[1]
|
Aldape, K., Zadeh, G., Mansouri, S., Reifenberger, G. and von Deimling, A. (2015) Glioblastoma: Pathology, Molecular Mechanisms and Markers. Acta Neuropathologica, 129, 829-848. https://doi.org/10.1007/s00401-015-1432-1
|
[2]
|
Cohen, N. and Weller, R.O. (2007) Who Classification of Tumours of the Central Nervous System (4th Edition). Neuropathology and Applied Neurobiology, 33, 710-711. https://doi.org/10.1111/j.1365-2990.2007.00905.x
|
[3]
|
Jiang, H., Cui, Y., Wang, J. and Lin, S. (2016) Impact of Epidemiological Characteristics of Supratentorial Gliomas in Adults Brought about by the 2016 World Health Organization Classification of Tumors of the Central Nervous System. Oncotarget, 8, 20354-20361. https://doi.org/10.18632/oncotarget.13555
|
[4]
|
Ghosh, D., Nandi, S. and Bhattacharjee, S. (2018) Combination Therapy to Checkmate Glioblastoma: Clinical Challenges and Advances. Clinical and Translational Medicine, 7, e33. https://doi.org/10.1186/s40169-018-0211-8
|
[5]
|
Tso, C., Freije, W.A., Day, A., Chen, Z., Merriman, B., Perlina, A., et al. (2006) Distinct Transcription Profiles of Primary and Secondary Glioblastoma Subgroups. Cancer Research, 66, 159-167. https://doi.org/10.1158/0008-5472.can-05-0077
|
[6]
|
Kabat, G.C., Etgen, A.M. and Rohan, T.E. (2010) Do Steroid Hormones Play a Role in the Etiology of Glioma? Cancer Epidemiology, Biomarkers & Prevention, 19, 2421-2427. https://doi.org/10.1158/1055-9965.epi-10-0658
|
[7]
|
Mahvash, M., Hugo, H., Maslehaty, H., Mehdorn, H.M. and Stark, A.M. (2011) Glioblastoma Multiforme in Children: Report of 13 Cases and Review of the Literature. Pediatric Neurology, 45, 178-180. https://doi.org/10.1016/j.pediatrneurol.2011.05.004
|
[8]
|
Davis, M. (2016) Glioblastoma: Overview of Disease and Treatment. Clinical Journal of Oncology Nursing, 20, S2-S8. https://doi.org/10.1188/16.cjon.s1.2-8
|
[9]
|
Alphandéry, E. (2018) Glioblastoma Treatments: An Account of Recent Industrial Developments. Frontiers in Pharmacology, 9, Article 879. https://doi.org/10.3389/fphar.2018.00879
|
[10]
|
Stark, A.M., van de Bergh, J., Hedderich, J., Mehdorn, H.M. and Nabavi, A. (2012) Glioblastoma: Clinical Characteristics, Prognostic Factors and Survival in 492 Patients. Clinical Neurology and Neurosurgery, 114, 840-845. https://doi.org/10.1016/j.clineuro.2012.01.026
|
[11]
|
Pallud, J., Rigaux-Viode, O., Corns, R., Muto, J., Lopez Lopez, C., Mellerio, C., et al. (2017) Direct Electrical Bipolar Electrostimulation for Functional Cortical and Subcortical Cerebral Mapping in Awake Craniotomy. Practical Considerations. Neurochirurgie, 63, 164-174. https://doi.org/10.1016/j.neuchi.2016.08.009
|
[12]
|
Vecchio, D., Daga, A., Carra, E., Marubbi, D., Raso, A., Mascelli, S., et al. (2014) Pharmacokinetics, Pharmacodynamics and Efficacy on Pediatric Tumors of the Glioma Radiosensitizer KU60019. International Journal of Cancer, 136, 1445-1457. https://doi.org/10.1002/ijc.29121
|
[13]
|
