牙齿与记忆:衰老过程中口腔健康与认知障碍的关联
Teeth and Memory: The Association between Oral Health and Cognitive Impairment during Aging
DOI: 10.12677/jcpm.2025.41061, PDF, HTML, XML,   
作者: 刘雨芳, 张曦木*:重庆医科大学附属口腔医院牙周科口腔疾病与生物医学重庆市重点实验室,重庆市高校市级口腔生物医学工程重点实验室,重庆
关键词: 口腔健康认知障碍衰老炎症Oral Health Cognitive Impairment Aging Inflammation
摘要: 随着全球人口老龄化趋势的加剧,主要波及老年人群认知障碍的发病率在全球不同地区均呈现上升趋势,这一现象与老年人免疫功能的减退和口腔卫生维护能力的下降密切相关,进而导致口腔功能受损和牙菌斑积累增加。本文阐述了衰老时口腔结构和功能的改变、微生物的变化、口腔疾病的发生发展特点。探讨了口腔健康不良对认知功能影响的途径。旨在强调重视老年人口腔健康对预防和延缓衰老过程中认知障碍发生发展的重要性,为后续进一步研究及干预策略制定提供参考依据。
Abstract: With the intensification of the global population aging trend, the incidence of cognitive impairment mainly affecting the elderly population is increasing in different regions of the world, which is closely related to the decline of immune function and oral health maintenance ability of the elderly, which in turn leads to the impairment of oral function and the increase of plaque accumulation. This article expounds the changes in oral structure and function, the changes in microorganisms, and the occurrence and development characteristics of oral diseases during aging. The pathways of the impact of poor oral health on cognitive function were explored. The purpose of this study is to emphasize the importance of paying attention to the oral health of the elderly to prevent and delay the occurrence and development of cognitive impairment in the aging process, and to provide a reference for further research and the formulation of intervention strategies.
文章引用:刘雨芳, 张曦木. 牙齿与记忆:衰老过程中口腔健康与认知障碍的关联[J]. 临床个性化医学, 2025, 4(1): 407-414. https://doi.org/10.12677/jcpm.2025.41061

1. 引言

伴随着全球人口结构构成比改变,人口老年化加剧,衰老相关健康问题逐渐步入公共卫生领域视线聚焦舞台中央。衰老是一种随着时间推移而发生的自然现象,其往往伴随着机体功能衰退以及结构、组分的退行性改变和抵抗力的下降,也涵盖了口腔健康及认知功能的退化。这两大健康问题不仅对老年人的生活质量产生影响,也对社会的医疗资源分配提出了挑战。

在衰老过程中,口腔环境会发生一系列显著的变化,例如牙龈的萎缩、牙齿的磨损和唾液分泌的减少等,这些变化增加了老年人患牙周病和龋齿等口腔疾病的风险。此外,衰老还可能导致咀嚼功能的减退,进而影响营养的摄入,对全身健康造成影响。

认知障碍,包括轻度认知障碍(Mild Cognitive Impairment, MCI)和痴呆症,其中阿尔兹海默症是痴呆症的最常见形式是衰老过程中常见的神经系统退行性疾病。这些疾病会引起记忆力、学习能力、语言能力和执行功能的逐渐减退,严重影响老年人的日常生活和社会功能。

近年来,研究揭示了衰老过程中口腔健康问题与认知障碍之间可能存在的密切联系[1] [2]。一方面,口腔疾病诱发的炎症反应可能通过血液循环对大脑健康产生影响,增加认知障碍的风险;另一方面,认知功能的降低可能导致老年人忽视口腔卫生,从而加剧口腔疾病的发生。这种双向关系表明,口腔健康在维护老年人认知功能方面可能扮演着关键角色。

