基于深度学习的分数阶涡旋光拓扑荷和传输距离的双重识别
Dual Identification of Fractional Optical Vortices Topological Charge and Transmission Distance Based on Deep Learning
摘要: 分数阶涡旋光与整数阶涡旋光相比具有更加灵活和复杂的轨道角动量等物理特性,在多领域有着非常广泛的应用。近年来,有相关报道在实验中有效同时识别了整数阶涡旋光的拓扑荷和传输距离,为涡旋光的识别提供了新的方向。相比之下,分数阶涡旋光的双重识别研究相对较少,并且随着湍流的加强,相邻整数阶涡旋光在识别中易发生混叠。为针对这一问题,本文在基于大气湍流和高斯白噪声的条件下,提出了一种使用深度学习的方法来识别分数阶涡旋光的拓扑荷和传输距离的方案。本文使用残差卷积神经网络,并使用改进的非Kolmogorov大气湍流模型,在仿真对比中,不同强度大气湍流和高斯白噪声的条件下对距离间隔为100米的分数阶涡旋光光强分布图像进行识别,识别准确率比整数阶涡旋光高5%以上,在距离间隔为100米、50米的不同大气湍流强度和高斯白噪声条件下都得到了比较高的识别精度。
Abstract: Fractional optical vortices, compared to integral optical vortices, possess more flexible and complex physical properties, such as orbital angular momentum, leading to widespread applications across various fields. In recent years, experimental studies have successfully achieved the simultaneous identification of the topological charge and transmission distance of integral optical vortices, providing new directions for optical vortex recognition. In contrast, research on the dual identification of fractional optical vortices remains relatively limited. Moreover, as turbulence intensifies, adjacent integral optical vortices are prone to entanglement during recognition. To address this issue, this paper proposes a deep learning-based method for identifying the topological charge and transmission distance of fractional optical vortices under conditions of atmospheric turbulence and Gaussian white noise. A residual convolutional neural network was employed, along with an improved non-Kolmogorov atmospheric turbulence model. In simulation comparisons, the intensity distribution images of fractional optical vortices at a transmission distance of 100 meters were identified under varying strengths of atmospheric turbulence and Gaussian white noise, achieving an identification accuracy over 5% higher than that of integral optical vortices. Furthermore, high recognition accuracy was achieved under different atmospheric turbulence strengths and Gaussian white noise conditions at transmission distances of 100 meters and 50 meters.
文章引用:谢超, 吴凡, 戈峰, 刘清越, 王冠. 基于深度学习的分数阶涡旋光拓扑荷和传输距离的双重识别[J]. 建模与仿真, 2025, 14(2): 88-96. https://doi.org/10.12677/mos.2025.142134

1. 引言

涡旋光束是指一种携带螺旋相位的光束,它是由波前沿光轴方向的螺旋旋转形成的,可以用相位因子 exp( ilθ ) 来描述[1],其中 l θ 分别代表拓扑荷和方位角。与传统的平面波和球面波相比,涡旋光束由于中心相位奇异性而具有明显的螺旋相位前和环形强度结构的特征[2]-[4]。近年来,涡旋光束独特的物理学特性在科学界引起了广泛的关注,并衍生出光镊[5]-[7]、光通信[8]-[13]、光学成像[14]-[17]、激光加工[18] [19]、医疗[20]等领域的应用。

相比于整数阶涡旋光,分数阶涡旋光具有更加复杂的轨道角动量调制维数等独特的物理特性。分数阶涡旋光相对于整数阶涡旋光最大的区别在于分数阶涡旋光在光强分布上有一个缺口,并且不同拓扑荷的分数阶涡旋光光强分布的缺口大小不同。2004年,Berry [1]从理论的角度给出了分数阶相位步长的涡旋光束的结构,并提出分数阶涡旋光束可以用一系列的整数阶涡旋光束的叠加来表示。近年来,随着人工智能深度学习的快速发展,用深度学习来检测识别涡旋光的技术也越来越成熟[21] [22],2019年上海交通大学Liu等人[23]利用深度学习的方法来辅助超高分辨率识别光学涡旋模式,相邻拓扑荷之间的最小识别间隔减小到0.01。另一方面,随着涡旋光束在大气中传输距离的增加,菲涅尔区内涡旋光束中心孔径的大小也会随之增加,并且受到大气湍流的影响也会增加,光强也会越来越模糊。因此,可以应用这两个性质来检测涡旋光束的传输距离,进而达到光学测距的目的。2022年,Lv等人[24]利用一个增强的深度学习神经网络来识别不同的整数阶涡旋光拓扑荷和传播距离,训练的深度学习神经网络可以有效地识别整数阶涡旋光束的拓扑荷和传播距离,准确率达到97%。

