生物电化学系统在处理焦化废水中的研究进展
Research Progress of Bioelectrochemical Systems in the Treatment of Coking Wastewater
摘要: 焦化废水具有高浓度、成分复杂、生物毒性高等特点,采用常规处理方式处理焦化废水具有很大的挑战性。与传统生物法、电化学相比,生物电化学系统(Bioelectrochemical System, BES)不仅具有同时去除焦化废水中碳质和氮质污染物的能力,而且可以通过电强化微生物的协同作用,节省整个处理过程的能量消耗。但是,鲜有综述对生物电化学系统在处理焦化废水中的研究进行系统总结。因此,文章在回顾BES原理、类型、电极材料的基础上,总结了BES在焦化废水处理中的研究进展,并分析了其在去除有机污染物、氨氮等污染物方面的强化效果。通过这些系统的回顾,本综述不仅阐述了电强化微生物促进焦化废水中污染物的作用机理,提出了未来关于BES的研究方向,还展望了BES用于焦化废水处理的前景和挑战,从而促进了BES在焦化废水处理中的实际应用。
Abstract: Coking wastewater is characterized by high concentrations, complex composition, and high biological toxicity, making its treatment challenging using conventional methods. Compared to traditional biological and electrochemical processes, the Bioelectrochemical System (BES) not only have the capability to simultaneously remove carbon and nitrogen pollutants from coking wastewater but also enhance microbial activity through electrical stimulation, thereby reducing energy consumption in the treatment process. However, there is a lack of systematic reviews summarizing the research on BES in coking wastewater treatment. This paper reviews the principles, types, and electrode materials of BES, summarizes the research progress of BES in coking wastewater treatment, and analyzes its enhanced effects in removing organic pollutants and ammonia nitrogen. Through this systematic review, the mechanisms by which electrostimulation promotes pollutant removal in coking wastewater are elucidated, future research directions for BES are proposed, and the prospects and challenges of using BES for coking wastewater treatment are discussed, thereby facilitating the practical application of BES in this field.
文章引用:王庆彬. 生物电化学系统在处理焦化废水中的研究进展[J]. 分析化学进展, 2025, 15(1): 52-60. https://doi.org/10.12677/aac.2025.151006

1. 引言

近年来,以煤炭资源为主体的煤化工产业逐渐成为我国能源发展领域的新兴产业[1]。煤化工技术以煤炭为原料生产出多种清洁能源,如天然气、甲醇和烯烃等[2]。然而,生产过程中产生了大量焦化废水。焦化废水中含有酚类化合物、多环芳烃、长链烷烃、含氮杂环等多种污染物,大部分具有毒性、突变性和致癌性[3]。如果处理不当,不仅会造成严重的环境污染,甚至会对动物和人类的健康造成影响[4]。现有的焦化废水处理方法主要有物理法(吸附、膜过滤等)、化学法(如化学混凝)和生物法[5]。尽管这些技术达到了一定的处理效率,但在应用过程中发现了一些明显的缺点。物化法成本过高,一般作为前处理或后处理工艺。如果作为单独的方法处理焦化废水,会导致出水有机物或含氮污染物浓度高、去除率差[6]。生物处理工艺虽然具有环境友好、经济效益好的特点,但要求水力停留时间(Hydraulic Retention Time)较长,出水化学需氧量(Chemical Oxygen Demand, COD)浓度较高,处理效果不理想[7]。此外,由于有毒物质的存在,生物硝化速度缓慢,氮的去除受到限制[8]。焦化废水的达标排放仍然是一个亟待解决的问题。因此,有必要探索高效、经济地去除焦化废水中碳质和氮质污染物的技术。