本篇综述的目的是探讨衰老过程中口腔健康与认知障碍之间的相互作用,分析它们之间可能的联系机制以期为相关疾病的预防和治疗提供一定的参考。

2. 口腔健康与衰老

2.1. 衰老对口腔结构和功能的影响

伴随着年龄的增长,口腔结构和功能也发生退行性改变。牙齿每天有约2~3小时属于主动使用状态,其他时间属于间歇接触状态,在使用年限增加的同时,釉质会出现生理性磨耗和病理性磨损及牙本质的暴露[3] [4]。在衰老过程中,口腔内牙龈和牙周组织会逐渐退化,而随着时间的推移,口腔黏膜中的弹性纤维也会逐渐减少,甚至完全消失。此外,黏膜内的胶原蛋白纤维束会变得更加粗大,并出现结构上的解体,这使得黏膜的弹性降低[5]。同时,黏膜中的微血管数量减少,这进一步削弱了其在受损后自我修复的能力。此外,唾液腺也会出现萎缩,导致唾液分泌减少,从而加剧了口干症状[6]。这些生理性变化使得老年人更易罹患牙周疾病、龋齿等口腔问题。在衰老过程中常因口腔多种疾患导致牙齿的缺失,牙齿缺失不仅影响咀嚼功能,还可能导致饮食结构的重大变化,具体来说,这种缺失往往伴随着植物性食品摄入量的降低和高脂加工食品摄入量的增加,这种饮食习惯的转变可能会进一步导致营养不均衡从而影响全身健康[7]

2.2. 口腔微生物组的变化

人类口腔是一个复杂的微生物生态系统,由细菌、真菌、病毒以及古细菌等多种微生物构成。这些微生物在口腔中共同形成一个多样化的群落,它们的存在对于口腔健康至关重要[8]。在人体中,口腔微生物群为仅次于肠道微生物群的第二大微生物群,其平衡状态直接关系到口腔的健康状况。随着年龄增长,老年人口腔内的微生物种群多样性趋于减少,而有害细菌的比例则显著上升,特别是那些与牙周病有关的病原体,例如牙龈卟啉单胞菌[9] [10]。这种口腔微生物群落的失衡可能与免疫功能下降、慢性炎症以及口腔健康状况的恶化密切相关[11]-[13]

2.3. 口腔疾病在老年人中的进展

有多项研究证实,老年人口腔疾病的发病率较年轻人更高,包括牙周炎和龋齿等常见口腔问题[14] [15]。牙周炎是一种以牙龈萎缩、牙槽骨吸收等牙周支持组织破坏为特征的慢性炎症性疾病。随着年龄的增长,老年人更易罹患牙周疾病,这一现象主要归因于老年人的生理和免疫变化、口腔卫生习惯下降、药物使用的增加、慢性疾病如糖尿病的影响,以及社会经济状况的制约[16] [17]。牙周炎和根面龋在老年人群中更为普遍,这可能是因为他们的牙根暴露程度增加的同时自我清洁能力下降[18]

3. 认知障碍

3.1. 认知障碍的定义及类型

认知障碍(Cognitive Impairment, CI)是指个体在记忆、决策、学习等认知功能方面的能力下降,超出正常老化的范围。认知功能衰退的程度不一,从轻微到严重不等。轻微认知功能衰退(MCI)指的是认知能力有所下降,但这种下降程度较轻,不足以影响个体的日常生活自理能力[19]。相比之下,严重的认知功能衰退则对个体的日常生活能力造成显著影响,例如痴呆症(Dementia)。认知障碍涵盖了多种类型,如阿尔茨海默病和血管性痴呆等,其中阿尔茨海默病受到了更为广泛的研究关注,淀粉样蛋白(Amyloid, Ab)和tau蛋白磷酸化分别是脑内老年斑和神经纤维缠结(NFTs)的主要成分,是阿尔茨海默病的特征性病理特征[20]

3.2.认知障碍的风险因素

认知功能的减退往往受多种因素影响,这些因素可能导致认知能力的降低。其中年龄是最主要的风险因素,此外,遗传、慢性炎症和生活方式因素也在认知障碍的发生发展发挥着重要作用[21] [22]

