|
[1]
|
Wang, S., Qiu, J., Guo, A., Ren, R., He, W., Liu, S., et al. (2020) Nanoscale Perfluorocarbon Expediates Bone Fracture Healing through Selectively Activating Osteoblastic Differentiation and Functions. Journal of Nanobiotechnology, 18, Article No. 84. [Google Scholar] [CrossRef] [PubMed]
|
|
[2]
|
Baker, C.E., Moore-Lotridge, S.N., Hysong, A.A., Posey, S.L., Robinette, J.P., Blum, D.M., et al. (2018) Bone Fracture Acute Phase Response—A Unifying Theory of Fracture Repair: Clinical and Scientific Implications. Clinical Reviews in Bone and Mineral Metabolism, 16, 142-158. [Google Scholar] [CrossRef] [PubMed]
|
|
[3]
|
Liu, W., Li, L., Rong, Y., Qian, D., Chen, J., Zhou, Z., et al. (2020) Hypoxic Mesenchymal Stem Cell-Derived Exosomes Promote Bone Fracture Healing by the Transfer of miR-126. Acta Biomaterialia, 103, 196-212. [Google Scholar] [CrossRef] [PubMed]
|
|
[4]
|
Hou, Y., Lin, W., Li, Y., Sun, Y., Liu, Y., Chen, C., et al. (2021) De-Osteogenic-Differentiated Mesenchymal Stem Cells Accelerate Fracture Healing by miR-92b. Journal of Orthopaedic Translation, 27, 25-32. [Google Scholar] [CrossRef] [PubMed]
|
|
[5]
|
Xu, B., Chen, L. and Lee, J.H. (2020) Smoking and Alcohol Drinking and Risk of Non-Union or Delayed Union after Fractures: A Protocol for Systematic Review and Dose-Response Meta-Analysis. Medicine, 99, e18744. [Google Scholar] [CrossRef] [PubMed]
|
|
[6]
|
Chen, S., Chang, S., Tuladhar, R., Wei, Z., Xiong, W., Hu, S., et al. (2020) A New Fluoroscopic View for Evaluation of Anteromedial Cortex Reduction Quality during Cephalomedullary Nailing for Intertrochanteric Femur Fractures: The 30˚ Oblique Tangential Projection. BMC Musculoskeletal Disorders, 21, Article No. 719. [Google Scholar] [CrossRef] [PubMed]
|
|
[7]
|
Liu, P., Jin, D., Zhang, C. and Gao, Y. (2020) Revision Surgery Due to Failed Internal Fixation of Intertrochanteric Femoral Fracture: Current State-of-the-Art. BMC Musculoskeletal Disorders, 21, Article No. 573. [Google Scholar] [CrossRef] [PubMed]
|
|
[8]
|
张慧杰, 王小琦, 孙岩, 等. 恒古骨伤愈合剂初步分离及其促骨形成活性的评价[J]. 中华中医药杂志, 2018, 33(4): 1512-1515.
|
|
[9]
|
Ru, J., Li, P., Wang, J., Zhou, W., Li, B., Huang, C., et al. (2014) TCMSP: A Database of Systems Pharmacology for Drug Discovery from Herbal Medicines. Journal of Cheminformatics, 6, Article No. 13. [Google Scholar] [CrossRef] [PubMed]
|
|
[10]
|
Liu, Z., Guo, F., Wang, Y., Li, C., Zhang, X., Li, H., et al. (2016) BATMAN-TCM: A Bioinformatics Analysis Tool for Molecular Mechanism of Traditional Chinese Medicine. Scientific Reports, 6, Article No. 21146. [Google Scholar] [CrossRef] [PubMed]
|
|
[11]
|
The UniProt Consortium (2018) UniProt: A Worldwide Hub of Protein Knowledge. Nucleic Acids Research, 47, D506-D515. [Google Scholar] [CrossRef] [PubMed]
|
|
[12]
|
Safran, M., Dalah, I., Alexander, J., Rosen, N., Iny Stein, T., Shmoish, M., et al. (2010) Genecards Version 3: The Human Gene Integrator. Database, 2010, baq020. [Google Scholar] [CrossRef] [PubMed]
|
|
[13]
|
NCBI Resource Coordinators (2018) Database Resources of the National Center for Biotechnology Information. Nucleic Acids Research, 46, D8-D13.