电化学技术,具有占地面积小、易于操作、水力停留时间短等优点[9]。虽然能够去除焦化废水中的有机物,但是需要消耗大量的电能,并且含氮污染物难以去除[10]。生物法在处理成本和含氮污染物去除方面具有较大优势,但是由于焦化废水高毒性、低可生化性的特点,传统生物工艺很难实现水中难降解有机物和含氮污染物高效处理[11]。电化学法能够将难降解的有机化合物转化为易降解的小分子有机化合物,降低生物毒性,同时提高可生化性,从而为后续生物处理提供良好的水质条件。因此,利用电化学和生物技术的优势,开发了生物电化学系统(Bioelectrochemical System, BES)用于焦化废水处理以强化废水的处理效果,具有高度可行性。BES不仅具有低成本和优异硝化作用的优点,还通过电催化将难降解的有机物转化成易于生物降解的中间产物,进而提高有机物的去除效率[12]。此外,弱电刺激可以提高微生物酶的活性,从而增强生物降解效果。Liu报道,在活性艳红X-3B (RBRX-3B)浓度为1000 mg/L、水力停留时间(HRT)为24 h的条件下,三维生物膜电极反应器(3D-BER)平均脱色率为90%,COD去除率为80% [13]。Song也证实了磺胺甲恶唑(SMX)和四环素(TC)的去除率分别为72.20%~93.52%和82.61%~95.80% [14]。BES与传统的工艺相比具有以下优点:操作简单、占地面积小、同时起到电催化、生物氧化,物理吸附的作用。然而BES仍然处于早期发展阶段,很少有人关注BES用于焦化废水的处理。

在此基础上,本文总结了BES在焦化废水中的应用,重点介绍了在难降解污染物和氨氮除去中的作用,阐明了BES的原理、类型,电极材料等。介绍了BES用于焦化废水处理去除有机污染物、氨氮等污染物方面的强化效果,并提出了未来的研究方向。

2. 生物电化学系统的概念

生物电化学系统(BES)是基于微生物代谢与电化学反应相结合的一种废水处理技术[15]。电辅助有机物生物降解的概念由Potter M.C.等人于1991年提出。但直到2000年以后,才因其环境效益在废水处理领域得到了广泛的探索[16]。在BES中,微生物通过氧化有机污染物产生电子,这些电子通过外部电路传递到阴极,阴极则进行还原反应。BES的基本结构通常由阳极、阴极、电解质溶液和微生物生物膜构成(图1)。阳极反应通常是有机物的氧化,生成电子和质子,电子通过电路传递到阴极,质子则通过电解质溶液到达阴极,在阴极上发生还原反应。

Figure 1. Schematic diagram of the bioelectrochemical device

1. 生物电化学装置示意图

BES的突出优势是电与微生物的协同作用。这在难降解污染物的去除过程中发挥了重要作用[17]。主要分为两个方面:一是适宜的电刺激提高微生物的代谢,可以驯化微生物群落结构富集电活性菌,促进细胞增殖和生长,加速生物膜的形成[18]。一般来说,适当的电流密度有利于微生物的生长。据报道,对生物电化学系统施加5~20 A/m2的电场,较低的电流密度增加了活菌细胞,而当电流密度超过10 A/m2时,细菌数量减少[19]。结果表明过高的电流会抑制细菌的增殖,使生物量降低。Cheng报道了在去除低浓度头孢呋辛的过程中,当电流从1.2 A/m2增加到2.4 A/m2时,细菌数量减少甚至变形[20]。二是电化学作用产生的中间产物对生物降解有积极贡献。一般来说难降解污染物经过电化学作用会转化成可生物降解的中间体。这些中间体会被电极上的微生物利用。Guo构建3D-BERs来处理双氯芬酸和纤维酸,显著提高了降解率。原因是双氯芬酸和纤维酸电化学转化为中间体,如2,4-二氯苯酚和5-氯-2-羟基乙酸,作为微生物的底物[21]。此外BES不仅能有效去除废水中的污染物,还能在此过程中回收电能或气体(如氢气),具有良好的环保性和能源回收潜力。

2.1. 生物电化学系统的类型

BES系统可以根据电极反应的不同功能和电流的流动方式分为三种类型:微生物燃料电池(MFC)、微生物电解池(MEC)、三维生物膜电极反应器(3D-BERs) [22]。微生物燃料电池(MFC)通过微生物在阳极上代谢有机污染物,产生电子,并通过外部电路产生电流[23]。MFC常用于有机污染物的去除和电能回收。微生物电解池(MEC)与MFC类似,但不同的是,MEC依赖外部电源提供电能来促进微生物代谢过程,生成氢气等有用能源。三维生物膜电极反应器(3D-BERs)是一种优化了电极表面积的BES,其通过增加电极的表面面积、改善电极的导电性等,提高了反应效率和微生物的附着能力。

