[1]
|
Tsao, C.W., Aday, A.W., Almarzooq, Z.I., Anderson, C.A.M., Arora, P., Avery, C.L., et al. (2023) Heart Disease and Stroke Statistics—2023 Update: A Report from the American Heart Association. Circulation, 147, e93-e621. https://doi.org/10.1161/CIR.0000000000001123
|
[2]
|
Mensah, G.A., Fuster, V., Murray, C.J.L., Roth, G.A., Mensah, G.A., Abate, Y.H., et al. (2023) Global Burden of Cardiovascular Diseases and Risks, 1990-2022. Journal of the American College of Cardiology, 82, 2350-2473. https://doi.org/10.1016/j.jacc.2023.11.007
|
[3]
|
Von Lewinski, D., Benedikt, M., Tripolt, N., Wallner, M., Sourij, H. and Kolesnik, E. (2021) Can Sodium Glucose Cotransporter 2 (SGLT-2) Inhibitors Be Beneficial in Patients with Acute Myocardial Infarction? Kardiologia Polska, 79, 503-509. https://doi.org/10.33963/kp.15969
|
[4]
|
托波尔, 著. 霍勇, 王伟民, 高炜, 主译. 介入心脏病学[M]//赵良平, 刘海峰. 糖尿病. 第5版. 北京: 北京大学医学出版社, 2010: 25-53.
|
[5]
|
Bahit, M.C., Kochar, A. and Granger, C.B. (2018) Post-Myocardial Infarction Heart Failure. JACC: Heart Failure, 6, 179-186. https://doi.org/10.1016/j.jchf.2017.09.015
|
[6]
|
Abdul-Ghani, M., Del Prato, S., Chilton, R. and DeFronzo, R.A. (2016) SGLT2 Inhibitors and Cardiovascular Risk: Lessons Learned from the EMPA-REG OUTCOME Study. Diabetes Care, 39, 717-725. https://doi.org/10.2337/dc16-0041
|
[7]
|
Chrysant, S.G., (2017) Promising Cardiovascular and Blood Pressure Effects of the SGLT2 Inhibitors: A New Class of Antidiabetic Drugs. Drugs of Today, 53, 191-202. https://doi.org/10.1358/dot.2017.53.3.2555985
|
[8]
|
Dziuba, J., Alperin, P., Racketa, J., Iloeje, U., Goswami, D., Hardy, E., et al. (2014) Modeling Effects of SGLT‐2 Inhibitor Dapagliflozin Treatment versus Standard Diabetes Therapy on Cardiovascular and Microvascular Outcomes. Diabetes, Obesity and Metabolism, 16, 628-635. https://doi.org/10.1111/dom.12261
|
[9]
|
Arnott, C., Li, Q., Kang, A., Neuen, B.L., Bompoint, S., Lam, C.S.P., et al. (2020) Sodium‐Glucose Cotransporter 2 Inhibition for the Prevention of Cardiovascular Events in Patients with Type 2 Diabetes Mellitus: A Systematic Review and Meta‐Analysis. Journal of the American Heart Association, 9, e014908. https://doi.org/10.1161/jaha.119.014908
|
[10]
|
McMurray, J.J.V., Solomon, S.D., Inzucchi, S.E., Køber, L., Kosiborod, M.N., Martinez, F.A., et al. (2019) Dapagliflozin in Patients with Heart Failure and Reduced Ejection Fraction. New England Journal of Medicine, 381, 1995-2008. https://doi.org/10.1056/nejmoa1911303
|
[11]
|
McDonagh, T.A., Metra, M., Adamo, M., Gardner, R.S., Baumbach, A., Böhm, M., et al. (2021) 2021 ESC Guidelines for the Diagnosis and Treatment of Acute and Chronic Heart Failure: Developed by the Task Force for the Diagnosis and Treatment of Acute and Chronic HEART failure of the European Society of Cardiology (ESC) with the Special Contribution of the Heart Failure Association (HFA) of the ESC. European Heart Journal, 42, 3599-3726. https://doi.org/10.1093/eurheartj/ehab368
|
[12]
|
Perkovic, V., Jardine, M.J., Neal, B., Bompoint, S., Heerspink, H.J.L., Charytan, D.M., et al. (2019) Canagliflozin and Renal Outcomes in Type 2 Diabetes and Nephropathy. New England Journal of Medicine, 380, 2295-2306. https://doi.org/10.1056/nejmoa1811744
|
[13]
|
Cannon, C.P., Pratley, R., Dagogo-Jack, S., Mancuso, J., Huyck, S., Masiukiewicz, U., et al. (2020) Cardiovascular Outcomes with Ertugliflozin in Type 2 Diabetes. New England Journal of Medicine, 383, 1425-1435. https://doi.org/10.1056/nejmoa2004967
|
[14]
|
