神经递质与多囊卵巢综合征的研究进展
Research Progress on Neurotransmitters and Polycystic Ovary Syndrome
DOI: 10.12677/jcpm.2025.41077, PDF, HTML, XML,    科研立项经费支持
作者: 李欣萌, 李泊琳, 刘嘉玲:黑龙江中医药大学研究生院,黑龙江 哈尔滨;李 妍*:黑龙江中医药大学附属第一医院中医转化医学研究中心,黑龙江 哈尔滨
关键词: 多囊卵巢综合征神经递质神经内分泌Polycystic Ovary Syndrome (PCOS) Neurotransmitter Neuroendocrine
摘要: 多囊卵巢综合征(Polycystic Ovary Syndrome, PCOS)是妇产科最常见的内分泌疾病之一。患有PCOS的女性往往伴有代谢综合征、2型糖尿病、心血管疾病和子宫内膜癌等疾病。对PCOS发病机制以及新的治疗方法的探寻工作仍在进行中。本综述提示了神经递质在PCOS发病机制中的重要地位,并总结了其在PCOS疾病诊断与治疗中的作用。
Abstract: Polycystic Ovary Syndrome (PCOS) is among the most prevalent endocrine disorders in women’s health. Individuals with PCOS frequently exhibit comorbidities including metabolic syndrome, type 2 diabetes mellitus, cardiovascular disease, and an increased risk of endometrial cancer. Research into the etiology and innovative therapeutic approaches for PCOS remains ongoing. This review elucidates the significant role of neurotransmitters in the pathophysiology of PCOS and provides a comprehensive summary of their implications in the diagnosis and management of this condition.
文章引用:李欣萌, 李泊琳, 刘嘉玲, 李妍. 神经递质与多囊卵巢综合征的研究进展[J]. 临床个性化医学, 2025, 4(1): 527-535. https://doi.org/10.12677/jcpm.2025.41077

1. 引言

多囊卵巢综合征(Polycystic Ovary Syndrome, PCOS)是一种常见的内分泌疾病,高发于育龄期女性,患病率约为10% [1]。其发病原因目前尚未明确。遗传、环境和生活方式等都可能影响PCOS的发生。PCOS的诊断是排除性诊断,根据2003年鹿特丹标准,患者表现出以下三个特征中的两个即可确诊:1) 排卵功能障碍,如少排卵或无排卵;2) 临床和/或生化高雄激素血症;3) 多囊卵巢形态[2]。PCOS患者还可能存在胰岛素抵抗(IR)、肥胖、多毛症和痤疮等临床表现[3],也更容易患2型糖尿病、子宫内膜癌、潜在的心血管疾病、情绪障碍和抑郁症。此外,由于卵泡发育异常,PCOS患者容易出现无排卵性不孕症和卵母细胞或胚胎质量差。个体的遗传和环境因素也与PCOS的发生密切相关[4]-[6]。从而导致患者出现多胎妊娠、流产、子痫前期和妊娠高血压、妊娠糖尿病等[7]

神经递质是神经内分泌系统中重要一环,在对PCOS的发病及病情发展的调控上参与重要进程。

2. 使用须知

2.1. GnRH频率

20世纪即有研究记录了搏动性GnRH分泌在控制人类下丘脑–垂体–卵巢(HPO)轴功能中的重要作用[8]。在女性体内,HPO轴起点下丘脑产生的促性腺激素释放激素(GnRH)参与垂体分泌黄体生成素(LH)和促卵泡激素(FSH)的过程。在生理状态下,GnRH以脉冲形式释放,受孕激素的反馈抑制作用影响,在黄体期时的脉冲频率达到最低[9]。研究表明,PCOS女性在整个排卵周期中都维持高GnRH脉冲频率[10],其主要原因是脉冲产生周期中对孕酮和雌激素反馈抑制的敏感性降低[9]。高GnRH脉动频率促进LH分泌,LH水平升高还会刺激卵巢卵泡膜细胞中雄激素合成,导致高雄激素血症[11],高雄激素血症也可能加快GnRH脉冲频率。PCOS相关的无排卵的女性中,小窦卵泡对LH水平升高表现出过早反应,导致这些卵泡实现早期终末分化[12],从而使卵巢出现多囊形态。

一些研究将PCOS的两个常见特征:对孕酮负反馈的敏感性降低与雄激素水平升高联系起来,作为对PCOS成因的一种推断[13]