2.2. 电极材料

电极(阳极、阴极和颗粒电极)是BES的重要单元,在污染物降解、微生物附着、电子转移等方面发挥着关键作用[24]。电极的特性决定了BES的整体性能。BES电极要求具有导电性好、电化学稳定性好、生物相容性高、成本低、使用方便等特性。BES中应用最广泛的电极材料是碳和金属,包括GAC、石墨、金属钛、不锈钢等。

BES中常用的阳极材料是石墨和钛金属。当石墨作为阳极时,产生的CO2可以缓冲系统中的pH值,并为某些特定的微生物提供碳源。当钛金属作为阳极时,产生O2形成好氧环境,有利于好氧反应的进行[25]。因此,阳极的选择应考虑目标污染物及其最佳降解途径。此外,石墨电极具有良好的导电性和成本竞争力,但存在石墨溶解和出水色度等问题[26]。钛电极避开了这些问题,但高昂的价格极大地限制了其实际应用。近年来,金属与碳的复合材料备受关注。例如,Feng使用涂覆RuO2和IrO2的钛板作为阳极来有效处理RhB废水[27]。目前,电极材料的高成本仍然制约着BES在废水处理中的广泛应用。因此,有必要开发出高效率、高性价比的电极材料。

BES中常用的阴极材料是碳和金属材料,如活性炭纤维和不锈钢。不同的材料有自己的局限性。活性炭纤维导电性好、比表面积大、生物亲和力强,但催化活性和稳定性较差[28]。相反,不锈钢具有良好的机械强度和稳定性,但微生物难以附着在其表面[29]。因此,多孔不锈钢网或钛金属网被设计为阴极,使微生物易于粘附和生长,并且具有大的比表面积、低的扩散阻力、良好的导电性和稳定性。

颗粒电极材料中应用最广泛的是碳,包括粒状活性炭(GAC)、石墨,以及在碳基底上负载金属/金属氧化物的复合材料。GAC具有多孔结构和较大的比表面积,有利于传质和微生物附着[27]。GAC仍是目前应用最广泛的颗粒电极。

近年来,随着对BES研究的深入,电极材料的研究也取得了显著进展,目前最新的电极材料主要包括复合材料、纳米材料、二维材料(2D materials)。复合电极材料通常由两种或多种材料组成,结合了不同材料的优点,以提高电极的导电性、比表面积、生物相容性和稳定性。碳基复合材料(活性炭/铂AC/Pt、活性炭/镍AC/Ni)、金属复合材料(铂/聚苯胺Pt/PANI、镍/聚苯胺Ni/PANI)。碳材料和金属的结合促进了微生物的生长和代谢活动,导电高分子的加入促进了微生物的附着和生长[30]。纳米材料因其独特的物理化学性质(如高的比表面积、优异的导电性和催化性能)在BES中展现出巨大的应用潜力。纳米材料如碳纳米管(CNTs)、二氧化钛(TiO₂)、二氧化锰(MnO₂)等。在MFC中,CNTs电极的电流密度显著高于传统碳材料电极,表现出更高的电子传递效率[31]。二维材料如石墨烯及其衍生物、过渡金属硫化物(二硫化钼MoS₂、二硫化钨WS₂、二硒化钼MoSe₂)等。通过MoS₂修饰的电极,显著提高了催化性能和电流密度[32]。在电化学废水处理中,二维材料电极显著提高了有机物的降解效率和电流密度。

3. BES强化焦化废水中污染物的去除效果

3.1. 有机污染物去除

焦化废水中的有机污染物有酚类、吡啶、喹啉、多环芳烃等,具有较强的毒性和难降解性[33]。传统的废水处理方法对这些污染物的去除效果较差。BES通过微生物的代谢作用和电化学反应相结合,能够高效降解这些有机污染物。Jiang创造性地将生物膜反应器和电化学技术结合,组建了新型电膜生物反应器(EMBR) [34],如图2所示。其提高了含酚、吡啶和喹啉焦化废水的处理性能,并且减少膜污染。此外,EMBR对COD、苯酚、吡啶、喹啉的去除率显著高于传统的MBR和仅电催化降解之和,证明了电催化和生物降解过程之间存在耦合效应。Dong开发了一种新型的UEHAR,BTEX (苯、甲苯、乙苯和二甲苯),其去除效率比对照组高10.6% ± 2.4% [35]。BES通过生物降解和电化学反应的耦合作用,展现了优异的有机物去除性能,强化了焦化废水中有机污染物的去除效果。

