[1]
|
Toub, M., Shatto, S., 承旭. 硅橡胶材料在医疗导管中的应用[J]. 中国医疗器械信息, 2008, 14(8): 4-6, 74.
|
[2]
|
Tal, M.G. and Ni, N. (2008) Selecting Optimal Hemodialysis Catheters: Material, Design, Advanced Features, and Preferences. Techniques in Vascular and Interventional Radiology, 11, 186-191. https://doi.org/10.1053/j.tvir.2008.09.006
|
[3]
|
Stewart, R.D. and Sanislow, C.A. (1961) Silastic Intravenous Catheter. New England Journal of Medicine, 265, 1283-1285. https://doi.org/10.1056/nejm196112282652603
|
[4]
|
Wu, G., Wu, W., Pan, S., Zheng, Y.-X. and Lv, L. (2019) Nasointestinal Tube in Mechanical Ventilation Patients Is More Advantageous. Open Medicine, 14, 426-430. https://doi.org/10.1515/med-2019-0045
|
[5]
|
田伏洲, 黄大熔, 黎冬暄, 等. 内镜鼻胆导管引流术预防急性胰腺炎重症化的前瞻性研究[J]. 中华消化杂志, 1997, 17(1): 52-53.
|
[6]
|
Adipurnama, I., Yang, M., Ciach, T. and Butruk-Raszeja, B. (2017) Surface Modification and Endothelialization of Polyurethane for Vascular Tissue Engineering Applications: A Review. Biomaterials Science, 5, 22-37. https://doi.org/10.1039/c6bm00618c
|
[7]
|
Schierholz, J.M., Seyfert, U.T., Rump, A.F.E., Beuth, J. and Pulverer, G. (1999) Strategies for the Prevention of Catheter Material-Associated Thrombosis and Bloodstream Infections. Transfusion Medicine and Hemotherapy, 26, 278-287. https://doi.org/10.1159/000053505
|
[8]
|
Boeykens, M., Keller, E.X., Bosio, A., Wiseman, O.J., Contreras, P., Ventimiglia, E., et al. (2022) Impact of Ureteral Stent Material on Stent-Related Symptoms: A Systematic Review of the Literature. European Urology Open Science, 45, 108-117. https://doi.org/10.1016/j.euros.2022.09.005
|
[9]
|
Odman, P. (1959) The Radiopaque Polythene Catheter. Acta Radiologica, 52, 52-64. https://doi.org/10.3109/00016925909171131
|
[10]
|
McGuire, B. and Hodge, K. (2022) Tracheal Intubation. Anaesthesia & Intensive Care Medicine, 23, 661-666. https://doi.org/10.1016/j.mpaic.2022.08.002
|
[11]
|
杨柯, 任伊宾. 医用不锈钢的研究与发展[J]. 中国材料进展, 2010, 29(12): 1-10, 34.
