903-908.
https://doi.org/10.1111/dom.13599
[34] Blom, D.J., Hala, T., Bolognese, M., Lillestol, M.J., Toth, P.D., Burgess, L., et al. (2014) A 52-Week Placebo-Controlled Trial of Evolocumab in Hyperlipidemia. New England Journal of Medicine, 370, 1809-1819.
https://doi.org/10.1056/nejmoa1316222
[35] Moriarty, P.M., Jacobson, T.A., Bruckert, E., Thompson, P.D., Guyton, J.R., Baccara-Dinet, M.T., et al. (2014) Efficacy and Safety of Alirocumab, a Monoclonal Antibody to PCSK9, in Statin-Intolerant Patients: Design and Rationale of Odyssey Alternative, a Randomized Phase 3 Trial. Journal of Clinical Lipidology, 8, 554-561.
https://doi.org/10.1016/j.jacl.2014.09.007
[36] Nissen, S.E., Stroes, E., Dent-Acosta, R.E., Rosenson, R.S., Lehman, S.J., Sattar, N., et al. (2016) Efficacy and Tolerability of Evolocumab vs Ezetimibe in Patients with Muscle-Related Statin Intolerance. Journal of the American Medical Association, 315, Article 1580.
https://doi.org/10.1001/jama.2016.3608
[37] Giugliano, R.P., Mach, F., Zavitz, K., Kurtz, C., Im, K., Kanevsky, E., et al. (2017) Cognitive Function in a Randomized Trial of Evolocumab. New England Journal of Medicine, 377, 633-643.
https://doi.org/10.1056/nejmoa1701131
[38] Qin, J., Liu, L., Su, X.D., Wang, B.B., Fu, B.S., Cui, J.Z., et al. (2021) The Effect of PCSK9 Inhibitors on Brain Stroke Prevention: A Systematic Review and Meta-Analysis. Nutrition, Metabolism and Cardiovascular Diseases, 31, 2234-2243.
https://doi.org/10.1016/j.numecd.2021.03.026
[39] Gaba, P., O’Donoghue, M.L., Park, J., Wiviott, S.D., Atar, D., Kuder, J.F., et al. (2023) Association between Achieved Low-Density Lipoprotein Cholesterol Levels and Long-Term Cardiovascular and Safety Outcomes: An Analysis of Fourier-Ole. Circulation, 147, 1192-1203.
https://doi.org/10.1161/circulationaha.122.063399
[40] Grundy, S.M., Stone, N.J., Bailey, A.L., et al. (2019)2018 AHA/ACC/AACVPR/AAPA/ABC/ACPM/ADA/AGS/ APhA/ASPC/NLA/PCNA Guideline on the Management of Blood Cholesterol: Executive Summary. Circulation, 139, e1082-e1143. Https://doi.org/10.1161/CIR.0000000000000625
[41] Mach, F., Baigent, C., Catapano, A.L., Koskinas, K.C., Casula, M., Badimon, L., et al. (2019) 2019 ESC/EAS Guidelines for the Management of Dyslipidaemias: Lipid Modification to Reduce Cardiovascular Risk. European Heart Journal, 41, 111-188.
https://doi.org/10.1093/eurheartj/ehz455
[42] 王增武, 刘静, 李建军, 等. 中国血脂管理指南(2023年) [J]. 中国循环杂志, 2023, 38(3): 237-271.