Heerspink, H.J.L., Stefánsson, B.V., Correa-Rotter, R., Chertow, G.M., Greene, T., Hou, F., et al. (2020) Dapagliflozin in Patients with Chronic Kidney Disease. New England Journal of Medicine, 383, 1436-1446. https://doi.org/10.1056/nejmoa2024816
|
[15]
|
Packer, M., Anker, S.D., Butler, J., Filippatos, G., Pocock, S.J., Carson, P., et al. (2020) Cardiovascular and Renal Outcomes with Empagliflozin in Heart Failure. New England Journal of Medicine, 383, 1413-1424. https://doi.org/10.1056/nejmoa2022190
|
[16]
|
Anker, S.D., Butler, J., Filippatos, G., Ferreira, J.P., Bocchi, E., Böhm, M., et al. (2021) Empagliflozin in Heart Failure with a Preserved Ejection Fraction. New England Journal of Medicine, 385, 1451-1461. https://doi.org/10.1056/nejmoa2107038
|
[17]
|
O’Meara, E., McDonald, M., Chan, M., Ducharme, A., Ezekowitz, J.A., Giannetti, N., et al. (2020) CCS/CHFS Heart Failure Guidelines: Clinical Trial Update on Functional Mitral Regurgitation, SGLT2 Inhibitors, ARNI in HFpEF, and Tafamidis in Amyloidosis. Canadian Journal of Cardiology, 36, 159-169. https://doi.org/10.1016/j.cjca.2019.11.036
|
[18]
|
Lipscombe, L., Butalia, S., Dasgupta, K., Eurich, D.T., MacCallum, L., Shah, B.R., et al. (2020) Pharmacologic Glycemic Management of Type 2 Diabetes in Adults: 2020 Update. Canadian Journal of Diabetes, 44, 575-591. https://doi.org/10.1016/j.jcjd.2020.08.001
|
[19]
|
Das, S.R., Everett, B.M., Birtcher, K.K., Brown, J.M., Januzzi, J.L., Kalyani, R.R., et al. (2020) 2020 Expert Consensus Decision Pathway on Novel Therapies for Cardiovascular Risk Reduction in Patients with Type 2 Diabetes: A Report of the American College of Cardiology Solution Set Oversight Committee. Journal of the American College of Cardiology, 76, 1117-1145. https://doi.org/10.1016/j.jacc.2020.05.037
|
[20]
|
Cosentino, F., Grant, P.J., Aboyans, V., Bailey, C.J., Ceriello, A., Delgado, V., et al. (2019) 2019 ESC Guidelines on Diabetes, Pre-Diabetes, and Cardiovascular Diseases Developed in Collaboration with the EASD: The Task Force for Diabetes, Pre-Diabetes, and Cardiovascular Diseases of the European Society of Cardiology (ESC) and the European Association for the Study of Diabetes (EASD). European Heart Journal, 41, 255-323. https://doi.org/10.1093/eurheartj/ehz486
|
[21]
|
Seferović, P.M., Fragasso, G., Petrie, M., Mullens, W., Ferrari, R., Thum, T., et al. (2020) Sodium-Glucose Co‐Transporter 2 Inhibitors in Heart Failure: Beyond Glycaemic Control. A Position Paper of the Heart Failure Association of the European Society of Cardiology. European Journal of Heart Failure, 22, 1495-1503. https://doi.org/10.1002/ejhf.1954
|
[22]
|
Ren, B. and Chen, M. (2022) Effect of Sodium-Glucose Cotransporter-2 Inhibitors on Patients with Essential Hypertension and Pre-Hypertension: A Meta-Analysis. Therapeutic Advances in Endocrinology and Metabolism, 13, 1-15. https://doi.org/10.1177/20420188221142450
|
[23]
|
Kawasoe, S., Maruguchi, Y., Kajiya, S., Uenomachi, H., Miyata, M., Kawasoe, M., et al. (2017) Mechanism of the Blood Pressure-Lowering Effect of Sodium-Glucose Cotransporter 2 Inhibitors in Obese Patients with Type 2 Diabetes. BMC Pharmacology and Toxicology, 18, Article No. 23. https://doi.org/10.1186/s40360-017-0125-x
|
[24]
|
Chilton, R., Tikkanen, I., Cannon, C.P., Crowe, S., Woerle, H.J., Broedl, U.C., et al. (2015) Effects of Empagliflozin on Blood Pressure and Markers of Arterial Stiffness and Vascular Resistance in Patients with Type 2 Diabetes. Diabetes, Obesity and Metabolism, 17, 1180-1193. https://doi.org/10.1111/dom.12572
|
[25]
|
