[1]
|
Jin, Y., Tang, W., Wang, J., Ren, F., Chen, Z., Sun, Z., et al. (2023) Construction of Biomass Derived Carbon Quantum Dots Modified TiO2 Photocatalysts with Superior Photocatalytic Activity for Methylene Blue Degradation. Journal of Alloys and Compounds, 932, Article 167627. https://doi.org/10.1016/j.jallcom.2022.167627
|
[2]
|
Lebedev, A., Anariba, F., Tan, J.C., Li, X. and Wu, P. (2018) A Review of Physiochemical and Photocatalytic Properties of Metal Oxides against Escherichia coli. Journal of Photochemistry and Photobiology A: Chemistry, 360, 306-315. https://doi.org/10.1016/j.jphotochem.2018.04.013
|
[3]
|
Hui, K.C., Ang, W.L., Yahya, W.Z.N. and Sambudi, N.S. (2022) Effects of Nitrogen/Bismuth-Doping on the Photocatalyst Composite of Carbon Dots/Titanium Dioxide Nanoparticles (CDs/TNP) for Enhanced Visible Light-Driven Removal of Diclofenac. Chemosphere, 290, Article 133377. https://doi.org/10.1016/j.chemosphere.2021.133377
|
[4]
|
Gómez, I.J., Díaz-Sánchez, M., Pizúrová, N., Zajíčková, L., Prashar, S. and Gómez-Ruiz, S. (2023) Crystalline F-Doped Titanium Dioxide Nanoparticles Decorated with Graphene Quantum Dots for Improving the Photodegradation of Water Pollutants. Journal of Photochemistry and Photobiology A: Chemistry, 443, Article 114875. https://doi.org/10.1016/j.jphotochem.2023.114875
|
[5]
|
Wu, Z., Wang, Y., Sun, L., Mao, Y., Wang, M. and Lin, C. (2014) An Ultrasound-Assisted Deposition of Nio Nanoparticles on TiO2 Nanotube Arrays for Enhanced Photocatalytic Activity. Journal of Materials Chemistry A, 2, 8223-8229. https://doi.org/10.1039/c4ta00850b
|
[6]
|
Li, J., Wu, X. and Liu, S. (2020) Fluorinated TiO2 Hollow Photocatalysts for Photocatalytic Applications. Acta Physico Chimica Sinica, 37, Article 2009038. https://doi.org/10.3866/pku.whxb202009038
|
[7]
|
Ingram, D.B. and Linic, S. (2011) Water Splitting on Composite Plasmonic-Metal/Semiconductor Photoelectrodes: Evidence for Selective Plasmon-Induced Formation of Charge Carriers near the Semiconductor Surface. Journal of the American Chemical Society, 133, 5202-5205. https://doi.org/10.1021/ja200086g
|
[8]
|
Xiao, F., Miao, J., Wang, H., Yang, H., Chen, J. and Liu, B. (2014) Electrochemical Construction of Hierarchically Ordered CdSe-Sensitized TiO2 Nanotube Arrays: Towards Versatile Photoelectrochemical Water Splitting and Photoredox Applications. Nanoscale, 6, 6727-6737. https://doi.org/10.1039/c4nr01380h
|
[9]
|
Zhang, N., Yang, M., Tang, Z. and Xu, Y. (2013) Toward Improving the Graphene-Semiconductor Composite Photoactivity via the Addition of Metal Ions as Generic Interfacial Mediator. ACS Nano, 8, 623-633. https://doi.org/10.1021/nn405242t
|
[10]
|
He, J., Chen, J., Liu, S., Lin, L., Zhang, Y., Xiao, S., et al. (2023) Activated Carbon Modified Titanium Dioxide/Bismuth Trioxide Adsorbent: One-Pot Synthesis, High Removal Efficiency of Organic Pollutants, and Good Recyclability. Journal of Colloid and Interface Science, 648, 1034-1043. https://doi.org/10.1016/j.jcis.2023.05.206
|
[11]
|
Bokare, A., Chinnusamy, S. and Erogbogbo, F. (2021) TiO2-Graphene Quantum Dots Nanocomposites for Photocatalysis in Energy and Biomedical Applications. Catalysts, 11, Article 319. https://doi.org/10.3390/catal11030319
|
[12]
|
Li, W., Ma, Q., Wang, X., Chu, X., Wang, F., Wang, X., et al. (2020) Enhanced Photoresponse and Fast Charge Transfer: Three-Dimensional Macroporous G-C3N4/Go-TiO2 Nanostructure for Hydrogen Evolution. Journal of Materials Chemistry A, 8, 19533-19543. https://doi.org/10.1039/d0ta07178a
|
[13]
|
Zhan, B., Liu, Y., Zhou, W., Li, S., Chen, Z., Stegmaier, T., et al. (2021) Multifunctional 3D Go/G-C3N4/TiO2 Foam for Oil-Water Separation and Dye Adsorption. Applied Surface Science, 541, Article 148638. https://doi.org/10.1016/j.apsusc.2020.148638
|
[14]
|
Artar, E., Arvas, M.B., Gorduk, O., Gorduk, S. and Sahin, Y. (2023) Facile Synthesis Strategy for Phthalocyanine-Titanium Dioxide/Multi-Walled Carbon Nanotube/poly(3,4-Ethylenedioxythiophene) Ternary Composite Electrodes via One-Step Electrochemical Method for Supercapacitor Applications. Synthetic Metals, 297, Article 117401. https://doi.org/10.1016/j.synthmet.2023.117401