2.2. 神经元网络

Kisspeptin是理解GnRH神经元网络以及KNDy神经元在调节GnRH脉冲分泌中发挥的关键[14]

KNDy神经元位于下丘脑漏斗核(IFN)。参与表达kisspeptin、神经激肽B (NKB)和强啡肽[15]。Kisspeptin通过G蛋白偶联受体54 (GPR54)直接作用于GnRH神经元,促进GnRH分泌。IFN中的大多数kisspeptin细胞共同表达强啡肽和NKB,它们以自分泌的方式调节kisspeptin的分泌[16]。强啡肽通过K阿片受体(KOR)作用于KNDy和GnRH神经元。在GnRH脉冲开始后不久,强啡肽在KNDy网络中释放,以抑制kisspeptin,并持续整个脉冲。强啡肽直接释放到分泌GnRH的神经元上,则用于终止相关脉冲[17]

2.3. KNDY,GNRH神经元节律调节

GnRH在生殖轴中起关键作用,有研究表明,KNDy神经元可通过信号通路转导影响GnRH的分泌[15]。雌激素不直接影响GnRH神经元[18],而是通过抑制信号调节因子kisspeptin和NKB的释放来降低GnRH和LH水平。孕酮会增加强啡肽的产生,提示孕酮的负反馈通过强啡肽信号传导传递[9]。也有研究指出KNDy神经元在介导雄激素对促性腺激素分泌的负反馈中也起关键作用[19]。各类关于机体内、外部信号(如生理和心理压力、营养和其他神经递质等)对KNDy神经元协调作用的研究仍在不断进行。

3. PCOS相关的神经递质

PCOS的发病与潜在神经递质特征的结构和功能关系密切。如前所述,GnRH的搏动性分泌受损和HPO轴失调通常被视作PCOS在病理生理学方面的关键特征,这表明相关神经递质活性强,在疾病进程中起重要作用。γ-氨基丁酸(GABA)、谷氨酸、血清素、多巴胺和乙酰胆碱等神经递质以及阿片类药物都可能会干扰GnRH的分泌。

GABA是中枢神经系统(CNS)中主要的抑制性神经递质。GABA对GnRH的兴奋作用是PCOS发病机制中的影响因素。Silva等人证明,HPO轴起点下丘脑,其弓状核支配的GABA神经元能刺激GnRH的分泌,并促使LH分泌[20]。在类似的研究中也发现,与闭经性排卵女性相比,PCOS女性脑脊液中GABA水平升高[21]。此外,GnRH神经元GABA能神经的支配也是使GnRH和LH搏动分泌中孕酮负反馈敏感性降低,从而影响HPO轴功能的原因[22]。谷氨酸是CNS中主要的兴奋性神经递质,其作用与PCOS发病机制的相关性目前尚未明确。Kawwass等人调查了27名PCOS患者,发现与非PCOS相比,PCOS患者脑脊液中的谷氨酸水平相似[20]。动物模型研究表明,PCOS大鼠的谷氨酸水平与N-甲基-D-天冬氨酸(NDMA)受体表达都升高[23]

阿片类药物系统由β-内啡肽、脑啡肽和强啡肽-3家族肽组成,其作用机制可分为中央系统和外周系统。内啡肽负责镇痛、调节压力反应和情绪,以及生殖神经内分泌功能。脑啡肽在刺激胰岛素释放、碳水化合物代谢、调节肥胖的发病机制和生殖周期中的卵泡成熟中发挥作用。胰岛素分泌增加会干扰HPO轴功能,这是由于PCOS女性胰岛素系统干扰LH分泌,且高胰岛素水平可使肾上腺生成过多的脱氢表雄酮和硫酸脱氢表雄酮从而使体内雄激素浓度升高,进一步加重内分泌紊乱。强啡肽也作用于中枢和外周的各种阿片受体,与焦虑、抑郁等常伴随PCOS发生的精神疾病相关。β-内啡肽是一种肽激素,可作为阿片受体激动剂,广泛存在于中枢神经系统中,也可见于胰岛中,能刺激胰岛素和胰高血糖素的释放,使血清葡萄糖水平升高[24]。一项对阿片类拮抗剂纳曲酮和纳洛酮治疗PCOS的研究发现,这种疗法显著降低了患高胰岛素血症的PCOS患者对葡萄糖耐量试验(OGTT)的胰岛素反应[25]。纳曲酮不仅可以改善痤疮、多毛和闭经等PCOS患者常见临床体征,还可以降低血清雄激素和胰岛素水平,同时恢复耐药患者对克罗米芬柠檬酸盐的敏感性[26]