|
|
[14]
|
Amberger, J.S., Bocchini, C.A., Schiettecatte, F., Scott, A.F. and Hamosh, A. (2014) OMIM.org: Online Mendelian Inheritance in Man (OMIM®), an Online Catalog of Human Genes and Genetic Disorders. Nucleic Acids Research, 43, D789-D798. [Google Scholar] [CrossRef] [PubMed]
|
|
[15]
|
Szklarczyk, D., Gable, A.L., Lyon, D., Junge, A., Wyder, S., Huerta-Cepas, J., et al. (2018) STRING V11: Protein-Protein Association Networks with Increased Coverage, Supporting Functional Discovery in Genome-Wide Experimental Datasets. Nucleic Acids Research, 47, D607-D613. [Google Scholar] [CrossRef] [PubMed]
|
|
[16]
|
Doncheva, N.T., Morris, J.H., Gorodkin, J. and Jensen, L.J. (2018) Cytoscape Stringapp: Network Analysis and Visualization of Proteomics Data. Journal of Proteome Research, 18, 623-632. [Google Scholar] [CrossRef] [PubMed]
|
|
[17]
|
Sun, C., Yuan, Q., Wu, D., Meng, X. and Wang, B. (2017) Identification of Core Genes and Outcome in Gastric Cancer Using Bioinformatics Analysis. Oncotarget, 8, 70271-70280. [Google Scholar] [CrossRef] [PubMed]
|
|
[18]
|
Sontich, J.K., Zalavras, C.G. and Marcus, R.E. (2021) Secrets of Success in the Management of Lower Extremity Non Unions. Instructional Course Lectures, 70, 163-180.
|
|
[19]
|
Bauwens, P., Malatray, M., Fournier, G., Rongieras, F. and Bertani, A. (2021) Risk Factors for Complications after Primary Intramedullary Nailing to Treat Tibial Shaft Fractures: A Cohort Study of 184 Consecutive Patients. Orthopaedics & Traumatology: Surgery & Research, 107, Article ID: 102877. [Google Scholar] [CrossRef] [PubMed]
|
|
[20]
|
Whiting, P.S., Galat, D.D., Zirkle, L.G., Shaw, M.K. and Galat, J.D. (2019) Risk Factors for Infection after Intramedullary Nailing of Open Tibial Shaft Fractures in Low-and Middle-Income Countries. Journal of Orthopaedic Trauma, 33, e234-e239. [Google Scholar] [CrossRef] [PubMed]
|
|
[21]
|
Ekegren, C.L., Edwards, E.R., De Steiger, R. and Gabbe, B.J. (2018) Incidence, Costs and Predictors of Non-Union, Delayed Union and Mal-Union Following Long Bone Fracture. International Journal of Environmental Research and Public Health, 15, Article No. 2845. [Google Scholar] [CrossRef] [PubMed]
|
|
[22]
|
Kizkapan, T.B. (2021) Reliability of Radiographic Union Scale in Tibial Fractures and Modified Radiographic Union Scale in Tibial Fractures Scores in the Evaluation of Pediatric Forearm Fracture Union. Joint Diseases and Related Surgery, 32, 185-191. [Google Scholar] [CrossRef] [PubMed]
|
|
[23]
|
张学军, 王宸. 胫骨骨折的挑战及现状[J]. 中国骨伤, 2021, 34(5): 391-393.