Figure 2. Diagram of the EMBR device [34]

2. EMBR装置图[34]

3.2. 氨氮去除

氨氮( NH 4 + -N )是焦化废水中最重要的氮质污染物,具有高生物毒性。目前的生物技术,如厌氧/缺氧/好氧(A/A/O)工艺,虽然在COD去除方面取得了一定的成功,但在处理 NH 4 + -N 方面表现有限,因为焦化废水中的有毒物质显著抑制了生物硝化过程[36]。Wu开发使用3DER + 3DBER + 3DBER-De系统处理高氨氮焦化废水。如图3所示,在1.29 kWh/m3的低能耗下实现总氮(TN)出率高达70.7% [37]。研究者通过优化水力停留时间(HRT),提高了氨氮的去除效率,并显著降低了能耗。这套系统为处理高氨氮焦化废水提供了一种新的解决方案。

Figure 3. Schematic diagram of the integrated 3DER + 3DBER + 3DBER-De system [37]

3. 集成3DER + 3DBER + 3DBER-De 系统的示意图[37]

4. 能源回收与沼气生产

BES的另一个重要优势是能源回收。在处理废水的过程中,BES不仅能够降解污染物,还能够回收电能或沼气等有用能源[38]。这为废水处理提供了一个双重功能,污染物去除和能源回收。微生物燃料电池(MFC)不仅能降解焦化废水中的有机物,还能回收电能,是一种有效的环保技术[39]。据报道,Zhang研究开发催化阴极膜和改性颗粒活性炭阴极(MnO2/TiO2/g-C3N4/GAC)的新型MFC,如图4所示。新型MFC实现最大产电功率密度达到1680.33 mW/m3,远高于其他研究中类似系统的功率密度[40]。Liu采用铁碳微电解技术(ICME)处理焦化废水。表明,COD和酚类化合物的去除率分别提高了24.1%和23.5%,同时生物气产量和甲烷含量分别提高了50%和7% [41]。BES是一种绿色环保技术,在去除焦化废水污染物的过程中还能回收电能和生物质能源。

Figure 4. Schematic diagram of the MFC device [40]

4. MFC装置示意图[40]

5. BES技术面临的挑战与未来发展方向

尽管BES在焦化废水处理方面表现出显著的优势,但其广泛应用仍面临一定的挑战和技术瓶颈。一是电极材料的选择与优化。电极是BES系统中的关键部件,电极的导电性、稳定性和生物相容性直接影响系统的处理效率。目前,常用的电极材料包括碳基材料、金属材料和导电高分子材料。新型电极材料的开发将是未来研究的重点。二是微生物群落的调控与优化[42]。BES中的微生物群落在处理废水中的污染物时起着至关重要的作用。如何优化微生物群落结构,提升其对复杂污染物的降解能力,仍是当前研究的一个难点。三是能效与成本问题。尽管BES系统能够回收一定的电能,但目前的能效较低[43],且系统的建设和运营成本较高。因此,如何提高系统的能效、降低其运行成本,是实现商业化应用的关键。

6. 结论

本文从定义、电极材料、强化污染物去除效果、能源回收和挑战与未来发展方面全面概述了BES技术。生物电化学系统(BES)作为一种新兴的废水处理技术,因其在去除有机污染物、氨氮、硫化物等方面的优异性能,成为处理焦化废水的潜力技术。通过优化电极材料、微生物群落和操作条件,BES系统能够显著提高废水的处理效率,并回收有用能源。尽管面临一定的技术挑战和成本问题,但BES在焦化废水处理中的应用前景广阔。随着技术的不断进步,BES有望成为未来废水治理和可持续能源生产的关键技术之一。