自主神经系统主要由交感神经系统和副交感神经系统组成。乙酰胆碱和去甲肾上腺素是主要的自主神经递质,哺乳动物的卵巢功能受到自主神经的控制,它们影响卵巢类固醇的分泌和卵泡发育。PCOS患者往往表现出自主神经系统功能障碍,其特征是交感神经系统活动增加和迷走神经活动减少[27]。一项对PCOS大鼠单侧或双侧迷走神经切断的研究表明,该手术可以恢复75%患鼠双侧卵巢的自发排卵[28]。在同一作者的类似研究中,给予PCOS大鼠700毫克阿托品竞争性拮抗毒蕈碱乙酰胆碱受体,超过70%的大鼠可观察到自发排卵[29]。目前关于单胺类神经递质(如血清素、去甲肾上腺素和多巴胺)在PCOS发展中作用的研究。一项最近的动物实验发现,PCOS小鼠组织中所有单胺类神经递质均显著减少[30]

4. 神经递质对PCOS的生理及精神影响

神经递质对PCOS的影响十分复杂,涉及内分泌、生殖功能、心血管健康以及精神健康等多个方面。可从以下几个角度探讨。

4.1. 神经递质与内分泌调节

PCOS女性在整个排卵周期中会出现持续的快速GnRH脉冲。PCOS中血清kisspeptin水平升高,这一观察结果与kisspeptin系统过度活跃导致下丘脑–垂体–卵巢轴过度活跃的假设相吻合,会导致月经紊乱、高雄激素血症和高雄激素血症。NKB调节异常也可能导致PCOS进展。NKB拮抗剂用于治疗PCOS时可以降低LH浓度和总睾酮浓度。GnRH分泌不仅受kisspeptin和NKB的调节,还受其他神经激素的调节,如GABA、谷氨酸、血清素、多巴胺和乙酰胆碱等神经递质以及阿片类药物,它们都可能干扰GnRH的分泌,从而影响PCOS患者病情进展[11]

4.2. 神经递质与生殖功能

生殖功能由下丘脑、垂体和卵巢之间的相互作用共同调节。胆碱能系统参与排卵调节是由于迷走神经是乙酰胆碱到达卵巢的途径之一,而该途径参与排卵的调节[31]。一项对照研究表明,卵母细胞质量与血清β-内啡肽和卵泡液β-内啡肽呈正相关。β-内啡肽对预测妊娠和活产具有较高的敏感性和特异性。PCOS患者β-内啡肽区别于正常的女性,因而可将其用作体外受精–胚胎移植术(IVF-ET)后临床妊娠和活产的良好预测指标。卵母细胞质量与血β-内啡肽和卵泡液β-内啡肽呈正相关。β-内啡肽对预测妊娠和活产具有较高的敏感性和特异性。PCOS患者β-内啡肽区别于正常的女性,因而可用作IVF-ET后临床妊娠和活产的预测指标[32]

4.3. 神经递质与心血管健康

PCOS与冠状动脉疾病的发生率增加和程度加重有关,但具体机制尚不明确。神经递质可能通过影响心血管系统的功能和结构,间接与PCOS关联。一项动物实验显示,与对照组相比,PCOS组的去甲肾上腺素水平与循环CD14CD16单核细胞计数显著相关,这可能表明神经递质在PCOS心血管并发症中的作用。同时,该研究也提示PCOS可能通过增强脾脏髓系造血来促进心肌巨噬细胞积累和心肌梗死后的心脏重塑。这暗示了神经递质可能通过影响免疫细胞的功能和分布,从而间接影响PCOS患者的心血管健康[33]

4.4. 神经递质与精神健康

神经递质失调可能影响精神健康,PCOS也与各种精神疾病(如抑郁症、焦虑症等)的患病率增加有关。目前有几种关于PCOS与心理健康之间联系的理论。一些人认为,PCOS患者过度活跃的下丘脑–垂体–卵巢轴和下丘脑–垂体–肾上腺轴可能会改变激素分泌情况导致精神疾病的发展。也有其他研究推测精神疾病的发生可能源于神经递质和神经元信号的异常。最近,关于肠脑轴的研究提示,益生菌和微量营养素补充剂等饮食因素可能有助于调节PCOS患者体内的神经递质水平,显著改善其精神症状[34]