4. 口腔健康与认知障碍的关联机制

口腔健康不仅仅与口腔疾病的预防和治疗相关,它也在全身健康,尤其是认知功能的维持中扮演着重要角色。已有研究表明口腔健康状况不良可能与认知障碍的发生和发展密切相关。

随着年龄的增长,认知障碍患者往往难以保持其口腔清洁从而导致口腔健康状况明显下降,增加了患龋病、牙周炎等口腔疾病的风险[23]

4.1. 口腔健康和认知障碍的关联

牙齿的缺失、严重的牙周疾病或口腔颌面部肌群功能混乱,显著削弱个体咀嚼能力,而正常的咀嚼可通过刺激口腔内的感受器将感觉信息通过三叉神经传递至大脑,促进海马体等与认知能力密切相关脑区的血液循环。咀嚼能力的下降影响大脑血流的灌注及海马神经元的功能和形态从而提高了患痴呆的风险[24]。Hiroyuki Nakamura等人的研究表明牙齿的缺失,即便是在认知功能未受损的人群中,也与海马旁回区域的萎缩以及白质高信号体积的扩大有关,而这两者均为痴呆症的典型标志[25]。老年人失去牙齿后往往难以进食富含纤维和营养的食物,而选择较软、加工度高的食物,导致必需营养素的缺乏。已有研究证实牙齿脱落与饮食结构的改变有关,可能导致脂质代谢异常,营养物质摄入不足从而间接阻碍认知功能[26]

4.2. 口腔健康与认知障碍联系的生物学途径

口腔健康与认知障碍之间的联系可以通过多种生物学途径来阐释。口腔微生物群是口腔健康的重要组成部分,其失衡被认为是加速认知障碍的潜在因素。老年口腔微生物失衡同样也是认知能力下降的潜在生物标志物或治疗靶点之一[27]。在老年个体中,促炎状态增加,可诱导增加对自身免疫性、炎症性或感染性疾病的易感性,削弱了身体控制口腔细菌过度增殖和抵御外来微生物侵袭的能力更容易导致口腔菌群失调[28]。牙龈卟啉单胞菌在口腔常见疾病牙周病的病因和进展中发挥重要作用,其广泛的毒力因子能够激发口腔黏膜中的炎症反应,进而破坏牙周组织,削弱其防御功能和免疫平衡。牙龈卟啉单胞菌来源的牙龈素和LPS,以及它们的DNA在阿兹海默患者大脑中检测频率较高,这表明该细菌及其代谢产物可从口腔中跨神经元传播至大脑;而它们的水平则与淀粉样斑块成分Aβ在大脑中的积累和产生,tau蛋白和泛素病理学的程度相关[29]

炎症在认知障碍的发展中扮演着关键角色,尤其是牙周病、龋齿和牙龈炎等口腔疾病可导致全身性慢性炎症级联反应。这种慢性炎症状态与多种神经退行性疾病有密切联系,尤其是阿尔茨海默病[30]。有研究表明慢性炎症状态可能通过干扰机体清除损伤或因年龄增长而累积的异常神经元蛋白的能力从而诱导磷酸化tau蛋白相关的细胞骨架异常和伴随的轴突运输障碍而成为迟发型阿兹海默症主要的病理触发因素[30] [31]