随着拓扑荷的增加,涡旋光中心光圈直径会随之增加,然而,涡旋光中心光圈直径也会随着传输距离的增加而增加,加之受到大气湍流和噪声的影响,相邻整数阶涡旋光的识别极易发生混叠。针对上述问题,本文提出了一种使用分数阶涡旋光来代替整数阶涡旋光对不同拓扑荷和传输距离进行双重识别的方法,与整数阶涡旋光相比,分数阶涡旋光光强分布的径向缺口特征更容易被识别,本文使用改进的非Kolmogorov大气湍流模型,并且使用分步传输法来模拟分数阶涡旋光在大气中的传输过程。仿真结果表明,在信噪比SNR = 10 dB、传输间隔为100米时,两种不同大气折射率结构常数下的识别准确率分数阶比整数阶都高出5%以上。随后,在传输间隔为100米、50米的分数阶涡旋光光强分布图像的识别中都得到了比较高的识别准确率。

2. 高斯涡旋光束模拟

高斯涡旋光束可以在高斯光束上加载螺旋波前相位得到,高斯涡旋光束在源平面(z = 0)处的振幅可表示为[25]

E( z=0 )= e imθ r 2 / ω 2 (1)

此外,分数阶涡旋光可以由无穷多个整数阶涡旋光的叠加来描述,其中分数阶高斯涡旋光束在源平面(z = 0)处的振幅可表示为[25]

E( z=0 )= e iπl sinπl π m= e imθ r 2 / ω 2 lm (2)

其中:l表示分数阶拓扑荷数,m为整数阶涡旋光拓扑荷, θ r为极坐标轴, ω 为束腰。在本文中设置ω = 0.0254 m,分辨率N = 256。

3. 大气湍流模型

大气湍流是大气的一种运动形式,它的存在使大气中的动量、热量、水气和污染物的垂直和水平交换作用明显增强。大气湍流的存在同时对光波、声波和电磁波在大气中的传播产生一定的干扰作用。涡旋光在大气中传播时,随机分布的大气湍流会使涡旋光发生畸变,使光束发生变形,破坏涡旋光束光波的结构[26]。受大气湍流的影响,大大增加了涡旋光识别的难度。

在仿真实验中,通常采用分步传输法来模拟大气湍流,本文采用了一种改进的非Kolmogorov大气湍流模型[27],大气湍流相位屏可表示为:

Φ φ ( k )=2 π 2 k 2 Δz C n 2 ( k/ 2π ) α Γ( α1 ) cos( απ/2 )/ ( 4 π 2 ) ×[ 1+ a 1 ( k/ k 1 ) b 1 ( k/ k 1 ) β ] e ( k/ k 1 ) 2 [ 1 e ( k/ k 0 ) 2 ] (3)

式中, C n 2 是大气折射率结构常数,用来表示大气湍流强度的大小, Δz 是湍流相位屏的间隔,k是频谱参数, α= 22/6 β=7/6 k 0 = 2π/ L 0 L 0 为内标度, a 1 =1.802 b 1 =0.254

k 1 = { πΓ( α1 ) cos( απ/2 )/ ( 4 π 2 ) [ Γ( ( 3α )/2 ) ( 3α )/3 + a 1 Γ( ( 4α )/2 ) ( 4α )/3 b 1 Γ( ( 3α+β )/2 ) ( 3α+β )/3 ] } 1/( α5 ) / 10

然后,通过分步传播法[28]来模拟光束在大气湍流介质中的传播,在等间距的湍流相位屏间隔下通过N个相位屏,得到输出的分数阶涡旋光振幅 E( r i+1 ) ,其中[28]

E( r i+1 )=D[ Δ z i 2 , r i , r i+1 ]T[ z i , z i+1 ]D[ Δ z i 2 , r i , r i+1 ]E( r i ) (4)

式中, T[ z i , z i+1 ] 是表示相位累计的操作符, r ˜ i+1 是第 i 个和第 i+1 个平面中间平面的坐标,操作符表示为[28]

T[ Δ z i ,Δ z i+1 ]= e [ iφ( r i+1 ) ] (5)