|
[12]
|
Zhang, L. and Chen, L. (2019) A Review on Biomedical Titanium Alloys: Recent Progress and Prospect. Advanced Engineering Materials, 21, Article ID: 1801215. https://doi.org/10.1002/adem.201801215
|
[13]
|
Abbas, A., Raza, A., Ullah, M., Hendi, A.A., Akbar, F., Khan, S.U., et al. (2023) A Comprehensive Review: Epidemiological Strategies, Catheterization and Biomarkers Used as a Bioweapon in Diagnosis and Management of Cardio Vascular Diseases. Current Problems in Cardiology, 48, Article 101661. https://doi.org/10.1016/j.cpcardiol.2023.101661
|
[14]
|
Ouyang, H., Liu, Z., Li, N., Shi, B., Zou, Y., Xie, F., et al. (2019) Symbiotic Cardiac Pacemaker. Nature Communications, 10, Article No. 1821. https://doi.org/10.1038/s41467-019-09851-1
|
[15]
|
Divatia, J.V. and Abraham, B. (2018) Multicenter Observational Study to Evaluate Epidemiology and Resistance Patterns of Common Intensive Care Unit-Infections. Indian Journal of Critical Care Medicine, 22, 20-26. https://doi.org/10.4103/ijccm.ijccm_394_17
|
[16]
|
Mermel, L.A. (2017) Short-Term Peripheral Venous Catheter-Related Bloodstream Infections: A Systematic Review. Clinical Infectious Diseases, 65, 1757-1762. https://doi.org/10.1093/cid/cix562
|
[17]
|
Kelly, T., Ai, C., Jung, M. and Yu, K. (2024) Catheter-Associated Urinary Tract Infections (CAUTIs) and Non-CAUTI Hospital-Onset Urinary Tract Infections: Relative Burden, Cost, Outcomes and Related Hospital-Onset Bacteremia and Fungemia Infections. Infection Control & Hospital Epidemiology, 45, 864-871. https://doi.org/10.1017/ice.2024.26
|
[18]
|
Vazquez-Garza, E., Jerjes-Sanchez, C., Navarrete, A., Joya-Harrison, J. and Rodriguez, D. (2017) Venous Thromboembolism: Thrombosis, Inflammation, and Immunothrombosis for Clinicians. Journal of Thrombosis and Thrombolysis, 44, 377-385. https://doi.org/10.1007/s11239-017-1528-7
|
[19]
|
Lee, S.C., Kwon, I.K. and Park, K. (2013) Hydrogels for Delivery of Bioactive Agents: A Historical Perspective. Advanced Drug Delivery Reviews, 65, 17-20. https://doi.org/10.1016/j.addr.2012.07.015
|
[20]
|
Cheng, L., Liu, C., Wang, J., Wang, Y., Zha, W. and Li, X. (2022) Tough Hydrogel Coating on Silicone Rubber with Improved Antifouling and Antibacterial Properties. ACS Applied Polymer Materials, 4, 3462-3472. https://doi.org/10.1021/acsapm.2c00069
|
[21]
|
Qi, Y., Zhang, Z., Ma, H., Cui, M., Yang, B., Wang, R., et al. (2023) Radiation Syntheses of Modified Poly (Lactic Acid) Fabrics with Hydrophilic and Antibacterial Properties. Progress in Organic Coatings, 176, Article 107393. https://doi.org/10.1016/j.porgcoat.2022.107393
|
[22]
|
Yang, K., Han, Q., Chen, B., Zheng, Y., Zhang, K., Li, Q., et al. (2018) Antimicrobial Hydrogels: Promising Materials for Medical Application. International Journal of Nanomedicine, 13, 2217-2263. https://doi.org/10.2147/ijn.s154748
|
[23]
|
Zhang, M., Wang, D., Ji, N., Lee, S., Wang, G., Zheng, Y., Zhang, X., Yang, L., Qin, Z. and Yang, Y. (2021) Bioinspired Design of Sericin/Chitosan/Ag@MOF/GO Hydrogels for Efficiently Combating Resistant Bacteria, Rapid Hemostasis, and Wound Healing. Polymers, 13, Article 2812. https://doi.org/10.3390/polym13162812
|
[24]
|