|
[15]
|
Liu, X., Yang, Y., Li, H., Yang, Z. and Fang, Y. (2021) Visible Light Degradation of Tetracycline Using Oxygen-Rich Titanium Dioxide Nanosheets Decorated by Carbon Quantum Dots. Chemical Engineering Journal, 408, Article 127259. https://doi.org/10.1016/j.cej.2020.127259
|
[16]
|
Zhang, J. and Yu, S. (2016) Carbon Dots: Large-Scale Synthesis, Sensing and Bioimaging. Materials Today, 19, 382-393. https://doi.org/10.1016/j.mattod.2015.11.008
|
[17]
|
Sun, X. and Lei, Y. (2017) Fluorescent Carbon Dots and Their Sensing Applications. TrAC Trends in Analytical Chemistry, 89, 163-180. https://doi.org/10.1016/j.trac.2017.02.001
|
[18]
|
Paulo, S., Palomares, E. and Martinez-Ferrero, E. (2016) Graphene and Carbon Quantum Dot-Based Materials in Photovoltaic Devices: From Synthesis to Applications. Nanomaterials, 6, Article 157. https://doi.org/10.3390/nano6090157
|
[19]
|
Sharma, S., Dutta, V., Singh, P., Raizada, P., Rahmani-Sani, A., Hosseini-Bandegharaei, A., et al. (2019) Carbon Quantum Dot Supported Semiconductor Photocatalysts for Efficient Degradation of Organic Pollutants in Water: A Review. Journal of Cleaner Production, 228, 755-769. https://doi.org/10.1016/j.jclepro.2019.04.292
|
[20]
|
Han, J., Han, Z., Da, X., Yang, Z., Zhang, D., Hong, R., et al. (2021) Preparation and Photocatalytic Activity of Red Light-Emitting Carbon Dots/p25 Heterojunction Photocatalyst with Ultra-Wide Absorption Spectrum. Materials Research Express, 8, Article 025002. https://doi.org/10.1088/2053-1591/abdf81
|
[21]
|
Mozdbar, A., Nouralishahi, A., Fatemi, S. and Talatori, F.S. (2023) The Impact of Carbon Quantum Dots (CQDs) on the Photocatalytic Activity of TiO2 under UV and Visible Light. Journal of Water Process Engineering, 51, Article 103465. https://doi.org/10.1016/j.jwpe.2022.103465
|
[22]
|
Qu, A., Xie, H., Xu, X., Zhang, Y., Wen, S. and Cui, Y. (2016) High Quantum Yield Graphene Quantum Dots Decorated TiO2 Nanotubes for Enhancing Photocatalytic Activity. Applied Surface Science, 375, 230-241. https://doi.org/10.1016/j.apsusc.2016.03.077
|
[23]
|
Sun, X., Li, H., Ou, N., Lyu, B., Gui, B., Tian, S., et al. (2019) Visible-Light Driven TiO2 Photocatalyst Coated with Graphene Quantum Dots of Tunable Nitrogen Doping. Molecules, 24, Article 344. https://doi.org/10.3390/molecules24020344
|
[24]
|
Rawat, J., Sharma, H. and Dwivedi, C. (2024) Microwave-Assisted Synthesis of Carbon Quantum Dots and Their Integration with TiO2 Nanotubes for Enhanced Photocatalytic Degradation. Diamond and Related Materials, 144, Article 111050. https://doi.org/10.1016/j.diamond.2024.111050
|
[25]
|
Nouralishahi, A., Mortazavi, Y., Khodadadi, A.A., Choolaei, M., Thompson, L.T. and Horri, B.A. (2019) Characteristics and Performance of Urea Modified Pt-MWCNTs for Electro-Oxidation of Methanol. Applied Surface Science, 467, 335-344. https://doi.org/10.1016/j.apsusc.2018.10.126
|
[26]
|
Sui, Y., Wu, L., Zhong, S. and Liu, Q. (2019) Carbon Quantum Dots/TiO2 Nanosheets with Dominant (001) Facets for Enhanced Photocatalytic Hydrogen Evolution. Applied Surface Science, 480, 810-816. https://doi.org/10.1016/j.apsusc.2019.03.028
|
[27]
|
Martins, N.C.T., Ângelo, J., Girão, A.V., Trindade, T., Andrade, L. and Mendes, A. (2016) N-Doped Carbon Quantum Dots/TiO2 Composite with Improved Photocatalytic Activity. Applied Catalysis B: Environmental, 193, 67-74. https://doi.org/10.1016/j.apcatb.2016.04.016
|
[28]
|
Deng, Y., Chen, M., Chen, G., Zou, W., Zhao, Y., Zhang, H., et al. (2021) Visible-Ultraviolet Upconversion Carbon Quantum Dots for Enhancement of the Photocatalytic Activity of Titanium Dioxide. ACS Omega, 6, 4247-4254. https://doi.org/10.1021/acsomega.0c05182
|
[29]
|
Sun, M., Qu, S., Ji, W., Jing, P., Li, D., Qin, L., et al. (2015) Towards Efficient Photoinduced Charge Separation in Carbon Nanodots and TiO2 Composites in the Visible Region. Physical Chemistry Chemical Physics, 17, 7966-7971. https://doi.org/10.1039/c5cp00444f
|