在口腔健康受到严重威胁,如严重牙周病或其他口腔感染性疾病时,那些通常引起牙龈炎和牙周病的细菌能够通过口腔黏膜的损伤处进入血液循环,或者释放出炎症介质。这些炎症介质包括白细胞介素-1β (IL-1β)和肿瘤坏死因子α(TNF-α),它们可以通过血液循环传播,最终到达中枢神经系统,在大脑中引发神经炎症,这种炎症反应不仅损伤神经元,还可能对认知功能产生负面影响[32]。在炎症因子长期存在的情况下可通过激活状态下的外周单核细胞响应体内趋化因子的信号,主动迁移至脑部组织,释放炎症促进因子,激活小胶质细胞(大脑中免疫细胞)或刺激星形胶质细胞分泌血管内皮生长因子-α致使血脑屏障致密性破坏,渗透性增加,从而增加其他致病物质进入脑内的风险引发神经炎症[33]。促炎细胞因子激活NF-κB通路,在体外和体内抑制脑内皮细胞中的Wnt/β-catenin信号传导,导致血脑屏障的破坏和神经炎症[34]

5. 最新研究进展

流行病学研究进一步证实了口腔健康与认知功能的关联。流行病学研究表明,口腔疾病严重的人群患认知障碍的风险更高。例如,一项横断面研究研究发现,患龋齿、咀嚼功能差、口腔健康状况不佳的老年人发生轻度认知障碍的风险增加[35]。在两项前瞻性研究中,发现重度牙周炎与随后认知功能下降以及轻度认知障碍(MCI)风险的增加存在显著关联[36] [37]。这些研究结果进一步证实了口腔健康与认知功能之间的联系,提示重度牙周炎可能是认知能力下降的一个风险因素。

动物实验揭示了口腔健康与认知功能之间的生物学机制。动物模型显示牙龈卟啉单胞菌诱导菌血症可通过Mfsd2a (主要脂肪酸转运蛋白2a)/膜内陷素-1介导的穿胞途径增加血脑屏障的通透性从而导致神经损伤的风险上升[38]。牙周病重要致病因素之一的牙龈卟啉单胞菌来源细胞外囊泡及脂多糖可能分别通过三叉神经和牙周血液途径转运入脑,导致认知功能下降[39]。此外牙龈单胞菌的外囊泡可触发NLRP3炎症小体活化神经小胶质细胞,诱导小鼠神经炎症和记忆功能障碍[40]。尽管关于口腔健康与认知之间的研究日益增多,但多数研究仅停留在表型层面的观察其潜在机制尚未完全阐明,未来还需要深入探究口腔病原微生物与大脑认知功能间的联系。

在临床干预研究中,定期的口腔护理措施显示出降低认知功能下降风险的潜力。牙周基础治疗又称为消除病因治疗,其目的在于消除病因、控制炎症主要包括龈上洁治、龈下刮治、根面平整、自我口腔菌斑控制(刷牙、使用牙线、冲牙器等护理措施)、治疗龋病及修复缺失牙等口腔问题、消除引起菌斑滞留的因素必要时可辅助使用局部抗生素[41]。牙周基础治疗能够有效降低口腔中有害微生物的负荷,并减轻口腔炎症,减少病原体通过大脑屏障进入大脑的机会,对于认知障碍患者而言,这可能带来显著的临床治疗效果。此外益生菌的应用能够降低局部炎症、调节口腔微生物群落,促进口腔微生物群的稳定状态,这有助于长期维持牙周治疗的效果,改善牙周健康[42]。对于口腔卫生能力受损的老年患者而言,益生菌的使用不失为一种友好且低风险的治疗手段,但尽管如此,仍需要更多的科学证据来支持这一观点。部分研究致力于探究改善牙周健康对认知功能的影响,初步数据表明,牙周健康管理可能对阿尔茨海默病(AD)相关的脑萎缩具有积极影响。牙周治疗及其后的维持治疗能够影响影像学中的生物标志物,并在治疗AD相关的脑萎缩方面展现出潜在的治疗效果[43]

6. 临床意义

鉴于口腔健康与认知功能之间的密切联系,老年人群体应重视并加强其口腔健康管理,以期延缓认知功能衰退或预防其下降。未来的研究可深入探讨牙周病对脑部健康的直接作用机制,并探索基于口腔微生物组的干预措施作为预防策略。此外,建议实施更大规模的随机对照试验,以验证口腔健康管理在预防认知障碍方面的潜在效果为老年人群的健康管理提供更多依据。