5. 基于神经递质失调的PCOS治疗

神经递质对PCOS的影响十分复杂,涉及内分泌、生殖功能、心血管健康以及精神健康等多个方面。可从以下几个角度探讨。

5.1. 中医疗法

中药方剂疗法是传统医学中应用最为广泛的治疗手段之一,在PCOS的治疗中十分常见。近年来,许多研究证实,中药方剂治疗PCOS确有疗效,其可能的机制是通过调节神经内分泌中的神经递质分泌实现的。中医理论认为,PCOS病机主要以肾虚、脾虚与肝郁为本,又兼痰浊、瘀血等病理产物阻滞胞宫。补肾解郁调冲方是治疗PCOS的经验效方,针对PCOS患者病机特点,以补肾解郁疏肝为基本治法,重视调理冲任气血,健运脾胃功能。潘雪等发现,补肾解郁调冲方具有促进生殖内分泌环境内环境平衡和恢复卵泡发育和排卵的治疗潜力,可能通过抑制PERK-ATF4-CHOP信号通路,导致GRP78表达下调,进一步延迟内质网应激(ERS)介导的卵巢颗粒细胞凋亡。还可以通过调节脑单胺类神经递质改善大鼠模型的行为表现,减轻慢性应激状态,改善PCOS的生殖功能。这些发现为中医药治疗与心理应激相关的多囊卵巢综合征提供了新的视角[35]。莫婷婷等还提出,补肾解郁调冲方能够改善PCOS合并抑郁症大鼠的卵巢/海马功能,其作用机制可能与SIRT1/P53信号通路调节卵巢及海马细胞凋亡相关[36] [37]。交泰丸常用于治疗心肾不交型失眠,可以改善抑郁症,也有研究表明,交泰丸联合二甲双胍与单用二甲双胍治疗伴焦虑抑郁的PCOS患者相比,其改善甘油三酯和LH/FSH的效果更加明显,且能改善患者的焦虑、抑郁评分和睡眠质量,其机制可能与调节神经递质GABA和5-羟色胺的分泌有关[38]

针刺也是中医临床常用疗法。近年研究结果提示,电针可作为补充替代疗法用于PCOS的临床治疗。电针治疗能通过调节下丘脑中的kisspeptin系统改善PCOS的症状,对卵巢kisspeptin表达也有影响[39]。电针改善PCOS大鼠的生殖特征可能是通过雄激素活性衰减调节kisspeptin-GnRH/LH回路来实现的。因此,结果为针灸作为PCOS的辅助药物治疗提供了实验依据[40]

5.2. 西医疗法

西医疗法是治疗PCOS的最常用的方法。常通过以下形式对PCOS患者产生影响。

5.2.1. 改善代谢

PCOS通常与卵巢过度刺激综合征(OHSS)的重要危险因素有关。多巴胺受体2 (D2)激动剂,如卡麦角林(Cb2)常用于降低OHSS风险。Cb2的使用影响多巴胺突触、血管内皮生长因子的信号传导、细胞凋亡和卵巢类固醇生成。经Cb2治疗后,PCOS和非PCOS患者的颗粒黄体细胞都发生了相似的功能改变,其中,PCOS患者颗粒黄体细胞的变化更为显著[41]。一项伊拉克进行的研究也表明,卡麦角林和二甲双胍联合用药,可协同降低BMI,睾酮和LH水平,同时增加FSH水平(P < 0.05),也改善了PCOS女性的子宫内膜血流和排卵[42]

5.2.2. 抗氧化疗法

卡维地洛和克罗米芬柠檬酸盐的组合有抗焦虑潜力且可以改善PCOS大鼠的认知功能。这可能通过卡维地洛和克罗米芬柠檬酸盐调节胆碱能系统和Nrf2通路的同时,下调NFκB信号通路实现[43]。最近的研究表明,慢性炎症和神经递质紊乱参与了PCOS的进展。曲克芦丁是一种天然类黄酮,能抑制炎症和增强神经营养因子,具有神经保护作用。经曲克芦丁治疗后,PCOS大鼠血清GnRH降低、促性腺激素和睾酮水平升高;弓状核中kisspeptin和NKB及其受体kiss1r和NK3r在中位隆起的GnRH阳性神经元中的表达显著降低。GnRH抑制调节因子GABA和刺激调节因子谷氨酸也被恢复到了正常水平[44]。咖啡因可以改变激素分泌,刺激排卵并提高生育能力。PCOS小鼠经咖啡因处理后,超氧化物歧化酶和谷胱甘肽过氧化物酶有显著活性(P < 0.05),白介素和肿瘤坏死因子的表达增加。该研究也提示咖啡因可以减少PCOS卵巢的细胞凋亡和炎症[45]

