|
[1]
|
Jin, Y., Tang, W., Wang, J., Ren, F., Chen, Z., Sun, Z., et al. (2023) Construction of Biomass Derived Carbon Quantum Dots Modified TiO2 Photocatalysts with Superior Photocatalytic Activity for Methylene Blue Degradation. Journal of Alloys and Compounds, 932, Article 167627. [Google Scholar] [CrossRef]
|
|
[2]
|
Lebedev, A., Anariba, F., Tan, J.C., Li, X. and Wu, P. (2018) A Review of Physiochemical and Photocatalytic Properties of Metal Oxides against Escherichia coli. Journal of Photochemistry and Photobiology A: Chemistry, 360, 306-315. [Google Scholar] [CrossRef]
|
|
[3]
|
Hui, K.C., Ang, W.L., Yahya, W.Z.N. and Sambudi, N.S. (2022) Effects of Nitrogen/Bismuth-Doping on the Photocatalyst Composite of Carbon Dots/Titanium Dioxide Nanoparticles (CDs/TNP) for Enhanced Visible Light-Driven Removal of Diclofenac. Chemosphere, 290, Article 133377. [Google Scholar] [CrossRef] [PubMed]
|
|
[4]
|
Gómez, I.J., Díaz-Sánchez, M., Pizúrová, N., Zajíčková, L., Prashar, S. and Gómez-Ruiz, S. (2023) Crystalline F-Doped Titanium Dioxide Nanoparticles Decorated with Graphene Quantum Dots for Improving the Photodegradation of Water Pollutants. Journal of Photochemistry and Photobiology A: Chemistry, 443, Article 114875. [Google Scholar] [CrossRef]
|
|
[5]
|
Wu, Z., Wang, Y., Sun, L., Mao, Y., Wang, M. and Lin, C. (2014) An Ultrasound-Assisted Deposition of Nio Nanoparticles on TiO2 Nanotube Arrays for Enhanced Photocatalytic Activity. Journal of Materials Chemistry A, 2, 8223-8229. [Google Scholar] [CrossRef]
|
|
[6]
|
Li, J., Wu, X. and Liu, S. (2020) Fluorinated TiO2 Hollow Photocatalysts for Photocatalytic Applications. Acta Physico Chimica Sinica, 37, Article 2009038. [Google Scholar] [CrossRef]
|
|
[7]
|
Ingram, D.B. and Linic, S. (2011) Water Splitting on Composite Plasmonic-Metal/Semiconductor Photoelectrodes: Evidence for Selective Plasmon-Induced Formation of Charge Carriers near the Semiconductor Surface. Journal of the American Chemical Society, 133, 5202-5205. [Google Scholar] [CrossRef] [PubMed]
|
|
[8]
|
Xiao, F., Miao, J., Wang, H., Yang, H., Chen, J. and Liu, B. (2014) Electrochemical Construction of Hierarchically Ordered CdSe-Sensitized TiO2 Nanotube Arrays: Towards Versatile Photoelectrochemical Water Splitting and Photoredox Applications. Nanoscale, 6, 6727-6737. [Google Scholar] [CrossRef] [PubMed]
|
|
[9]
|
Zhang, N., Yang, M., Tang, Z. and Xu, Y. (2013) Toward Improving the Graphene-Semiconductor Composite Photoactivity via the Addition of Metal Ions as Generic Interfacial Mediator. ACS Nano, 8, 623-633. [Google Scholar] [CrossRef] [PubMed]
|
|
[10]
|
He, J., Chen, J., Liu, S., Lin, L., Zhang, Y., Xiao, S., et al. (2023) Activated Carbon Modified Titanium Dioxide/Bismuth Trioxide Adsorbent: One-Pot Synthesis, High Removal Efficiency of Organic Pollutants, and Good Recyclability. Journal of Colloid and Interface Science, 648, 1034-1043. [Google Scholar] [CrossRef] [PubMed]
|
|
[11]
|
Bokare, A., Chinnusamy, S. and Erogbogbo, F. (2021) TiO2-Graphene Quantum Dots Nanocomposites for Photocatalysis in Energy and Biomedical Applications. Catalysts, 11, Article 319. [Google Scholar] [CrossRef]
|
|
[12]
|
Li, W., Ma, Q., Wang, X., Chu, X., Wang, F., Wang, X., et al. (2020) Enhanced Photoresponse and Fast Charge Transfer: Three-Dimensional Macroporous G-C3N4/Go-TiO2 Nanostructure for Hydrogen Evolution. Journal of Materials Chemistry A, 8, 19533-19543. [Google Scholar] [CrossRef]
|
|
[13]
|
Zhan, B., Liu, Y., Zhou, W., Li, S., Chen, Z., Stegmaier, T., et al. (2021) Multifunctional 3D Go/G-C3N4/TiO2 Foam for Oil-Water Separation and Dye Adsorption. Applied Surface Science, 541, Article 148638. [Google Scholar] [CrossRef]
|
|
[14]
|
Artar, E., Arvas, M.B., Gorduk, O., Gorduk, S. and Sahin, Y. (2023) Facile Synthesis Strategy for Phthalocyanine-Titanium Dioxide/Multi-Walled Carbon Nanotube/poly(3,4-Ethylenedioxythiophene) Ternary Composite Electrodes via One-Step Electrochemical Method for Supercapacitor Applications. Synthetic Metals, 297, Article 117401. [Google Scholar] [CrossRef]