最后,通过Matlab仿真软件仿真就可以得到分数阶涡旋光束通过大气湍流和高斯白噪声后的光强分布图像。

4. ResNet50网络模型及仿真框架

卷积神经网络(CNN)被广泛的应用在图像处理的领域。2015年,He等人[29]提出了Resnet的网络架构,创新性的提出了残差模块,使得CNN在图像处理领域取得了重大的突破,有效的解决了梯度消失和网络退化的问题,大大增加了图像特征的提取能力。在仿真实验中,本文使用了残差神经网络Resnet50模型。

本文的仿真实验框架如图1所示,首先,将从源平面发出的加载了螺旋相位波前的涡旋光光场振幅传入分步传输模型中( Δz 是湍流相位屏的间隔,即传输距离间隔),得到经过大气湍流传输后的涡旋光光强分布图,然后,将涡旋光光强分布图作为输入传入Resnet50网络模型,图像先经过由1个7 × 7的卷积核和1个3 × 3的最大池化层(max pool)组成的conv1的模块组,再经过4个残差模块组(conv2_x、conv3_x、conv4_x和conv5_x),4个残差模块组分别由3、4、6和3个残差模块组成,其中每个残差模块又由2个卷积层(convolution layer)和一个跨层连接,再经过全局平均池化层(average pool)对每个特征图求平均值得到 的特征向量,最后,经过全连接层(FC)由softmax函数进行分类。

本文使用了一台带有Nvidia 3090 24GB GPU和Intel Xeon(R) Gold 5318Y CPU 2.1GHz的计算机。使用Adaptive Moment Estimation (Adam)优化器来训练Resnet50模型,设置初始学习率Learning Rate (LR)为1 × 105,并使用阶梯学习率调度器Step Learning Rate Scheduler(StepLR)来对学习率进行调节,设置每6个epoch学习率以0.1的比例进行衰减,从而更好地使模型收敛到最优解。在仿真得到的数据集中,每个分类标签有500张图像,其中训练集、验证集、测试集的比例为3:1:1。

Figure 1. Simulation experiment framework diagram

1. 仿真实验框架图

5. 仿真结果与分析

Figure 2. The intensity distribution of integral optical vortices and fractional optical vortices in comparison with different topological charges and transmission distances. (a) integral optical vortices, (b) fractional optical vortices

2. 整数阶涡旋光和分数阶涡旋光在不同拓扑荷和传输距离的光强分布对比。(a)为整数阶,(b)为分数阶

Figure 3. The identification accuracy of integral optical vortices and fractional optical vortices at SNR = 10 dB in two different atmospheric turbulence intensities and with different topological charges and transmission distances

3. SNR = 10 dB时整数阶涡旋光和分数阶涡旋光在两种大气湍流强度下,不同拓扑荷和传输距离的识别准确率对比

首先,本文做了两组整数阶涡旋光和分数阶涡旋光在不同拓扑荷和不同传输距离下的对比,整数阶选择了拓扑荷m = 4、5、6、7的四个不同拓扑荷,分数阶涡旋光我们选择了l = 4.1、5.5、6.5、7.7的四个不同拓扑荷。传输距离选择z = 600 m到1500 m,间隔为100 m的10种不同的距离,这样,整数阶和分数阶涡旋光都得到40种不同的分类,共40000张图片。图2中(a)和(b)分别展示了不同阶拓扑荷和传输距离的整数阶和分数阶涡旋光的光强分布。为了说明对比结果的有效性,每组都做了5次实验,最后取5组实验数据的平均值。在 C n 2 =1× e 16 m 2/3 ,信噪比SNR = 10 dB的条件下,整数阶的准确率为91.84%,分数阶的准确率为97%,分数阶比整数阶的识别准确率平均高5.16%。在 C n 2 =2× e 16 m 2/3 ,SNR = 10 dB的条件下,整数阶的准确率为81.62%,分数阶的准确率为91.36%,分数阶比整数阶的识别准确率平均高9.74%。图3展示了在 C n 2 =1× e 16 m 2/3 C n 2 =2× e 16 m 2/3 ,SNR = 10 dB下的识别准确率对比结果。对于测试集,模型训练完成后对测试集做了混淆矩阵,但由于分类较多,混淆矩阵较大,所以本文截取了混淆矩阵的一部分来对比整数阶和分数阶两种不同方案的差别。图4中(a)和(b)分别展示了在 C n 2 =2× e 16 m 2/3 ,SNR = 10 dB下的整数阶和分数阶的部分混淆矩阵,可以看出,整数阶涡旋光在相邻拓扑荷和传输距离组合之间会发生很严重的混淆,但引入分数阶涡旋光后,这种混淆得到了很好的抑制。对于使用CNN对图像进行识别而言,图像中可供网络模型识别的特征越多,那么CNN的识别准确率也就越高。相比与整数阶涡旋光,分数阶涡旋光在光强分布上有一个缺口,这个缺口会随拓扑荷的变化而变化,这是分数阶涡旋光比整数阶涡旋光多出的明显特征,这也是在本文的对比中,分数阶涡旋光双重识别的准确率比整数阶涡旋光高的原因。