Ikonomidis, I., Pavlidis, G., Thymis, J., Birba, D., Kalogeris, A., Kousathana, F., et al. (2020) Effects of Glucagon‐Like Peptide‐1 Receptor Agonists, Sodium‐Glucose Cotransporter‐2 Inhibitors, and Their Combination on Endothelial Glycocalyx, Arterial Function, and Myocardial Work Index in Patients with Type 2 Diabetes Mellitus after 12‐Month Treatment. Journal of the American Heart Association, 9, e015716. https://doi.org/10.1161/jaha.119.015716
|
[26]
|
Ho, K.L., Zhang, L., Wagg, C., Al Batran, R., Gopal, K., Levasseur, J., et al. (2019) Increased Ketone Body Oxidation Provides Additional Energy for the Failing Heart without Improving Cardiac Efficiency. Cardiovascular Research, 115, 1606-1616. https://doi.org/10.1093/cvr/cvz045
|
[27]
|
Santos-Gallego, C.G., Requena-Ibanez, J.A., San Antonio, R., Ishikawa, K., Watanabe, S., Picatoste, B., et al. (2019) Empagliflozin Ameliorates Adverse Left Ventricular Remodeling in Nondiabetic Heart Failure by Enhancing Myocardial Energetics. Journal of the American College of Cardiology, 73, 1931-1944. https://doi.org/10.1016/j.jacc.2019.01.056
|
[28]
|
Sternlicht, H. and Bakris, G.L. (2019) Blood Pressure Lowering and Sodium-Glucose Co-Transporter 2 Inhibitors (SGLT2is): More than Osmotic Diuresis. Current Hypertension Reports, 21, Article No. 12. https://doi.org/10.1007/s11906-019-0920-4
|
[29]
|
Packer, M. (2018) Response by Packer to Letter Regarding Article, “Activation and Inhibition of Sodium-Hydrogen Exchange Is a Mechanism That Links the Pathophysiology and Treatment of Diabetes Mellitus with That of Heart Failure”. Circulation, 137, 1981-1982. https://doi.org/10.1161/circulationaha.117.033088
|
[30]
|
Rehman, S.U. and Rahman, F. (2020) Evidence-Based Clinical Review on Cardiovascular Benefits of SGLT2 (Sodium-Glucose Co-Transporter Type 2) Inhibitors in Type 2 Diabetes Mellitus. Cureus, 12, e9655. https://doi.org/10.7759/cureus.9655
|
[31]
|
Neal, B., Perkovic, V., Mahaffey, K.W., de Zeeuw, D., Fulcher, G., Erondu, N., et al. (2017) Canagliflozin and Cardiovascular and Renal Events in Type 2 Diabetes. New England Journal of Medicine, 377, 644-657. https://doi.org/10.1056/nejmoa1611925
|
[32]
|
Wiviott, S.D., Raz, I., Bonaca, M.P., Mosenzon, O., Kato, E.T., Cahn, A., et al. (2019) Dapagliflozin and Cardiovascular Outcomes in Type 2 Diabetes. New England Journal of Medicine, 380, 347-357. https://doi.org/10.1056/nejmoa1812389
|
[33]
|
Zinman, B., Wanner, C., Lachin, J.M., Fitchett, D., Bluhmki, E., Hantel, S., et al. (2015) Empagliflozin, Cardiovascular Outcomes, and Mortality in Type 2 Diabetes. New England Journal of Medicine, 373, 2117-2128. https://doi.org/10.1056/nejmoa1504720
|
[34]
|
Verma, S., Mazer, C.D., Yan, A.T., Mason, T., Garg, V., Teoh, H., et al. (2019) Effect of Empagliflozin on Left Ventricular Mass in Patients with Type 2 Diabetes Mellitus and Coronary Artery Disease: The EMPA-HEART CardioLink-6 Randomized Clinical Trial. Circulation, 140, 1693-1702. https://doi.org/10.1161/circulationaha.119.042375
|
[35]
|
Yu, Y., Zhao, X., Wang, Y., Zhou, Q., Huang, Y., Zhai, M., et al. (2021) Effect of Sodium-Glucose Cotransporter 2 Inhibitors on Cardiac Structure and Function in Type 2 Diabetes Mellitus Patients with or without Chronic Heart Failure: A Meta-Analysis. Cardiovascular Diabetology, 20, Article No. 25. https://doi.org/10.1186/s12933-020-01209-y
|
[36]
|
Lee, M.M.Y., Brooksbank, K.J.M., Wetherall, K., Mangion, K., Roditi, G., Campbell, R.T., et al. (2021) Effect of Empagliflozin on Left Ventricular Volumes in Patients with Type 2 Diabetes, or Prediabetes, and Heart Failure with Reduced Ejection Fraction (SUGAR-DM-HF). Circulation, 143, 516-525. https://doi.org/10.1161/circulationaha.120.052186
|