Zhang, M., Wang, G., Wang, D., Zheng, Y., Li, Y., Meng, W., et al. (2021) Ag@MOF-Loaded Chitosan Nanoparticle and Polyvinyl Alcohol/Sodium Alginate/Chitosan Bilayer Dressing for Wound Healing Applications. International Journal of Biological Macromolecules, 175, 481-494. https://doi.org/10.1016/j.ijbiomac.2021.02.045
|
[25]
|
Ding, K., Wang, Y., Liu, S., Wang, S. and Mi, J. (2021) Preparation of Medical Hydrophilic and Antibacterial Silicone Rubber via Surface Modification. RSC Advances, 11, 39950-39957. https://doi.org/10.1039/d1ra06260c
|
[26]
|
Sun, C., Zhang, Y., Dong, F., Zhao, J., Zhang, P., Li, S., et al. (2024) Fast-Polymerized Lubricant and Antibacterial Hydrogel Coatings for Medical Catheters. Chemical Engineering Journal, 488, Article 150944. https://doi.org/10.1016/j.cej.2024.150944
|
[27]
|
Li, H., Dai, C. and Hu, Y. (2023) Hydrogels for Chemical Sensing and Biosensing. Macromolecular Rapid Communications, 45, Article ID: 2300474. https://doi.org/10.1002/marc.202300474
|
[28]
|
Li, Y., Li, D., Wang, J., Ye, T., Li, Q., Li, L., et al. (2023) A Temperature‐Sensing Hydrogel Coating on the Medical Catheter. Advanced Functional Materials, 34, Article ID: 2310260. https://doi.org/10.1002/adfm.202310260
|
[29]
|
Chen, H., Zhang, P., Zhang, L., Liu, H., Jiang, Y., Zhang, D., et al. (2016) Continuous Directional Water Transport on the Peristome Surface of Nepenthes Alata. Nature, 532, 85-89. https://doi.org/10.1038/nature17189
|
[30]
|
Wong, T., Kang, S.H., Tang, S.K.Y., Smythe, E.J., Hatton, B.D., Grinthal, A., et al. (2011) Bioinspired Self-Repairing Slippery Surfaces with Pressure-Stable Omniphobicity. Nature, 477, 443-447. https://doi.org/10.1038/nature10447
|
[31]
|
Leslie, D.C., Waterhouse, A., Berthet, J.B., Valentin, T.M., Watters, A.L., Jain, A., et al. (2014) A Bioinspired Omniphobic Surface Coating on Medical Devices Prevents Thrombosis and Biofouling. Nature Biotechnology, 32, 1134-1140. https://doi.org/10.1038/nbt.3020
|
[32]
|
Kasapgil, E., Badv, M., Cantú, C.A., Rahmani, S., Erbil, H.Y., Anac Sakir, I., et al. (2021) Polysiloxane Nanofilaments Infused with Silicone Oil Prevent Bacterial Adhesion and Suppress Thrombosis on Intranasal Splints. ACS Biomaterials Science & Engineering, 7, 541-552. https://doi.org/10.1021/acsbiomaterials.0c01487
|
[33]
|
Grafe, T. and Graham, K. (2003) Polymeric Nanofibers and Nanofiber Webs: A New Class of Nonwovens. International Nonwovens Journal, 12. https://doi.org/10.1177/1558925003os-1200113
|
[34]
|
Großhaus, C., Bakirci, E., Berthel, M., Hrynevich, A., Kade, J.C., Hochleitner, G., et al. (2020) Melt Electrospinning of Nanofibers from Medical‐Grade Poly(ε‐Caprolactone) with a Modified Nozzle. Small, 16, Article ID: 2003471. https://doi.org/10.1002/smll.202003471
|
[35]
|
Luo, W., Zhang, J., Qiu, X., Chen, L., Fu, J., Hu, P., et al. (2018) Electric-Field-Modified in Situ Precise Deposition of Electrospun Medical Glue Fibers on the Liver for Rapid Hemostasis. Nanoscale Research Letters, 13, Article No. 278. https://doi.org/10.1186/s11671-018-2698-8
|
[36]
|
Agarwal, H., Quinn, L.J., Walter, S.C., Polaske, T.J., Chang, D.H., Palecek, S.P., et al. (2022) Slippery Antifouling Polymer Coatings Fabricated Entirely from Biodegradable and Biocompatible Components. ACS Applied Materials & Interfaces, 14, 17940-17949. https://doi.org/10.1021/acsami.1c25218
|
[37]
|
杨西, 杨玉华. 化学气相沉积技术的研究与应用进展[J]. 甘肃水利水电技术, 2008, 44(3): 211-213.