5.2.3. 药物减重

IR与激素异常在PCOS发病机制中相互促进,形成恶性循环。PCOS患者的IR是由分子水平的缺陷引起的,肥胖会增强胰岛素受体相关信号通路受损及其特征:内脏脂肪过多和慢性炎症。虽然生活方式干预在预防和管理PCOS患者超重方面有重要作用,但减肥药物在减重和维持体重减轻方面越来越受认可。胰高血糖素样肽-1受体激动剂(GLP1-RAs)不仅可以减轻体重,还可以影响IR机制,如增加胰岛素依赖组织中葡萄糖转运蛋白的表达、减少炎症、减少氧化应激和调节脂质代谢。它们还倾向于通过增加下丘脑–垂体抑制中的LH或降低伴随高胰岛素血症的过高LH水平来提高生育力[46]

5.2.4. 调节交感神经

PCOS女性交感神经活动高于健康女性。可乐定广泛用作α-2突触前肾上腺素能受体激动剂,以调节交感神经系统的输出。一项包含体内/体外给药的实验结果表明,可乐定的最佳剂量可以提高PCOS女性的卵母细胞成熟度和妊娠率。卵丘细胞培养的结果也证实了这一发现[47]

5.2.5. 改善精神健康

PCOS患者常伴有抑郁症的发生,其发病率可达普通女性的四倍。阿米替林(Ami)是一种治疗PCOS患者抑郁症的常用抗抑郁药,它能抑制5-羟色胺和去甲肾上腺素的再摄取,对5-羟色胺再摄取的抑制更强,镇静和抗胆碱作用也较强。一项对照研究提示:与PCOS组相比,PCOS + Ami组的黄体体积减少,血清FSH水平降低,过氧化氢酶(CAT)水平升高。然而,Ami给药无法充分改善PCOS引起的卵巢组织形态变化与生化变化[48]

6. 总结

PCOS是发生于育龄期女性的一种多因素疾病,其发病机制目前尚未明确。神经内分泌的最新进展促进了我们对于PCOS发展机制的理解。关于神经递质对PCOS患者神经内分泌影响的研究正在逐年增加,这有助于解释PCOS的发生机制,从而指导PCOS的临床治疗。