Stupp, R., Mason, W.P. and van den Bent, M.J. (2005) “Radiotherapy Plus Concomitant and Adjuvant Temozolomide for Glioblastoma”. Oncology Times, 27, 15-16. https://doi.org/10.1097/01.cot.0000289242.47980.f9
|
[14]
|
Friedman, H.S., Prados, M.D., Wen, P.Y., Mikkelsen, T., Schiff, D., Abrey, L.E., et al. (2009) Bevacizumab Alone and in Combination with Irinotecan in Recurrent Glioblastoma. Journal of Clinical Oncology, 27, 4733-4740. https://doi.org/10.1200/jco.2008.19.8721
|
[15]
|
Lim, M., Xia, Y., Bettegowda, C. and Weller, M. (2018) Current State of Immunotherapy for Glioblastoma. Nature Reviews Clinical Oncology, 15, 422-442. https://doi.org/10.1038/s41571-018-0003-5
|
[16]
|
Forsyth, P., Roldán, G., George, D., Wallace, C., Palmer, C.A., Morris, D., et al. (2008) A Phase I Trial of Intratumoral Administration of Reovirus in Patients with Histologically Confirmed Recurrent Malignant Gliomas. Molecular Therapy, 16, 627-632. https://doi.org/10.1038/sj.mt.6300403
|
[17]
|
Jiang, H., Gomez-Manzano, C., Aoki, H., Alonso, M.M., Kondo, S., McCormick, F., et al. (2007) Examination of the Therapeutic Potential of Delta-24-RGD in Brain Tumor Stem Cells: Role of Autophagic Cell Death. JNCI: Journal of the National Cancer Institute, 99, 1410-1414. https://doi.org/10.1093/jnci/djm102
|
[18]
|
Martuza, R.L., Malick, A., Markert, J.M., Ruffner, K.L. and Coen, D.M. (1991) Experimental Therapy of Human Glioma by Means of a Genetically Engineered Virus Mutant. Science, 252, 854-856. https://doi.org/10.1126/science.1851332
|
[19]
|
Lawler, S.E., Speranza, M., Cho, C. and Chiocca, E.A. (2017) Oncolytic Viruses in Cancer Treatment: A Review. JAMA Oncology, 3, 841-849. https://doi.org/10.1001/jamaoncol.2016.2064
|
[20]
|
Foreman, P.M., Friedman, G.K., Cassady, K.A. and Markert, J.M. (2017) Oncolytic Virotherapy for the Treatment of Malignant Glioma. Neurotherapeutics, 14, 333-344. https://doi.org/10.1007/s13311-017-0516-0
|
[21]
|
Chiocca, E.A., Abbed, K.M., Tatter, S., Louis, D.N., Hochberg, F.H., Barker, F., et al. (2004) A Phase I Open-Label, Dose-Escalation, Multi-Institutional Trial of Injection with an E1B-Attenuated Adenovirus, ONYX-015, into the Peritumoral Region of Recurrent Malignant Gliomas, in the Adjuvant Setting. Molecular Therapy, 10, 958-966. https://doi.org/10.1016/j.ymthe.2004.07.021
|
[22]
|
Churchill, J.D., Chang, J., Ge, J., Rajagopalan, N., Wootton, S.C., Chang, C., et al. (2015) Blind Study Evaluation Illustrates Utility of the Ion PGM™ System for Use in Human Identity DNA Typing. Croatian Medical Journal, 56, 218-229. https://doi.org/10.3325/cmj.2015.56.218
|
[23]
|
Chen, D.S. and Mellman, I. (2013) Oncology Meets Immunology: The Cancer-Immunity Cycle. Immunity, 39, 1-10. https://doi.org/10.1016/j.immuni.2013.07.012
|
[24]
|
Miller, P.L. and Carson, T.L. (2020) Mechanisms and Microbial Influences on CTLA-4 and PD-1-Based Immunotherapy in the Treatment of Cancer: A Narrative Review. Gut Pathogens, 12, Article No. 43. https://doi.org/10.1186/s13099-020-00381-6
|
[25]
|
Kelly, P.N. (2020) Presurgical Immune Checkpoint Blockade. Science, 367, 522-524.
