[1]
|
Berry, M.V. (2004) Optical Vortices Evolving from Helicoidal Integer and Fractional Phase Steps. Journal of Optics A: Pure and Applied Optics, 6, 259-268. https://doi.org/10.1088/1464-4258/6/2/018
|
[2]
|
Shen, Y., Wang, X., Xie, Z., Min, C., Fu, X., Liu, Q., et al. (2019) Optical Vortices 30 Years On: OAM Manipulation from Topological Charge to Multiple Singularities. Light: Science & Applications, 8, Article No. 90. https://doi.org/10.1038/s41377-019-0194-2
|
[3]
|
Padgett, M.J. (2017) Orbital Angular Momentum 25 Years on. Optics Express, 25, 11265-11274. https://doi.org/10.1364/oe.25.011265
|
[4]
|
Yao, A.M. and Padgett, M.J. (2011) Orbital Angular Momentum: Origins, Behavior and Applications. Advances in Optics and Photonics, 3, 161-204. https://doi.org/10.1364/aop.3.000161
|
[5]
|
Liang, C., Zheng, C., Lian, X., Chen, Q., Gao, Y., Liu, J., et al. (2024) Evolution of the Phase Singularity of an Orbital Angular Momentum Beam with an Astigmatism Phase. Photonics, 11, Article 149. https://doi.org/10.3390/photonics11020149
|
[6]
|
Zhu, L., Tang, M., Li, H., Tai, Y. and Li, X. (2021) Optical Vortex Lattice: An Exploitation of Orbital Angular Momentum. Nanophotonics, 10, 2487-2496. https://doi.org/10.1515/nanoph-2021-0139
|
[7]
|
Tao, S.H., Yuan, X., Lin, J., Peng, X. and Niu, H.B. (2005) Fractional Optical Vortex Beam Induced Rotation of Particles. Optics Express, 13, 7726-7731. https://doi.org/10.1364/opex.13.007726
|
[8]
|
Qiao, Z., Wan, Z., Xie, G., Wang, J., Qian, L. and Fan, D. (2020) Multi-Vortex Laser Enabling Spatial and Temporal Encoding. PhotoniX, 1, Article 13. https://doi.org/10.1186/s43074-020-00013-x
|
[9]
|
Long, J., Jin, K., Chen, Q., Chang, H., Chang, Q., Ma, Y., et al. (2023) Generating the 1.5 Kw Mode-Tunable Fractional Vortex Beam by a Coherent Beam Combining System. Optics Letters, 48, 5021-5024. https://doi.org/10.1364/ol.502321
|
[10]
|
Gangwar, S., Jaiswal, V.K., Mehrotra, R., Saha, S. and Sharma, P. (2024) Propagation of Perfect Vortex Beam Beyond the Focal Depth. Applied Physics Letters, 124, Article ID: 154101. https://doi.org/10.1063/5.0186430
|
[11]
|
Chen, Y., Shen, W., Li, Z., Hu, C., Yan, Z., Jiao, Z., et al. (2020) Underwater Transmission of High-Dimensional Twisted Photons over 55 Meters. PhotoniX, 1, Article No. 5. https://doi.org/10.1186/s43074-020-0002-5
|
[12]
|
Xu, Z., Gui, C., Li, S., Zhou, J. and Wang, J. (2014) Fractional Orbital Angular Momentum (OAM) Free-Space Optical Communications with Atmospheric Turbulence Assisted by MIMO Equalization. Advanced Photonics for Communications, San Diego, 13-17 July 2014. https://doi.org/10.1364/iprsn.2014.jt3a.1
|
[13]
|
Zhu, G., Bai, Z., Chen, J., Huang, C., Wu, L., Fu, C., et al. (2021) Ultra-Dense Perfect Optical Orbital Angular Momentum Multiplexed Holography. Optics Express, 29, 28452-28460. https://doi.org/10.1364/oe.430882
|
[14]
|
Li, X., Chu, J., Smithwick, Q. and Chu, D. (2016) Automultiscopic Displays Based on Orbital Angular Momentum of Light. Journal of Optics, 18, Article ID: 085608. https://doi.org/10.1088/2040-8978/18/8/085608
|
[15]
|
Qiu, X., Li, F., Zhang, W., Zhu, Z. and Chen, L. (2018) Spiral Phase Contrast Imaging in Nonlinear Optics: Seeing Phase Objects Using Invisible Illumination. Optica, 5, 208-212. https://doi.org/10.1364/optica.5.000208