7. 结论

在衰老过程中,口腔健康与认知障碍之间存在明显的相关性,其中口腔慢性炎症、病原体侵袭以及血脑屏障的破坏可能是关键的作用机制。临床实践中对老年群体的口腔健康管理应给予高度重视,包括进行口腔检查、早期干预牙周疾病以及培养良好的口腔卫生习惯。建议老年人每6个月进行一次全面的口腔检查,包括口腔卫生状况评估、牙周检查、龋齿检查等并及时进行龋齿处理、缺失牙修复等。对于患有糖尿病等基础疾病的高风险人群,应缩短检查周期至每3个月一次。在早期干预牙周疾病方面,更推荐采用非手术牙周治疗方法,如洁治和根面平整,对于中度牙周炎患者,在洁治和根面平整基础上可辅助使用局部抗菌药物,如米诺环素凝胶,每次治疗后应进行定期随访,并根据实际情况调整治疗计划。建议老年人群在医生的帮助下培养良好的口腔卫生习惯,如一天至少刷两次牙、饭后漱口以及了解学习牙线和牙间隙刷的使用方法。这些措施不仅有助于预防龋齿、牙齿脱落等口腔问题,达到在促进老年人口腔卫生的同时还可能降低认知功能下降的风险。

NOTES

*通讯作者。

参考文献

[1] Wei, T., Du, Y., Hou, T., Zhai, C., Li, Y., Xiao, W., et al. (2023) Association between Adverse Oral Conditions and Cognitive Impairment: A Literature Review. Frontiers in Public Health, 11, Article 1147026.
https://doi.org/10.3389/fpubh.2023.1147026
[2] Daly, B., Thompsell, A., Sharpling, J., Rooney, Y.M., Hillman, L., Wanyonyi, K.L., et al. (2017) Evidence Summary: The Relationship between Oral Health and Dementia. British Dental Journal, 223, 846-853.
https://doi.org/10.1038/sj.bdj.2017.992
[3] Lamster, I.B., Asadourian, L., Del Carmen, T. and Friedman, P.K. (2016) The Aging Mouth: Differentiating Normal Aging from Disease. Periodontology 2000, 72, 96-107.
https://doi.org/10.1111/prd.12131
[4] Liu, B., Zhang, M., Chen, Y. and Yao, Y. (2014) Tooth Wear in Aging People: An Investigation of the Prevalence and the Influential Factors of Incisal/Occlusal Tooth Wear in Northwest China. BMC Oral Health, 14, Article No. 65.
https://doi.org/10.1186/1472-6831-14-65
[5] Chan, A.K.Y., Tamrakar, M., Jiang, C.M., Lo, E.C.M., Leung, K.C.M. and Chu, C. (2021) Common Medical and Dental Problems of Older Adults: A Narrative Review. Geriatrics, 6, Article 76.
https://doi.org/10.3390/geriatrics6030076
[6] Lacoste-Ferré, M., Hermabessière, S., Jézéquel, F. and Rolland, Y. (2013) Oral Ecosystem in Elderly People. Gériatrie et Psychologie Neuropsychiatrie du Viellissement, 11, 144-150.
https://doi.org/10.1684/pnv.2013.0401
[7] Gil-Montoya, J.A., Ponce, G., Sánchez Lara, I., Barrios, R., Llodra, J.C. and Bravo, M. (2013) Association of the Oral Health Impact Profile with Malnutrition Risk in Spanish Elders. Archives of Gerontology and Geriatrics, 57, 398-402.
https://doi.org/10.1016/j.archger.2013.05.002
[8] The Human Microbiome Project Consortium (2012) Structure, Function and Diversity of the Healthy Human Microbiome. Nature, 486, 207-214.
https://doi.org/10.1038/nature11234
[9] Guo, L., Zhou, J., Xie, F., Lang, Q., Xu, Y., Chen, L., et al. (2024) The Profile of Oral Microbiome in Chinese Elderly Population Associated with Aging and Systemic Health Status. BMC Oral Health, 24, Article No. 895.
https://doi.org/10.1186/s12903-024-04676-x
[10] Feres, M., Teles, F., Teles, R., Figueiredo, L.C. and Faveri, M. (2016) The Subgingival Periodontal Microbiota of the Aging Mouth. Periodontology 2000, 72, 30-53.
https://doi.org/10.1111/prd.12136