参考文献

[1] 徐振刚. 中国现代煤化工近25年发展回顾·反思·展望[J]. 煤炭科学技术, 2020, 48(8): 1-25.
[2] 刘立麟. 我国现代煤化工发展的影响因素分析[J]. 煤炭经济研究, 2012, 32(3): 34-38.
[3] Bokun, C., Siyu, Y., Yangyang, W., Miyangzi, S. and Yu, Q. (2020) Intensified Phenols Extraction and Oil Removal for Industrial Semi-Coking Wastewater: A Novel Economic Pretreatment Process Design. Journal of Cleaner Production, 242, Article ID: 118453.
https://doi.org/10.1016/j.jclepro.2019.118453
[4] Li, Y.L., Wang, Q.B., Chen, H.W., et al. (2024) Multi-Stage Oxic Biofilm System for Pilot-Scale Treatment of Coking Wastewater: Pollutants Removal Performance, Biofilm Properties and Microbial Community. Bioresource Technology, 411, Article ID: 131271.
[5] 李成. 煤化工废水难降解有机物的处理技术进展[J]. 化工安全与环境, 2024, 37(10): 54-56.
[6] dos Santos, A.J., Kronka, M.S., Fortunato, G.V. and Lanza, M.R.V. (2021) Recent Advances in Electrochemical Water Technologies for the Treatment of Antibiotics: A Short Review. Current Opinion in Electrochemistry, 26, Article ID: 100674.
https://doi.org/10.1016/j.coelec.2020.100674
[7] Zhu, H., Han, Y., Xu, C., Han, H. and Ma, W. (2018) Overview of the State of the Art of Processes and Technical Bottlenecks for Coal Gasification Wastewater Treatment. Science of the Total Environment, 637, 1108-1126.
https://doi.org/10.1016/j.scitotenv.2018.05.054
[8] Ting, S., Wang, Z.K., Zhou, K., et al. (2021) Advanced Treatment of Secondary Effluent Organic Matters (EfOM) from an Industrial Park Wastewater Treatment Plant by Fenton Oxidation Combining with Biological Aerated Filter. Science of the Total Environment, 784, Article ID: 147204.
[9] Liu, F.Y., Zhou, R., Zhang, C.P., et al. (2024) Critical Review on the Pulsed Electrochemical Technologies for Wastewater Treatment: Fundamentals, Current Trends, and Future Studies. Chemical Engineering Journal, 479, Article ID: 147588.
[10] Deng, Y., Chen, N., Hu, W., Wang, H., Kuang, P., Chen, F., et al. (2021) Treatment of Old Landfill Leachate by Persulfate Enhanced Electro-Coagulation System: Improving Organic Matters Removal and Precipitates Settling Performance. Chemical Engineering Journal, 424, Article ID: 130262.
https://doi.org/10.1016/j.cej.2021.130262
[11] Feng, Y., Guo, M., Jia, X., Liu, N., Li, X., Li, X., et al. (2020) Combined Effects of Electrical Current and Nonsteroidal Antiinflammatory Drugs (Nsaids) on Microbial Community in a Three-Dimensional Electrode Biological Aerated Filter (3DE-BAF). Bioresource Technology, 309, Article ID: 123346.
https://doi.org/10.1016/j.biortech.2020.123346
[12] Choudhary, M., Verma, P. and Ray, S. (2024) A Comprehensive Review on Bio-Electrochemical Systems for Wastewater Treatment: Process, Electricity Generation and Future Aspect. Environment, Development and Sustainability.
https://doi.org/10.1007/s10668-024-05866-x
[13] Liu, S.T., Feng, X.J., Gu, F., et al. (2017) Sequential Reduction/Oxidation of Azo Dyes in a Three-Dimensional Biofilm Electrode Reactor. Chemosphere (Oxford), 186, 287-294.
[14] Song, H., Zhang, S., Yang, X., Chen, T. and Zhang, Y. (2017) Coupled Effects of Electrical Stimulation and Antibiotics on Microbial Community in Three-Dimensional Biofilm-Electrode Reactors. Water, Air, & Soil Pollution, 228, Article No. 83.
https://doi.org/10.1007/s11270-017-3267-y
[15] 李中坚. 基于微生物电化学系统的废水处理技术研究[D]: [硕士学位论文]. 杭州: 浙江大学, 2012.
[16] Hernandez, C.A. and Osma, J.F. (2020) Microbial Electrochemical Systems: Deriving Future Trends from Historical Perspectives and Characterization Strategies. Frontiers in Environmental Science, 8, Article No. 44.
https://doi.org/10.3389/fenvs.2020.00044