基金项目

黑龙江省中医药管理局,耳穴压籽治疗多囊卵巢综合征患者的血清代谢组学研究(编号:ZHY2020-130)。

NOTES

*通讯作者。

参考文献

[1] Choudhari, R., Tayade, S., Tiwari, A. and Satone, P. (2024) Diagnosis, Management, and Associated Comorbidities of Polycystic Ovary Syndrome: A Narrative Review. Cureus, 16, e58733.
https://doi.org/10.7759/cureus.58733
[2] Ikram, M.A., Kieboom, B.C.T., Brouwer, W.P., Brusselle, G., Chaker, L., Ghanbari, M., et al. (2024) The Rotterdam Study. Design Update and Major Findings between 2020 and 2024. European Journal of Epidemiology, 39, 183-206.
https://doi.org/10.1007/s10654-023-01094-1
[3] Zhao, H., Zhang, J., Cheng, X., Nie, X. and He, B. (2023) Insulin Resistance in Polycystic Ovary Syndrome across Various Tissues: An Updated Review of Pathogenesis, Evaluation, and Treatment. Journal of Ovarian Research, 16, Article No. 9.
https://doi.org/10.1186/s13048-022-01091-0
[4] Stener-Victorin, E. and Deng, Q. (2021) Epigenetic Inheritance of Polycystic Ovary Syndrome—Challenges and Opportunities for Treatment. Nature Reviews Endocrinology, 17, 521-533.
https://doi.org/10.1038/s41574-021-00517-x
[5] Kirtana, A. and Seetharaman, B. (2022) Comprehending the Role of Endocrine Disruptors in Inducing Epigenetic Toxicity. Endocrine, Metabolic & Immune DisordersDrug Targets, 22, 1059-1072.
https://doi.org/10.2174/1871530322666220411082656
[6] Dai, M., Hong, L., Yin, T. and Liu, S. (2024) Disturbed Follicular Microenvironment in Polycystic Ovary Syndrome: Relationship to Oocyte Quality and Infertility. Endocrinology, 165, bqae023.
https://doi.org/10.1210/endocr/bqae023
[7] Matsuyama, S., Whiteside, S. and Li, S. (2024) Implantation and Decidualization in PCOS: Unraveling the Complexities of Pregnancy. International Journal of Molecular Sciences, 25, Article No. 1203.
https://doi.org/10.3390/ijms25021203
[8] Knobil, E. (1980) The Neuroendocrine Control of the Menstrual Cycle. In: Proceedings of the 1979 Laurentian Hormone Conference, Elsevier, 53-88.
https://doi.org/10.1016/b978-0-12-571136-4.50008-5
[9] Garg, A., Patel, B., Abbara, A. and Dhillo, W.S. (2022) Treatments Targeting Neuroendocrine Dysfunction in Polycystic Ovary Syndrome (PCOS). Clinical Endocrinology, 97, 156-164.
https://doi.org/10.1111/cen.14704
[10] Blank, S.K., McCartney, C.R., Chhabra, S., Helm, K.D., Eagleson, C.A., Chang, R.J., et al. (2009) Modulation of Gonadotropin-Releasing Hormone Pulse Generator Sensitivity to Progesterone Inhibition in Hyperandrogenic Adolescent Girls—Implications for Regulation of Pubertal Maturation. The Journal of Clinical Endocrinology & Metabolism, 94, 2360-2366.
https://doi.org/10.1210/jc.2008-2606
[11] Szeliga, A., Rudnicka, E., Maciejewska-Jeske, M., Kucharski, M., Kostrzak, A., Hajbos, M., et al. (2022) Neuroendocrine Determinants of Polycystic Ovary Syndrome. International Journal of Environmental Research and Public Health, 19, Article No. 3089.
https://doi.org/10.3390/ijerph19053089
[12] Teede, H.J., Tay, C.T., Laven, J.J.E., et al. (2023) Recommendations from the 2023 International Evidence-Based Guideline for the Assessment and Management of Polycystic Ovary Syndrome. European Journal of Endocrinology, 189, G43-G64.
[13] Fiorentino, G., Cimadomo, D., Innocenti, F., Soscia, D., Vaiarelli, A., Ubaldi, F.M., et al. (2022) Biomechanical Forces and Signals Operating in the Ovary during Folliculogenesis and Their Dysregulation: Implications for Fertility. Human Reproduction Update, 29, 1-23.
https://doi.org/10.1093/humupd/dmac031
[14] Nagae, M., Uenoyama, Y., Okamoto, S., Tsuchida, H., Ikegami, K., Goto, T., et al. (2021) Direct Evidence That KNDy Neurons Maintain Gonadotropin Pulses and Folliculogenesis as the Gnrh Pulse Generator. Proceedings of the National Academy of Sciences, 118, e2009156118.