Figure 4. Partial confusion matrices of the comparison results. (a) integral optical vortices (b) fractional optical vortices

4. 对比结果的部分混淆矩阵,(a)为整数阶,(b)为分数阶

接下来,加大实验难度,在拓扑荷间隔为0.1 (从l = 5.1到l = 6.0),传输距离间隔为100米(从z = 600 m到z = 1500 m),这样不同拓扑荷和传输距离相组合就得到了100种不同的分类。图5展示了在大气折射率结构常数 C n 2 =1× e 16 m 2/3 时,分数阶涡旋光传输距离z = 600 m, 800 m, 1000 m和1200 m的光强分布。每一个数据集共有50000张图片,为了对比不同条件下的准确率,我们在 C n 2 =1× e 16 m 2/3 C n 2 =2× e 16 m 2/3 C n 2 =3× e 16 m 2/3 ,SNR = 30 dB、SNR = 20 dB、SNR = 10 dB组合下做了9个数据集共450000张图片。经过Resnet50模型的训练,在 C n 2 =1× e 16 m 2/3 下,SNR = 30 dB时的准确率为99.1%,SNR = 20 dB的准确率为98.5%,SNR = 10 dB 时的准确率为95.1%,在 C n 2 =2× e 16 m 2/3 下,SNR=30 dB时的准确率为96.7%,SNR = 20 dB的准确率为95.2%,SNR = 10 dB 时的准确率为85.8%,在 C n 2 =3× e 16 m 2/3 下,SNR = 30 dB时的准确率为93.1%,SNR = 20 dB时的准确率为90.8%,SNR = 10 dB 时的准确率为77.1%。表1直观的显示了9组数据集的完整训练结果。

Figure 5. Fractional optical vortices intensity profiles for different topological charges and transmission distances

5. 不同拓扑荷和传输距离时的分数阶涡旋光光强分布图

Table 1. The training results of the 9 datasets

1. 9组数据集的训练结果

大气折射率结构常数

信噪比

准确率

C n 2 =1× e 16 m 2/3

30 dB

99.1%

C n 2 =1× e 16 m 2/3

20 dB

98.5%

C n 2 =1× e 16 m 2/3

10 dB

95.1%

C n 2 =2× e 16 m 2/3

30 dB

96.7%

C n 2 =2× e 16 m 2/3

20 dB

95.2%

C n 2 =2× e 16 m 2/3

10 dB

85.8%

C n 2 =3× e 16 m 2/3

30 dB

93.1%

C n 2 =3× e 16 m 2/3

20 dB

90.8%

C n 2 =3× e 16 m 2/3

10 dB

77.1%

最后,本文尝试了识别传输间隔为50米(从z = 600 m到z = 1500 m)的准确率,拓扑荷间隔依然为0.1(从l = 5.1到l = 6.0),共190组分类。我们做了 C n 2 =1× 10 16 m 2/3 ,SNR = 30 dB、20 dB、10 dB的3组数据集,共285000张图片,经过Resnet50的识别后得到的准确率分别为99.1%、98.3%和90.8%。

6. 结束语

受大气湍流和噪声的影响,对整数阶涡旋光的识别在不同阶拓扑荷和不同的传输距离之间易发生混叠,针对这一问题,本文提出了使用分数阶涡旋光代替整数阶涡旋光在大气湍流和高斯白噪声条件下的拓扑荷和传输距离的识别。首先验证了使用分数阶涡旋光比使用整数阶涡旋光的识别准确率要高,本文的对比实验中,在信噪比为SNR = 10 dB, 大气折射率结构常数为 C n 2 =1× 10 16 m 2/3 C n 2 =2× 10 16 m 2/3 的条件下,分数阶识别准确率比整数阶识别准确率分别高5.16%、9.74%。随后的实验加大了难度,选择了拓扑荷间隔为0.1(从l = 5.1到l = 6.0),传输距离间隔为100米(从z = 600 m到z = 1500 m)的100分类识别,在不同大气折射率结构常数和不同信噪比的条件下都得到了比较高的识别准确率。最后的50米间隔,190分类的识别中,也得到了90%以上的识别准确率。本文的仿真结果表明,使用分数阶涡旋光来进行拓扑荷和传输距离的双重识别可以有效的抑制整数阶涡旋光在拓扑荷和传输距离双重识别时所发生的混叠,有效的提升识别准确率,并且在不同大气湍流强度和噪声的环境条件下,分数阶涡旋光在双重识别时都有着较高的准确率,本文的研究成果可以为分数阶涡旋光识别的领域提供一定的参考。