[11] Mougeot, J.C., Stevens, C.B., Paster, B.J., Brennan, M.T., Lockhart, P.B. and Mougeot, F.K.B. (2017) Porphyromonas gingivalis Is the Most Abundant Species Detected in Coronary and Femoral Arteries. Journal of Oral Microbiology, 9, Article 1281562.
https://doi.org/10.1080/20002297.2017.1281562
[12] Sabharwal, A., Stellrecht, E. and Scannapieco, F.A. (2021) Associations between Dental Caries and Systemic Diseases: A Scoping Review. BMC Oral Health, 21, Article No. 472.
https://doi.org/10.1186/s12903-021-01803-w
[13] Jiang, Q., Liu, J., Chen, L., Gan, N. and Yang, D. (2019) The Oral Microbiome in the Elderly with Dental Caries and Health. Frontiers in Cellular and Infection Microbiology, 8, Article 442.
https://doi.org/10.3389/fcimb.2018.00442
[14] Guiglia, R., Musciotto, A., Compilato, D., Procaccini, M., Russo, L., Ciavarella, D., et al. (2010) Aging and Oral Health: Effects in Hard and Soft Tissues. Current Pharmaceutical Design, 16, 619-630.
https://doi.org/10.2174/138161210790883813
[15] Eke, P.I., Wei, L., Borgnakke, W.S., Thornton‐Evans, G., Zhang, X., Lu, H., et al. (2016) Periodontitis Prevalence in Adults≥65 Years of Age, in the USA. Periodontology 2000, 72, 76-95.
https://doi.org/10.1111/prd.12145
[16] López, R., Smith, P.C., Göstemeyer, G. and Schwendicke, F. (2017) Ageing, Dental Caries and Periodontal Diseases. Journal of Clinical Periodontology, 44, S145-S152.
https://doi.org/10.1111/jcpe.12683
[17] Preshaw, P.M., Henne, K., Taylor, J.J., Valentine, R.A. and Conrads, G. (2017) Age‐Related Changes in Immune Function (Immune Senescence) in Caries and Periodontal Diseases: A Systematic Review. Journal of Clinical Periodontology, 44, S153-S177.
https://doi.org/10.1111/jcpe.12675
[18] Gavriilidou, N.N. and Belibasakis, G.N. (2019) Root Caries: The Intersection between Periodontal Disease and Dental Caries in the Course of Ageing. British Dental Journal, 227, 1063-1067.
https://doi.org/10.1038/s41415-019-0973-4
[19] Gauthier, S., Reisberg, B., Zaudig, M., Petersen, R.C., Ritchie, K., Broich, K., et al. (2006) Mild Cognitive Impairment. The Lancet, 367, 1262-1270.
https://doi.org/10.1016/s0140-6736(06)68542-5
[20] (2024) 2024 Alzheimer’s Disease Facts and Figures. Alzheimers & Dementia, 20, 3708-3821.
https://doi.org/10.1002/alz.13809
[21] Zheng, H., Cagney, K. and Choi, Y. (2023) Predictors of Cognitive Functioning Trajectories among Older Americans: A New Investigation Covering 20 Years of Age-and Non-Age-Related Cognitive Change. PLOS ONE, 18, e0281139.
https://doi.org/10.1371/journal.pone.0281139
[22] Franceschi, C. and Campisi, J. (2014) Chronic Inflammation (Inflammaging) and Its Potential Contribution to Age-Associated Diseases. The Journals of Gerontology Series A: Biological Sciences and Medical Sciences, 69, S4-S9.
https://doi.org/10.1093/gerona/glu057