|
[26]
|
Marin-Acevedo, J.A., Dholaria, B., Soyano, A.E., Knutson, K.L., Chumsri, S. and Lou, Y. (2018) Next Generation of Immune Checkpoint Therapy in Cancer: New Developments and Challenges. Journal of Hematology & Oncology, 11, Article No. 39. https://doi.org/10.1186/s13045-018-0582-8
|
[27]
|
Xue, S., Hu, M., Iyer, V. and Yu, J. (2017) Blocking the PD-1/PD-L1 Pathway in Glioma: A Potential New Treatment Strategy. Journal of Hematology & Oncology, 10, Article No. 81. https://doi.org/10.1186/s13045-017-0455-6
|
[28]
|
Omuro, A., Vlahovic, G., Lim, M., Sahebjam, S., Baehring, J., Cloughesy, T., et al. (2017) Nivolumab with or without Ipilimumab in Patients with Recurrent Glioblastoma: Results from Exploratory Phase I Cohorts of Checkmate 143. Neuro-Oncology, 20, 674-686. https://doi.org/10.1093/neuonc/nox208
|
[29]
|
Roth, P., Valavanis, A. and Weller, M. (2016) Long-Term Control and Partial Remission after Initial Pseudoprogression of Glioblastoma by Anti-PD-1 Treatment with Nivolumab. Neuro-Oncology, 19, now265. https://doi.org/10.1093/neuonc/now265
|
[30]
|
Maxwell, J.A., Johnson, S.P., McLendon, R.E., Lister, D.W., Horne, K.S., Rasheed, A., et al. (2008) Mismatch Repair Deficiency Does Not Mediate Clinical Resistance to Temozolomide in Malignant Glioma. Clinical Cancer Research, 14, 4859-4868. https://doi.org/10.1158/1078-0432.ccr-07-4807
|
[31]
|
Brown, C.E., Alizadeh, D., Starr, R., Weng, L., Wagner, J.R., Naranjo, A., et al. (2016) Regression of Glioblastoma after Chimeric Antigen Receptor T-Cell Therapy. New England Journal of Medicine, 375, 2561-2569. https://doi.org/10.1056/nejmoa1610497
|
[32]
|
Pardoll, D.M. (2012) The Blockade of Immune Checkpoints in Cancer Immunotherapy. Nature Reviews Cancer, 12, 252-264. https://doi.org/10.1038/nrc3239
|
[33]
|
Castro, M.G., Baker, G.J. and Lowenstein, P.R. (2014) Blocking Immunosuppressive Checkpoints for Glioma Therapy: The More the Merrier! Clinical Cancer Research, 20, 5147-5149. https://doi.org/10.1158/1078-0432.ccr-14-0820
|
[34]
|
Guo, C., Yang, Y., Li, Z., Li, Y. and Chen, Y. (2020). Abstract 3368: A Novel anti-CTLA-4 Antibody with Potent Anti-tumor Activity Emerged Using Humanized CTLA-4 Mouse Model. Cancer Research, 80, 3368-3368. https://doi.org/10.1158/1538-7445.am2020-3368
|
[35]
|
Zeng, J., See, A.P., Phallen, J., Jackson, C.M., Belcaid, Z., Ruzevick, J., et al. (2013) Anti-PD-1 Blockade and Stereotactic Radiation Produce Long-Term Survival in Mice with Intracranial Gliomas. International Journal of Radiation Oncology∙Biology∙Physics, 86, 343-349. https://doi.org/10.1016/j.ijrobp.2012.12.025
|
[36]
|
Cruz, L.J., Rueda, F., Cordobilla, B., Simón, L., Hosta, L., Albericio, F., et al. (2010) Targeting Nanosystems to Human Dcs via Fc Receptor as an Effective Strategy to Deliver Antigen for Immunotherapy. Molecular Pharmaceutics, 8, 104-116. https://doi.org/10.1021/mp100178k
|
[37]
|
Hasselbalch, B., Lassen, U., Hansen, S., Holmberg, M., Sørensen, M. and Kosteljanetz, M. (2010) Cetuximab, Bevacizumab, and Irinotecan for Patients with Primary Glioblastoma and Progression after Radiation Therapy and Temozolomide: A Phase II Trial. Neuro-Oncology, 12, 508-516. https://doi.org/10.1093/neuonc/nop063
|
[38]
|
Stockman, J.A. (2013) Gp100 Peptide Vaccine and Interleukin-2 in Patients with Advanced Melanoma. Yearbook of Pediatrics, 2013, 31-33. https://doi.org/10.1016/j.yped.2012.03.042
|
[39]
|