[17] 谢莱, 杨敏, 杨恩喆, 等. 生物电化学耦合厌氧氨氧化强化脱氮及其微生物群落特征[J]. 生物工程学报, 2023, 39(7): 2719-2729.
[18] Logan, B.E., Rossi, R., Ragab, A. and Saikaly, P.E. (2019) Electroactive Microorganisms in Bioelectrochemical Systems. Nature Reviews Microbiology, 17, 307-319.
https://doi.org/10.1038/s41579-019-0173-x
[19] Wang, S., Yang, X., Meng, H., Zhang, Y., Li, X. and Xu, J. (2019) Enhanced Denitrification by Nano a-Fe2O3 Induced Self-Assembled Hybrid Biofilm on Particle Electrodes of Three-Dimensional Biofilm Electrode Reactors. Environment International, 125, 142-151.
https://doi.org/10.1016/j.envint.2019.01.060
[20] Cheng, Z. and Hu, X. (2017) Performance and Degradation Mechanism of a Sequencing Batch Biofilm Reactor Combined with an Electrochemical Process for the Removal of Low Concentrations of Cefuroxime. Chemical Engineering Journal, 320, 93-103.
https://doi.org/10.1016/j.cej.2017.03.037
[21] Guo, M., Feng, Y., Li, X., Yan, G., Wang, X., Li, X., et al. (2021) Enhanced Degradation of Pharmaceuticals and Personal Care Products (PPCPS) by Three-Dimensional Electrocatalysis Coupled Biological Aerated Filter. Journal of Environmental Chemical Engineering, 9, Article ID: 106035.
https://doi.org/10.1016/j.jece.2021.106035
[22] Zhou, L., Wu, Y., Zhang, S., Li, Y., Gao, Y., Zhang, W., et al. (2022) Recent Development in Microbial Electrochemical Technologies: Biofilm Formation, Regulation, and Application in Water Pollution Prevention and Control. Journal of Water Process Engineering, 49, Article ID: 103135.
https://doi.org/10.1016/j.jwpe.2022.103135
[23] Rabaey, K. and Verstraete, W. (2005) Microbial Fuel Cells: Novel Biotechnology for Energy Generation. Trends in Biotechnology, 23, 291-298.
https://doi.org/10.1016/j.tibtech.2005.04.008
[24] Wu, Z.-Y., Xu, J., Wu, L., et al. (2022) Three-Dimensional Biofilm Electrode Reactors (3D-BERs) for Wastewater Treatment. Bioresource Technology, 344, Article ID: 126274.
[25] Rojas, M.I., Esplandiu, M.J., Avalle, L.B., Leiva, E.P.M. and Macagno, V.A. (1998) The Oxygen and Chlorine Evolution Reactions at Titanium Oxide Electrodes Modified with Platinum. Electrochimica Acta, 43, 1785-1794.
https://doi.org/10.1016/s0013-4686(97)10002-0
[26] Cui, M.-H., Cui, D., Gao, L., et al. (2016) Azo Dye Decolorization in an Up-Flow Bioelectrochemical Reactor with Domestic Wastewater as a Cost-Effective Yet Highly Efficient Electron Donor Source. Water Research (Oxford), 105, 520-526.
[27] Feng, L., Li, X., Gan, L. and Xu, J. (2018) Synergistic Effects of Electricity and Biofilm on Rhodamine B (RhB) Degradation in Three-Dimensional Biofilm Electrode Reactors (3D-BERs). Electrochimica Acta, 290, 165-175.
https://doi.org/10.1016/j.electacta.2018.09.068
[28] Wang, H., Lyu, W., Hu, X., Chen, L., He, Q., Zhang, W., et al. (2019) Effects of Current Intensities on the Performances and Microbial Communities in a Combined Bio-Electrochemical and Sulfur Autotrophic Denitrification (CBSAD) System. Science of the Total Environment, 694, Article ID: 133775.
https://doi.org/10.1016/j.scitotenv.2019.133775
[29] Tang, Q., Sheng, Y., Li, C., Wang, W. and Liu, X. (2020) Simultaneous Removal of Nitrate and Sulfate Using an Up-Flow Three-Dimensional Biofilm Electrode Reactor: Performance and Microbial Response. Bioresource Technology, 318, Article ID: 124096.
https://doi.org/10.1016/j.biortech.2020.124096
[30] Mier, A.A., Olvera-Vargas, H., Mejía-López, M., Longoria, A., Verea, L., Sebastian, P.J., et al. (2021) A Review of Recent Advances in Electrode Materials for Emerging Bioelectrochemical Systems: From Biofilm-Bearing Anodes to Specialized Cathodes. Chemosphere, 283, Article ID: 131138.