https://doi.org/10.1073/pnas.2009156118
[15] Goodman, R.L., Herbison, A.E., Lehman, M.N. and Navarro, V.M. (2022) Neuroendocrine Control of Gonadotropin‐releasing Hormone: Pulsatile and Surge Modes of Secretion. Journal of Neuroendocrinology, 34, e13094.
https://doi.org/10.1111/jne.13094
[16] de Croft, S., Boehm, U. and Herbison, A.E. (2013) Neurokinin B Activates Arcuate Kisspeptin Neurons through Multiple Tachykinin Receptors in the Male Mouse. Endocrinology, 154, 2750-2760.
https://doi.org/10.1210/en.2013-1231
[17] Xie, Q., Kang, Y., Zhang, C., Xie, Y., Wang, C., Liu, J., et al. (2022) The Role of Kisspeptin in the Control of the Hypothalamic-Pituitary-Gonadal Axis and Reproduction. Frontiers in Endocrinology (Lausanne), 13, Article ID: 925206.
https://doi.org/10.3389/fendo.2022.925206
[18] Terasawa, E. (2018) Neuroestradiol in Regulation of Gnrh Release. Hormones and Behavior, 104, 138-145.
https://doi.org/10.1016/j.yhbeh.2018.04.003
[19] Singh, S., Pal, N., Shubham, S., Sarma, D.K., Verma, V., Marotta, F., et al. (2023) Polycystic Ovary Syndrome: Etiology, Current Management, and Future Therapeutics. Journal of Clinical Medicine, 12, Article No. 1454.
https://doi.org/10.3390/jcm12041454
[20] Kawwass, J.F., Sanders, K.M., Loucks, T.L., Rohan, L.C. and Berga, S.L. (2017) Increased Cerebrospinal Fluid Levels of GABA, Testosterone and Estradiol in Women with Polycystic Ovary Syndrome. Human Reproduction, 32, 1450-1456.
https://doi.org/10.1093/humrep/dex086
[21] Ruddenklau, A. and Campbell, R.E. (2019) Neuroendocrine Impairments of Polycystic Ovary Syndrome. Endocrinology, 160, 2230-2242.
https://doi.org/10.1210/en.2019-00428
[22] Chaudhari, N., Dawalbhakta, M. and Nampoothiri, L. (2018) GnRH Dysregulation in Polycystic Ovarian Syndrome (PCOS) Is a Manifestation of an Altered Neurotransmitter Profile. Reproductive Biology and Endocrinology, 16, Article No. 37.
https://doi.org/10.1186/s12958-018-0354-x
[23] Akintoye, O.O., Owoyele, B.V., Fabunmi, O.A., Raimi, T.H., Oniyide, A.A., Akintoye, A.O., et al. (2020) Diabetic Neuropathy Is Associated with Increased Pain Perception, Low Serum Beta-Endorphin and Increase Insulin Resistance among Nigerian Cohorts in Ekiti State. Heliyon, 6, e04377.
https://doi.org/10.1016/j.heliyon.2020.e04377
[24] Choubey, A., Girdhar, K., Kar, A.K., Kushwaha, S., Yadav, M.K., Ghosh, D., et al. (2020) Low-Dose Naltrexone Rescues Inflammation and Insulin Resistance Associated with Hyperinsulinemia. Journal of Biological Chemistry, 295, 16359-16369.
https://doi.org/10.1074/jbc.ra120.013484
[25] Kiałka, M., Milewicz, T., Spałkowska, M., Krzyczkowska-Sendrakowska, M., Wasyl, B., Pełka, A., et al. (2016) Β-endorphins Plasma Level Is Higher in Lean Polycystic Ovary Syndrome (PCOS) Women. Experimental and Clinical Endocrinology & Diabetes, 124, 55-60.
https://doi.org/10.1055/s-0035-1564094
[26] Ahmed, M.I., Duleba, A.J., El Shahat, O., Ibrahim, M.E. and Salem, A. (2008) Naltrexone Treatment in Clomiphene Resistant Women with Polycystic Ovary Syndrome. Human Reproduction, 23, 2564-2569.
https://doi.org/10.1093/humrep/den273
[27] Yu, Y., Chen, T., Zheng, Z., Jia, F., Liao, Y., Ren, Y., et al. (2024) The Role of the Autonomic Nervous System in Polycystic Ovary Syndrome. Frontiers in Endocrinology, 14, Article ID: 1295061.
https://doi.org/10.3389/fendo.2023.1295061
[28] Linares, R., Hernández, D., Morán, C., Chavira, R., Cárdenas, M., Domínguez, R., et al. (2013) Unilateral or Bilateral Vagotomy Induces Ovulation in Both Ovaries of Rats with Polycystic Ovarian Syndrome. Reproductive Biology and Endocrinology, 11, Article No. 68.
https://doi.org/10.1186/1477-7827-11-68