[23] Zeng, L., Zong, Q., Xu, S., An, F., Ungvari, G.S., Bressington, D.T., et al. (2020) Oral Health in Patients with Dementia: A Meta‐Analysis of Comparative and Observational Studies. International Journal of Geriatric Psychiatry, 36, 467-478.
https://doi.org/10.1002/gps.5453
[24] Krishnamoorthy, G., Narayana, A.I. and Balkrishanan, D. (2018) Mastication as a Tool to Prevent Cognitive Dysfunctions. Japanese Dental Science Review, 54, 169-173.
https://doi.org/10.1016/j.jdsr.2018.06.001
[25] Nakamura, H., Noguchi-Shinohara, M., Ishimiya-Jokaji, M., Kobayashi, Y., Isa, M., Ide, K., et al. (2024) Brain Atrophy in Normal Older Adult Links Tooth Loss and Diet Changes to Future Cognitive Decline. npj Aging, 10, Article No. 20.
https://doi.org/10.1038/s41514-024-00146-4
[26] Chen, Y., Li, C., Fan, Y., Jiao, L., Silverman, M., Ishimaru, M., et al. (2023) Associations of Oral Health Status and Swallowing Function with Cognitive Impairment in the Aging Population: A Cross-Sectional Study. BMC Oral Health, 23, Article No. 912.
https://doi.org/10.1186/s12903-023-03640-5
[27] Lin, T., Wang, P., Lin, C. and Hung, S. (2024) Association of the Oral Microbiome with Cognitive Function among Older Adults: NHANES 2011-2012. The Journal of Nutrition, Health and Aging, 28, Article 100264.
https://doi.org/10.1016/j.jnha.2024.100264
[28] Villalobos, V., Garrido, M., Reyes, A., Fernández, C., Diaz, C., Torres, V.A., et al. (2022) Aging Envisage Imbalance of the Periodontium: A Keystone in Oral Disease and Systemic Health. Frontiers in Immunology, 13, Article 1044334.
https://doi.org/10.3389/fimmu.2022.1044334
[29] Dominy, S.S., Lynch, C., Ermini, F., Benedyk, M., Marczyk, A., Konradi, A., et al. (2019) Porphyromonas gingivalis in Alzheimer’s Disease Brains: Evidence for Disease Causation and Treatment with Small-Molecule Inhibitors. Science Advances, 5, eaau3333.
https://doi.org/10.1126/sciadv.aau3333
[30] Khoury, R. and Grossberg, G.T. (2020) Deciphering Alzheimer’s Disease: Predicting New Therapeutic Strategies via Improved Understanding of Biology and Pathogenesis. Expert Opinion on Therapeutic Targets, 24, 859-868.
https://doi.org/10.1080/14728222.2020.1790530
[31] Krstic, D. and Knuesel, I. (2012) Deciphering the Mechanism Underlying Late-Onset Alzheimer Disease. Nature Reviews Neurology, 9, 25-34.
https://doi.org/10.1038/nrneurol.2012.236
[32] González-Sanmiguel, J., Schuh, C.M.A.P., Muñoz-Montesino, C., Contreras-Kallens, P., Aguayo, L.G. and Aguayo, S. (2020) Complex Interaction between Resident Microbiota and Misfolded Proteins: Role in Neuroinflammation and Neurodegeneration. Cells, 9, Article 2476.
https://doi.org/10.3390/cells9112476
[33] Yang, I., Arthur, R.A., Zhao, L., Clark, J., Hu, Y., Corwin, E.J., et al. (2021) The Oral Microbiome and Inflammation in Mild Cognitive Impairment. Experimental Gerontology, 147, Article 111273.
https://doi.org/10.1016/j.exger.2021.111273