https://doi.org/10.1016/j.chemosphere.2021.131138
[31] Mubarak, N.-M., et al. (2023) Advanced Nanomaterials and Nanocomposites for Bioelectrochemical Systems. Elsevier.
[32] Dong, Y., Yan, C., Zhao, H. and Lei, Y. (2022) Recent Advances in 2D Heterostructures as Advanced Electrode Materials for Potassium‐Ion Batteries. Small Structures, 3, Article ID: 2100221.
https://doi.org/10.1002/sstr.202100221
[33] Wu, D., Yi, X., Tang, R., Feng, C. and Wei, C. (2018) Single Microbial Fuel Cell Reactor for Coking Wastewater Treatment: Simultaneous Carbon and Nitrogen Removal with Zero Alkaline Consumption. Science of the Total Environment, 621, 497-506.
https://doi.org/10.1016/j.scitotenv.2017.11.262
[34] Jiang, B., Du, C., Shi, S., Tan, L., Li, M., Liu, J., et al. (2017) Enhanced Treatment Performance of Coking Wastewater and Reduced Membrane Fouling Using a Novel EMBR. Bioresource Technology, 229, 39-45.
https://doi.org/10.1016/j.biortech.2016.12.116
[35] Dong, J., Chen, Z., Han, F., Hu, D., Ge, H., Jiang, B., et al. (2024) Performance of a Novel Up-Flow Electrocatalytic Hydrolysis Acidification Reactor (UEHAR) Coupled with Anoxic/Oxic System for Treating Coking Wastewater. Water Research, 257, Article ID: 121670.
https://doi.org/10.1016/j.watres.2024.121670
[36] Sheng, B., Wang, D., Liu, X., Yang, G., Zeng, W., Yang, Y., et al. (2020) Taxonomic and Functional Variations in the Microbial Community during the Upgrade Process of a Full-Scale Landfill Leachate Treatment Plant—From Conventional to Partial Nitrification-Denitrification. Frontiers of Environmental Science & Engineering, 14, Article No. 93.
https://doi.org/10.1007/s11783-020-1272-7
[37] Wu, Z.Y., Zhu, W.P., Liu, Y., et al. (2020) An Integrated Three-Dimensional Electrochemical System for Efficient Treatment of Coking Wastewater Rich in Ammonia Nitrogen. Chemosphere (Oxford), 246, Article ID: 125703.
[38] Gul, M.-M. and Khuram-Shahzad, A. (2019) Bioelectrochemical Systems: Sustainable Bio-Energy Powerhouses. Biosensors and Bioelectronics, 142, Article ID: 111576.
[39] Min, B., Kim, J., Oh, S., Regan, J.M. and Logan, B.E. (2005) Electricity Generation from Swine Wastewater Using Microbial Fuel Cells. Water Research, 39, 4961-4968.
https://doi.org/10.1016/j.watres.2005.09.039
[40] Zhang, Q. and Liu, L. (2021) Cathodes of Membrane and Packed Manganese Dioxide/Titanium Dioxide/Graphitic Carbon Nitride/Granular Activated Carbon Promoted Treatment of Coking Wastewater in Microbial Fuel Cell. Bioresource Technology, 321, Article ID: 124442.
https://doi.org/10.1016/j.biortech.2020.124442
[41] Liu, Y., Zhang, Z., Song, Y., Peng, F. and Feng, Y. (2024) Long-Term Evaluating the Strengthening Effects of Iron-Carbon Mediator for Coking Wastewater Treatment in EGSB Reactor. Journal of Hazardous Materials, 474, Article ID: 134701.
https://doi.org/10.1016/j.jhazmat.2024.134701
[42] Thengumthottathil, V., Ponnusamy, K. and Naina Mohamed, S. (2024) Bioelectrochemical Systems: Exploring Microbial Communities, Interactions, and Electron Transfer. Biochemical Engineering Journal, 211, Article ID: 109442.
https://doi.org/10.1016/j.bej.2024.109442
[43] Bajracharya, S., Sharma, M., Mohanakrishna, G., Dominguez Benneton, X., Strik, D.P.B.T.B., Sarma, P.M., et al. (2016) An Overview on Emerging Bioelectrochemical Systems (BESS): Technology for Sustainable Electricity, Waste Remediation, Resource Recovery, Chemical Production and Beyond. Renewable Energy, 98, 153-170.
https://doi.org/10.1016/j.renene.2016.03.002