|
[16]
|
Situ, G., Pedrini, G. and Osten, W. (2009) Spiral Phase Filtering and Orientation-Selective Edge Detection/Enhancement. Journal of the Optical Society of America A, 26, 1788-1797. https://doi.org/10.1364/josaa.26.001788
|
[17]
|
Sharma, M.K., Joseph, J. and Senthilkumaran, P. (2014) Fractional Vortex Dipole Phase Filter. Applied Physics B, 117, 325-332. https://doi.org/10.1007/s00340-014-5839-5
|
[18]
|
JJ Nivas, J., Allahyari, E., Cardano, F., Rubano, A., Fittipaldi, R., Vecchione, A., et al. (2019) Vector Vortex Beams Generated by Q-Plates as a Versatile Route to Direct Fs Laser Surface Structuring. Applied Surface Science, 471, 1028-1033. https://doi.org/10.1016/j.apsusc.2018.12.091
|
[19]
|
Du, G., Yu, F., Lu, Y., Kai, L., Yang, Q., Hou, X., et al. (2023) Ultrafast Thermalization Dynamics in Au/Ni Film Excited by Femtosecond Laser Double-Pulse Vortex Beam. International Journal of Thermal Sciences, 187, Article ID: 108208. https://doi.org/10.1016/j.ijthermalsci.2023.108208
|
[20]
|
Dasgupta, R., Ahlawat, S., Verma, R.S. and Gupta, P.K. (2011) Optical Orientation and Rotation of Trapped Red Blood Cells with Laguerre-Gaussian Mode. Optics Express, 19, 7680-7688. https://doi.org/10.1364/oe.19.007680
|
[21]
|
Cao, M., Yin, Y., Zhou, J., Tang, J., Cao, L., Xia, Y., et al. (2021) Machine Learning Based Accurate Recognition of Fractional Optical Vortex Modes in Atmospheric Environment. Applied Physics Letters, 119, Article ID: 141103. https://doi.org/10.1063/5.0061365
|
[22]
|
Zhou, J., Yin, Y., Tang, J., Ling, C., Cao, M., Cao, L., et al. (2022) Recognition of High-Resolution Optical Vortex Modes with Deep Residual Learning. Physical Review A, 106, Article ID: 013519. https://doi.org/10.1103/physreva.106.013519
|
[23]
|
Liu, Z., Yan, S., Liu, H. and Chen, X. (2019) Superhigh-Resolution Recognition of Optical Vortex Modes Assisted by a Deep-Learning Method. Physical Review Letters, 123, Article ID: 183902. https://doi.org/10.1103/physrevlett.123.183902
|
[24]
|
Lv, H., Guo, Y., Yang, Z., Ding, C., Cai, W., You, C., et al. (2022) Identification of Diffracted Vortex Beams at Different Propagation Distances Using Deep Learning. Frontiers in Physics, 10, Article 843932. https://doi.org/10.3389/fphy.2022.843932
|
[25]
|
Kotlyar, V.V., Kovalev, A.A., Nalimov, A.G. and Porfirev, A.P. (2020) Evolution of an Optical Vortex with an Initial Fractional Topological Charge. Physical Review A, 102, Article ID: 023516. https://doi.org/10.1103/physreva.102.023516
|
[26]
|
Rodenburg, B., Lavery, M.P.J., Malik, M., O’Sullivan, M.N., Mirhosseini, M., Robertson, D.J., et al. (2012) Influence of Atmospheric Turbulence on States of Light Carrying Orbital Angular Momentum. Optics Letters, 37, 3735-3737. https://doi.org/10.1364/ol.37.003735
|
[27]
|
Yi, X., Liu, Z. and Yue, P. (2013) Optical Scintillations and Fade Statistics for FSO Communications through Moderate-To-Strong Non-Kolmogorov Turbulence. Optics & Laser Technology, 47, 199-207. https://doi.org/10.1016/j.optlastec.2012.08.008
|
[28]
|
Jason, S.D. 光波传输数值仿真[M]. 北京: 国防工业出版社, 2018.
|
[29]
|
He, K., Zhang, X., Ren, S. and Sun, J. (2016) Deep Residual Learning for Image Recognition. 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, 27-30 June 2016, 770-778. https://doi.org/10.1109/cvpr.2016.90
|