[34] Huang, X., Wei, P., Fang, C., Yu, M., Yang, S., Qiu, L., et al. (2024) Compromised Endothelial Wnt/β-Catenin Signaling Mediates the Blood-Brain Barrier Disruption and Leads to Neuroinflammation in Endotoxemia. Journal of Neuroinflammation, 21, Article No. 265.
https://doi.org/10.1186/s12974-024-03261-x
[35] Ye, N., Deng, B., Hu, H., Ai, Y., Liu, X., Zhou, S., et al. (2024) The Association between Oral Health and Mild Cognitive Impairment in Community-Dwelling Older Adults. Frontiers in Public Health, 12, Article 1464439.
https://doi.org/10.3389/fpubh.2024.1464439
[36] Iwasaki, M., Kimura, Y., Ogawa, H., Yamaga, T., Ansai, T., Wada, T., et al. (2018) Periodontitis, Periodontal Inflammation, and Mild Cognitive Impairment: A 5‐Year Cohort Study. Journal of Periodontal Research, 54, 233-240.
https://doi.org/10.1111/jre.12623
[37] Iwasaki, M., Yoshihara, A., Kimura, Y., Sato, M., Wada, T., Sakamoto, R., et al. (2016) Longitudinal Relationship of Severe Periodontitis with Cognitive Decline in Older Japanese. Journal of Periodontal Research, 51, 681-688.
https://doi.org/10.1111/jre.12348
[38] Lei, S., Li, J., Yu, J., Li, F., Pan, Y., Chen, X., et al. (2023) Porphyromonas gingivalis Bacteremia Increases the Permeability of the Blood-Brain Barrier via the Mfsd2a/Caveolin-1 Mediated Transcytosis Pathway. International Journal of Oral Science, 15, Article No. 3.
https://doi.org/10.1038/s41368-022-00215-y
[39] Ma, X., Shin, Y., Yoo, J., Park, H. and Kim, D. (2023) Extracellular Vesicles Derived from Porphyromonas gingivalis Induce Trigeminal Nerve-Mediated Cognitive Impairment. Journal of Advanced Research, 54, 293-303.
https://doi.org/10.1016/j.jare.2023.02.006
[40] Gong, T., Chen, Q., Mao, H., Zhang, Y., Ren, H., Xu, M., et al. (2022) Outer Membrane Vesicles of Porphyromonas gingivalis Trigger NLRP3 Inflammasome and Induce Neuroinflammation, Tau Phosphorylation, and Memory Dysfunction in Mice. Frontiers in Cellular and Infection Microbiology, 12, Article 925435.
https://doi.org/10.3389/fcimb.2022.925435
[41] Sanz, M., Herrera, D., Kebschull, M., Chapple, I., Jepsen, S., Berglundh, T., et al. (2020) Treatment of Stage I-III Periodontitis—The EFP S3 Level Clinical Practice Guideline. Journal of Clinical Periodontology, 47, 4-60.
https://doi.org/10.1111/jcpe.13290
[42] Pelekos, G., Acharya, A., Eiji, N., Hong, G., Leung, W.K. and McGrath, C. (2020) Effects of Adjunctive Probiotic L. reuteri Lozenges on S/RSD Outcomes at Molar Sites with Deep Pockets. Journal of Clinical Periodontology, 47, 1098-1107.
https://doi.org/10.1111/jcpe.13329
[43] Schwahn, C., Frenzel, S., Holtfreter, B., Van der Auwera, S., Pink, C., Bülow, R., et al. (2021) Effect of Periodontal Treatment on Preclinical Alzheimer’s Disease—Results of a Trial Emulation Approach. Alzheimers & Dementia, 18, 127-141.
https://doi.org/10.1002/alz.12378