Leigh, N.D., Bian, G., Ding, X., Liu, H., Aygun-Sunar, S., Burdelya, L.G., et al. (2014) A Flagellin-Derived Toll-Like Receptor 5 Agonist Stimulates Cytotoxic Lymphocyte-Mediated Tumor Immunity. PLOS ONE, 9, e85587. https://doi.org/10.1371/journal.pone.0085587
|
[40]
|
Wen, P.Y., Weller, M., Lee, E.Q., Alexander, B.M., Barnholtz-Sloan, J.S., Barthel, F.P., et al. (2020) Glioblastoma in Adults: A Society for Neuro-Oncology (SNO) and European Society of Neuro-Oncology (EANO) Consensus Review on Current Management and Future Directions. Neuro-Oncology, 22, 1073-1113. https://doi.org/10.1093/neuonc/noaa106
|
[41]
|
Hygino da Cruz, L.C., Rodriguez, I., Domingues, R.C., Gasparetto, E.L. and Sorensen, A.G. (2011) Pseudoprogression and Pseudoresponse: Imaging Challenges in the Assessment of Posttreatment Glioma. American Journal of Neuroradiology, 32, 1978-1985. https://doi.org/10.3174/ajnr.a2397
|
[42]
|
Boehnke, N., Straehla, J.P., Safford, H.C., Kocak, M., Rees, M.G., Ronan, M., et al. (2022) Massively Parallel Pooled Screening Reveals Genomic Determinants of Nanoparticle Delivery. Science, 377, eabm5551. https://doi.org/10.1126/science.abm5551
|
[43]
|
Shilo, M., Motiei, M., Hana, P. and Popovtzer, R. (2014) Transport of Nanoparticles through the Blood-Brain Barrier for Imaging and Therapeutic Applications. Nanoscale, 6, 2146-2152. https://doi.org/10.1039/c3nr04878k
|
[44]
|
Muresan, P., McCrorie, P., Smith, F., Vasey, C., Taresco, V., Scurr, D.J., et al. (2023) Development of Nanoparticle Loaded Microneedles for Drug Delivery to a Brain Tumour Resection Site. European Journal of Pharmaceutics and Biopharmaceutics, 182, 53-61. https://doi.org/10.1016/j.ejpb.2022.11.016
|
[45]
|
Teleanu, D.M., Chircov, C., Grumezescu, A.M., Volceanov, A. and Teleanu, R.I. (2018) Blood-Brain Delivery Methods Using Nanotechnology. Pharmaceutics, 10, Article 269. https://doi.org/10.3390/pharmaceutics10040269
|
[46]
|
Zhao, J., Zhang, B., Shen, S., Chen, J., Zhang, Q., Jiang, X., et al. (2015) CREKA Peptide-Conjugated Dendrimer Nanoparticles for Glioblastoma Multiforme Delivery. Journal of Colloid and Interface Science, 450, 396-403. https://doi.org/10.1016/j.jcis.2015.03.019
|
[47]
|
Zhang, J., Chen, C., Li, A., Jing, W., Sun, P., Huang, X., et al. (2021) Immunostimulant Hydrogel for the Inhibition of Malignant Glioma Relapse Post-Resection. Nature Nanotechnology, 16, 538-548. https://doi.org/10.1038/s41565-020-00843-7
|
[48]
|
Chen, C., Jing, W., Chen, Y., Wang, G., Abdalla, M., Gao, L., et al. (2022) Intracavity Generation of Glioma Stem Cell-Specific CAR Macrophages Primes Locoregional Immunity for Postoperative Glioblastoma Therapy. Science Translational Medicine, 14, eabn1128. https://doi.org/10.1126/scitranslmed.abn1128
|
[49]
|
Wang, F., Huang, Q., Su, H., Sun, M., Wang, Z., Chen, Z., et al. (2023) Self-Assembling Paclitaxel-Mediated Stimulation of Tumor-Associated Macrophages for Postoperative Treatment of Glioblastoma. Proceedings of the National Academy of Sciences, 120, e2204621120. https://doi.org/10.1073/pnas.2204621120
|
[50]
|
Kuang, J., Song, W., Yin, J., Zeng, X., Han, S., Zhao, Y., et al. (2018) iRGD Modified Chemo‐Immunotherapeutic Nanoparticles for Enhanced Immunotherapy against Glioblastoma. Advanced Functional Materials, 28, Article ID: 1800025. https://doi.org/10.1002/adfm.201800025
|
[51]
|
Wang, X., Ye, L., He, W., Teng, C., Sun, S., Lu, H., et al. (2022) In situ Targeting Nanoparticles-Hydrogel Hybrid System for Combined Chemo-Immunotherapy of Glioma. Journal of Controlled Release, 345, 786-797. https://doi.org/10.1016/j.jconrel.2022.03.050
|