|
|
[15]
|
Liu, X., Yang, Y., Li, H., Yang, Z. and Fang, Y. (2021) Visible Light Degradation of Tetracycline Using Oxygen-Rich Titanium Dioxide Nanosheets Decorated by Carbon Quantum Dots. Chemical Engineering Journal, 408, Article 127259. [Google Scholar] [CrossRef]
|
|
[16]
|
Zhang, J. and Yu, S. (2016) Carbon Dots: Large-Scale Synthesis, Sensing and Bioimaging. Materials Today, 19, 382-393. [Google Scholar] [CrossRef]
|
|
[17]
|
Sun, X. and Lei, Y. (2017) Fluorescent Carbon Dots and Their Sensing Applications. TrAC Trends in Analytical Chemistry, 89, 163-180. [Google Scholar] [CrossRef]
|
|
[18]
|
Paulo, S., Palomares, E. and Martinez-Ferrero, E. (2016) Graphene and Carbon Quantum Dot-Based Materials in Photovoltaic Devices: From Synthesis to Applications. Nanomaterials, 6, Article 157. [Google Scholar] [CrossRef] [PubMed]
|
|
[19]
|
Sharma, S., Dutta, V., Singh, P., Raizada, P., Rahmani-Sani, A., Hosseini-Bandegharaei, A., et al. (2019) Carbon Quantum Dot Supported Semiconductor Photocatalysts for Efficient Degradation of Organic Pollutants in Water: A Review. Journal of Cleaner Production, 228, 755-769. [Google Scholar] [CrossRef]
|
|
[20]
|
Han, J., Han, Z., Da, X., Yang, Z., Zhang, D., Hong, R., et al. (2021) Preparation and Photocatalytic Activity of Red Light-Emitting Carbon Dots/p25 Heterojunction Photocatalyst with Ultra-Wide Absorption Spectrum. Materials Research Express, 8, Article 025002. [Google Scholar] [CrossRef]
|
|
[21]
|
Mozdbar, A., Nouralishahi, A., Fatemi, S. and Talatori, F.S. (2023) The Impact of Carbon Quantum Dots (CQDs) on the Photocatalytic Activity of TiO2 under UV and Visible Light. Journal of Water Process Engineering, 51, Article 103465. [Google Scholar] [CrossRef]
|
|
[22]
|
Qu, A., Xie, H., Xu, X., Zhang, Y., Wen, S. and Cui, Y. (2016) High Quantum Yield Graphene Quantum Dots Decorated TiO2 Nanotubes for Enhancing Photocatalytic Activity. Applied Surface Science, 375, 230-241. [Google Scholar] [CrossRef]
|
|
[23]
|
Sun, X., Li, H., Ou, N., Lyu, B., Gui, B., Tian, S., et al. (2019) Visible-Light Driven TiO2 Photocatalyst Coated with Graphene Quantum Dots of Tunable Nitrogen Doping. Molecules, 24, Article 344. [Google Scholar] [CrossRef] [PubMed]
|
|
[24]
|
Rawat, J., Sharma, H. and Dwivedi, C. (2024) Microwave-Assisted Synthesis of Carbon Quantum Dots and Their Integration with TiO2 Nanotubes for Enhanced Photocatalytic Degradation. Diamond and Related Materials, 144, Article 111050. [Google Scholar] [CrossRef]
|
|
[25]
|
Nouralishahi, A., Mortazavi, Y., Khodadadi, A.A., Choolaei, M., Thompson, L.T. and Horri, B.A. (2019) Characteristics and Performance of Urea Modified Pt-MWCNTs for Electro-Oxidation of Methanol. Applied Surface Science, 467, 335-344. [Google Scholar] [CrossRef]
|
|
[26]
|
Sui, Y., Wu, L., Zhong, S. and Liu, Q. (2019) Carbon Quantum Dots/TiO2 Nanosheets with Dominant (001) Facets for Enhanced Photocatalytic Hydrogen Evolution. Applied Surface Science, 480, 810-816. [Google Scholar] [CrossRef]
|
|
[27]
|
Martins, N.C.T., Ângelo, J., Girão, A.V., Trindade, T., Andrade, L. and Mendes, A. (2016) N-Doped Carbon Quantum Dots/TiO2 Composite with Improved Photocatalytic Activity. Applied Catalysis B: Environmental, 193, 67-74. [Google Scholar] [CrossRef]
|
|
[28]
|
Deng, Y., Chen, M., Chen, G., Zou, W., Zhao, Y., Zhang, H., et al. (2021) Visible-Ultraviolet Upconversion Carbon Quantum Dots for Enhancement of the Photocatalytic Activity of Titanium Dioxide. ACS Omega, 6, 4247-4254. [Google Scholar] [CrossRef] [PubMed]
|
|
[29]
|
Sun, M., Qu, S., Ji, W., Jing, P., Li, D., Qin, L., et al. (2015) Towards Efficient Photoinduced Charge Separation in Carbon Nanodots and TiO2 Composites in the Visible Region. Physical Chemistry Chemical Physics, 17, 7966-7971. [Google Scholar] [CrossRef] [PubMed]
|