参考文献

[1] Berry, M.V. (2004) Optical Vortices Evolving from Helicoidal Integer and Fractional Phase Steps. Journal of Optics A: Pure and Applied Optics, 6, 259-268.
https://doi.org/10.1088/1464-4258/6/2/018
[2] Shen, Y., Wang, X., Xie, Z., Min, C., Fu, X., Liu, Q., et al. (2019) Optical Vortices 30 Years On: OAM Manipulation from Topological Charge to Multiple Singularities. Light: Science & Applications, 8, Article No. 90.
https://doi.org/10.1038/s41377-019-0194-2
[3] Padgett, M.J. (2017) Orbital Angular Momentum 25 Years on. Optics Express, 25, 11265-11274.
https://doi.org/10.1364/oe.25.011265
[4] Yao, A.M. and Padgett, M.J. (2011) Orbital Angular Momentum: Origins, Behavior and Applications. Advances in Optics and Photonics, 3, 161-204.
https://doi.org/10.1364/aop.3.000161
[5] Liang, C., Zheng, C., Lian, X., Chen, Q., Gao, Y., Liu, J., et al. (2024) Evolution of the Phase Singularity of an Orbital Angular Momentum Beam with an Astigmatism Phase. Photonics, 11, Article 149.
https://doi.org/10.3390/photonics11020149
[6] Zhu, L., Tang, M., Li, H., Tai, Y. and Li, X. (2021) Optical Vortex Lattice: An Exploitation of Orbital Angular Momentum. Nanophotonics, 10, 2487-2496.
https://doi.org/10.1515/nanoph-2021-0139
[7] Tao, S.H., Yuan, X., Lin, J., Peng, X. and Niu, H.B. (2005) Fractional Optical Vortex Beam Induced Rotation of Particles. Optics Express, 13, 7726-7731.
https://doi.org/10.1364/opex.13.007726
[8] Qiao, Z., Wan, Z., Xie, G., Wang, J., Qian, L. and Fan, D. (2020) Multi-Vortex Laser Enabling Spatial and Temporal Encoding. PhotoniX, 1, Article 13.
https://doi.org/10.1186/s43074-020-00013-x
[9] Long, J., Jin, K., Chen, Q., Chang, H., Chang, Q., Ma, Y., et al. (2023) Generating the 1.5 Kw Mode-Tunable Fractional Vortex Beam by a Coherent Beam Combining System. Optics Letters, 48, 5021-5024.
https://doi.org/10.1364/ol.502321
[10] Gangwar, S., Jaiswal, V.K., Mehrotra, R., Saha, S. and Sharma, P. (2024) Propagation of Perfect Vortex Beam Beyond the Focal Depth. Applied Physics Letters, 124, Article ID: 154101.
https://doi.org/10.1063/5.0186430
[11] Chen, Y., Shen, W., Li, Z., Hu, C., Yan, Z., Jiao, Z., et al. (2020) Underwater Transmission of High-Dimensional Twisted Photons over 55 Meters. PhotoniX, 1, Article No. 5.
https://doi.org/10.1186/s43074-020-0002-5
[12] Xu, Z., Gui, C., Li, S., Zhou, J. and Wang, J. (2014) Fractional Orbital Angular Momentum (OAM) Free-Space Optical Communications with Atmospheric Turbulence Assisted by MIMO Equalization. Advanced Photonics for Communications, San Diego, 13-17 July 2014.
https://doi.org/10.1364/iprsn.2014.jt3a.1
[13] Zhu, G., Bai, Z., Chen, J., Huang, C., Wu, L., Fu, C., et al. (2021) Ultra-Dense Perfect Optical Orbital Angular Momentum Multiplexed Holography. Optics Express, 29, 28452-28460.
https://doi.org/10.1364/oe.430882
[14] Li, X., Chu, J., Smithwick, Q. and Chu, D. (2016) Automultiscopic Displays Based on Orbital Angular Momentum of Light. Journal of Optics, 18, Article ID: 085608.
https://doi.org/10.1088/2040-8978/18/8/085608
[15] Qiu, X., Li, F., Zhang, W., Zhu, Z. and Chen, L. (2018) Spiral Phase Contrast Imaging in Nonlinear Optics: Seeing Phase Objects Using Invisible Illumination. Optica, 5, 208-212.
https://doi.org/10.1364/optica.5.000208