|
|
[24]
|
Gao, Y., Xiao, F., Wang, C., Wang, C., Cui, P., Zhang, X., et al. (2018) Long Noncoding RNA MALAT1 Promotes Osterix Expression to Regulate Osteogenic Differentiation by Targeting miRNA‐143 in Human Bone Marrow‐Derived Mesenchymal Stem Cells. Journal of Cellular Biochemistry, 119, 6986-6996. [Google Scholar] [CrossRef] [PubMed]
|
|
[25]
|
Tang, Y., Mo, Y., Xin, D., Xiong, Z., Zeng, L., Luo, G., et al. (2021) Regulation of Osteoblast Autophagy Based on PI3K/AKT/mTOR Signaling Pathway Study on the Effect of β-Ecdysterone on Fracture Healing. Journal of Orthopaedic Surgery and Research, 16, Article No. 719. [Google Scholar] [CrossRef] [PubMed]
|
|
[26]
|
Zhang, Z., Hu, P., Wang, Z., Qiu, X. and Chen, Y. (2020) BDNF Promoted Osteoblast Migration and Fracture Healing by Up‐Regulating Integrin β1 via TrkB‐Mediated ERK1/2 and AKT Signalling. Journal of Cellular and Molecular Medicine, 24, 10792-10802. [Google Scholar] [CrossRef] [PubMed]
|
|
[27]
|
Coates, B.A., McKenzie, J.A., Yoneda, S. and Silva, M.J. (2021) Interleukin-6 (IL-6) Deficiency Enhances Intramembranous Osteogenesis Following Stress Fracture in Mice. Bone, 143, Article ID: 115737. [Google Scholar] [CrossRef] [PubMed]
|
|
[28]
|
黄媛, 徐艳, 易学良, 等. 川续断皂苷Ⅵ通过JNK信号通路促进骨髓间充质干细胞成骨分化[J]. 广州中医药大学学报, 2018, 35(5): 887-893.
|
|
[29]
|
Fu, L., Peng, S., Wu, W., Ouyang, Y., Tan, D. and Fu, X. (2019) LncRNA HOTAIRM1 Promotes Osteogenesis by Controlling JNK/AP‐1 Signalling‐Mediated RUNX2 Expression. Journal of Cellular and Molecular Medicine, 23, 7517-7524. [Google Scholar] [CrossRef] [PubMed]
|
|
[30]
|
Liu, J., Zhang, J., Lin, X., Boyce, B.F., Zhang, H. and Xing, L. (2022) Age-Associated Callus Senescent Cells Produce TGF-β1 That Inhibits Fracture Healing in Aged Mice. Journal of Clinical Investigation, 132, e148073. [Google Scholar] [CrossRef] [PubMed]
|
|
[31]
|
刘志强. 槲皮素抑制破骨细胞的形成及其作用机制研究[D]: [硕士学位论文]. 合肥: 安徽医科大学, 2021。
|
|
[32]
|
Choi, E. (2007) Modulatory Effects of Luteolin on Osteoblastic Function and Inflammatory Mediators in Osteoblastic MC3T3‐E1 Cells. Cell Biology International, 31, 870-877. [Google Scholar] [CrossRef] [PubMed]
|
|
[33]
|
Wong, S.K., Chin, K. and Ima-Nirwana, S. (2019) The Osteoprotective Effects of Kaempferol: The Evidence from in Vivo and in Vitro Studies. Drug Design, Development and Therapy, 13, 3497-3514. [Google Scholar] [CrossRef] [PubMed]
|
|
[34]
|
毕磊, 刘辉, 武燃. 黄芩素通过Nrf2/NF-κB/NFATc1信号通路对牙周病大鼠破骨细胞形成和牙槽骨吸收的影响[J]. 广西医学, 2021, 43(5): 600-606.
|
|
[35]
|
付方胜, 丁佳昕, 邵思远, 等. 黄芩素抑制RANKL诱导的破骨细胞分化和功能[J]. 锦州医科大学学报, 2019, 40(2): 18-20+118-119.
|
|
[36]
|
Wautier, M., Guillausseau, P. and Wautier, J. (2017) Activation of the Receptor for Advanced Glycation End Products and Consequences on Health. Diabetes & Metabolic Syndrome: Clinical Research & Reviews, 11, 305-309. [Google Scholar] [CrossRef] [PubMed]
|
|
[37]
|
Zhu, S., Zhuang, J., Wu, Q., Liu, Z., Liao, C., Luo, S., et al. (2018) Advanced Oxidation Protein Products Induce Pre‐Osteoblast Apoptosis through a Nicotinamide Adenine Dinucleotide Phosphate Oxidase‐Dependent, Mitogen‐Activated Protein Kinases‐Mediated Intrinsic Apoptosis Pathway. Aging Cell, 17, e12764. [Google Scholar] [CrossRef] [PubMed]
|
|
[38]
|
Asadipooya, K. and Uy, E.M. (2019) Advanced Glycation End Products (Ages), Receptor for Ages, Diabetes, and Bone: Review of the Literature. Journal of the Endocrine Society, 3, 1799-1818. [Google Scholar] [CrossRef] [PubMed]
|