|
[38]
|
余琼卫, 冯钰锜. 液相沉积法(LPD)在分析化学中的应用[J]. 化学进展, 2011, 23(6): 1211-1223.
|
[39]
|
Yu, J., Qin, L., Hao, Y., Kuang, S., Bai, X., Chong, Y., et al. (2010) Vertically Aligned Boron Nitride Nanosheets: Chemical Vapor Synthesis, Ultraviolet Light Emission, and Superhydrophobicity. ACS Nano, 4, 414-422. https://doi.org/10.1021/nn901204c
|
[40]
|
Al-Asbahi, B.A., Qaid, S.M.H., Hezam, M., Bedja, I., Ghaithan, H.M. and Aldwayyan, A.S. (2020) Effect of Deposition Method on the Structural and Optical Properties of CH3NH3PbI3 Perovskite Thin Films. Optical Materials, 103, Article 109836. https://doi.org/10.1016/j.optmat.2020.109836
|
[41]
|
Isimjan, T.T., Wang, T. and Rohani, S. (2012) A Novel Method to Prepare Superhydrophobic, UV Resistance and Anti-Corrosion Steel Surface. Chemical Engineering Journal, 210, 182-187. https://doi.org/10.1016/j.cej.2012.08.090
|
[42]
|
Atici, E.G., Kasapgil, E., Anac, I. and Erbil, H.Y. (2016) Methyltrichlorosilane Polysiloxane Filament Growth on Glass Using Low Cost Solvents and Comparison with Gas Phase Reactions. Thin Solid Films, 616, 101-110. https://doi.org/10.1016/j.tsf.2016.07.041
|
[43]
|
Kasapgil, E., Anac, I. and Erbil, H.Y. (2019) Transparent, Fluorine-Free, Heat-Resistant, Water Repellent Coating by Infusing Slippery Silicone Oil on Polysiloxane Nanofilament Layers Prepared by Gas Phase Reaction of N-Propyltrichlorosilane and Methyltrichlorosilane. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 560, 223-232. https://doi.org/10.1016/j.colsurfa.2018.09.064
|
[44]
|
Roualdes, S. and Rouessac, V. (2017) 1.10 Plasma Membranes. In: Drioli, E., Giorno L. and Fontananova, E., Eds., Comprehensive Membrane Science and Engineering, Elsevier, 236-269. https://doi.org/10.1016/b978-0-12-409547-2.12224-3
|
[45]
|
Akdoğan, E. and Şirin, H.T. (2021) Plasma Surface Modification Strategies for the Preparation of Antibacterial Biomaterials: A Review of the Recent Literature. Materials Science and Engineering: C, 131, Article 112474. https://doi.org/10.1016/j.msec.2021.112474
|
[46]
|
Liu, C., Bai, J., Wang, Y., Chen, L., Wang, D., Ni, S., et al. (2021) The Effects of Three Cold Plasma Treatments on the Osteogenic Activity and Antibacterial Property of Peek. Dental Materials, 37, 81-93. https://doi.org/10.1016/j.dental.2020.10.007
|
[47]
|
Ojah, N., Deka, J., Haloi, S., Kandimalla, R., Gogoi, D., Medhi, T., et al. (2019) Chitosan Coated Silk Fibroin Surface Modified by Atmospheric Dielectric-Barrier Discharge (DBD) Plasma: A Mechanically Robust Drug Release System. Journal of Biomaterials Science, Polymer Edition, 30, 1142-1160. https://doi.org/10.1080/09205063.2019.1622844
|
[48]
|
Rezaei, F., Shokri, B. and Sharifian, M. (2016) Atmospheric-Pressure DBD Plasma-Assisted Surface Modification of Polymethyl Methacrylate: A Study on Cell Growth/Proliferation and Antibacterial Properties. Applied Surface Science, 360, 641-651. https://doi.org/10.1016/j.apsusc.2015.11.036
|