[16] Situ, G., Pedrini, G. and Osten, W. (2009) Spiral Phase Filtering and Orientation-Selective Edge Detection/Enhancement. Journal of the Optical Society of America A, 26, 1788-1797.
https://doi.org/10.1364/josaa.26.001788
[17] Sharma, M.K., Joseph, J. and Senthilkumaran, P. (2014) Fractional Vortex Dipole Phase Filter. Applied Physics B, 117, 325-332.
https://doi.org/10.1007/s00340-014-5839-5
[18] JJ Nivas, J., Allahyari, E., Cardano, F., Rubano, A., Fittipaldi, R., Vecchione, A., et al. (2019) Vector Vortex Beams Generated by Q-Plates as a Versatile Route to Direct Fs Laser Surface Structuring. Applied Surface Science, 471, 1028-1033.
https://doi.org/10.1016/j.apsusc.2018.12.091
[19] Du, G., Yu, F., Lu, Y., Kai, L., Yang, Q., Hou, X., et al. (2023) Ultrafast Thermalization Dynamics in Au/Ni Film Excited by Femtosecond Laser Double-Pulse Vortex Beam. International Journal of Thermal Sciences, 187, Article ID: 108208.
https://doi.org/10.1016/j.ijthermalsci.2023.108208
[20] Dasgupta, R., Ahlawat, S., Verma, R.S. and Gupta, P.K. (2011) Optical Orientation and Rotation of Trapped Red Blood Cells with Laguerre-Gaussian Mode. Optics Express, 19, 7680-7688.
https://doi.org/10.1364/oe.19.007680
[21] Cao, M., Yin, Y., Zhou, J., Tang, J., Cao, L., Xia, Y., et al. (2021) Machine Learning Based Accurate Recognition of Fractional Optical Vortex Modes in Atmospheric Environment. Applied Physics Letters, 119, Article ID: 141103.
https://doi.org/10.1063/5.0061365
[22] Zhou, J., Yin, Y., Tang, J., Ling, C., Cao, M., Cao, L., et al. (2022) Recognition of High-Resolution Optical Vortex Modes with Deep Residual Learning. Physical Review A, 106, Article ID: 013519.
https://doi.org/10.1103/physreva.106.013519
[23] Liu, Z., Yan, S., Liu, H. and Chen, X. (2019) Superhigh-Resolution Recognition of Optical Vortex Modes Assisted by a Deep-Learning Method. Physical Review Letters, 123, Article ID: 183902.
https://doi.org/10.1103/physrevlett.123.183902
[24] Lv, H., Guo, Y., Yang, Z., Ding, C., Cai, W., You, C., et al. (2022) Identification of Diffracted Vortex Beams at Different Propagation Distances Using Deep Learning. Frontiers in Physics, 10, Article 843932.
https://doi.org/10.3389/fphy.2022.843932
[25] Kotlyar, V.V., Kovalev, A.A., Nalimov, A.G. and Porfirev, A.P. (2020) Evolution of an Optical Vortex with an Initial Fractional Topological Charge. Physical Review A, 102, Article ID: 023516.
https://doi.org/10.1103/physreva.102.023516
[26] Rodenburg, B., Lavery, M.P.J., Malik, M., O’Sullivan, M.N., Mirhosseini, M., Robertson, D.J., et al. (2012) Influence of Atmospheric Turbulence on States of Light Carrying Orbital Angular Momentum. Optics Letters, 37, 3735-3737.
https://doi.org/10.1364/ol.37.003735
[27] Yi, X., Liu, Z. and Yue, P. (2013) Optical Scintillations and Fade Statistics for FSO Communications through Moderate-To-Strong Non-Kolmogorov Turbulence. Optics & Laser Technology, 47, 199-207.
https://doi.org/10.1016/j.optlastec.2012.08.008
[28] Jason, S.D. 光波传输数值仿真[M]. 北京: 国防工业出版社, 2018.
[29] He, K., Zhang, X., Ren, S. and Sun, J. (2016) Deep Residual Learning for Image Recognition. 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, 27-30 June 2016, 770-778.
https://doi.org/10.1109/cvpr.2016.90