[29] Linares, R., Acuña, X.N., Rosas, G., Vieyra, E., Ramírez, D.A., Chaparro, A., et al. (2021) Participation of the Cholinergic System in the Development of Polycystic Ovary Syndrome. Molecules, 26, Article No. 5506.
https://doi.org/10.3390/molecules26185506
[30] Saad, M.A., Rastanawi, A.A., El-Sahar, A.E. and A. Z. El-Bahy, A. (2025) Ascorbic Acid Mitigates Behavioural Disturbances Associated with Letrozole-Induced PCOS via Switching-Off JAK2/STAT5 and JAK2/ERK1/2 Pathways in Rat Hippocampus. Steroids, 213, Article ID: 109528.
https://doi.org/10.1016/j.steroids.2024.109528
[31] Vieyra-Valdez, E., Linares-Culebro, R., Rosas-Gavilán, G., Ramírez-Hernández, D., Domínguez-Casalá, R. and Morales-Ledesma, L. (2020) Roles of the Cholinergic System and Vagal Innervation in the Regulation of GnRH Secretion and Ovulation: Experimental Evidence. Brain Research Bulletin, 165, 129-138.
https://doi.org/10.1016/j.brainresbull.2020.09.009
[32] Zhang, C., Liu, S., Liu, G., He, Y., Wang, Y. and Wang, F. (2020) β-Edorphin Predict Pregnancy Outcome of PCOS and DOR Women after IVF-ET. Archives of Gynecology and Obstetrics, 303, 1207-1216.
https://doi.org/10.1007/s00404-020-05899-3
[33] Gao, L., Zhao, Y., Wu, H., Lin, X., Guo, F., Li, J., et al. (2023) Polycystic Ovary Syndrome Fuels Cardiovascular Inflammation and Aggravates Ischemic Cardiac Injury. Circulation, 148, 1958-1973.
https://doi.org/10.1161/circulationaha.123.065827
[34] Sarkisian, K.I., Ho, L., Yang, J., Mandelbaum, R. and Stanczyk, F.Z. (2023) Neuroendocrine, Neurotransmitter, and Gut Microbiota Imbalance Contributing to Potential Psychiatric Disorder Prevalence in Polycystic Ovarian Syndrome. F&S Reports, 4, 337-342.
https://doi.org/10.1016/j.xfre.2023.08.009
[35] Pan, X., Liu, Y., Liu, L., Pang, B., Sun, Z., Guan, S., et al. (2022) Bushen Jieyu Tiaochong Formula Reduces Apoptosis of Granulosa Cells via the PERK-ATF4-CHOP Signaling Pathway in a Rat Model of Polycystic Ovary Syndrome with Chronic Stress. Journal of Ethnopharmacology, 292, Article ID: 114923.
https://doi.org/10.1016/j.jep.2021.114923
[36] 孔鑫靓, 唐国栋, 郑志博, 等. 基于SIRT1/P53通路探讨补肾解郁调冲方改善PCOS合并慢性心理应激大鼠卵巢/海马功能的作用机制[J]. 中华中医药杂志, 2023, 38(5): 1949-1954.
[37] 莫婷婷, 刘雁峰, 潘雪, 等. 补肾解郁调冲方对多囊卵巢综合征大鼠生殖、代谢和慢性应激的干预作用[J]. 环球中医药, 2024, 17(11): 2193-2203.
[38] 彭宏偲, 王宏展, 王志, 等. 交泰丸治疗多囊卵巢综合征伴焦虑抑郁临床研究[J]. 中西医结合研究, 2024, 16(1): 6-10.
[39] Wang, Z., Yang, L., Dong, H., Dong, H., Cheng, L., Yi, P., et al. (2021) Effect of Electroacupuncture on the Kisspeptin System in a Pubertal Rat Model of Polycystic Ovary Syndrome. Acupuncture in Medicine, 39, 491-500.
https://doi.org/10.1177/0964528420971299
[40] Xu, G., Zhao, X., Li, Z., Hu, J., Li, X., Li, J., et al. (2023) Effects of Electroacupuncture on the Kisspeptin-Gonadotropin-Releasing Hormone (gnrh)/luteinizing Hormone (LH) Neural Circuit Abnormalities and Androgen Receptor Expression of Kisspeptin/Neurokinin B/Dynorphin Neurons in PCOS Rats. Journal of Ovarian Research, 16, Article No. 15.
https://doi.org/10.1186/s13048-022-01078-x
[41] Ferrero, H., Díaz-Gimeno, P., Sebastián-León, P., Faus, A., Gómez, R. and Pellicer, A. (2018) Dysregulated Genes and Their Functional Pathways in Luteinized Granulosa Cells from PCOS Patients after Cabergoline Treatment. Reproduction, 155, 373-381.
https://doi.org/10.1530/rep-18-0027
[42] Fawzi, H.A., Hamad, I.N., Kadhim, S.A.A., AL-Temimi, S.M., Mohammad, B. and Swadi, A. (2023) Effects of Combined Metformin and Cabergoline versus Metformin Alone on Ovarian and Hormonal Activities in Iraqi Patients with PCOS and Hyperprolactinemia: A Randomized Clinical Trial. Journal of Medicine and Life, 16, 1615-1621.
https://doi.org/10.25122/jml-2023-0317
[43] Akintoye, O.O., Ajibare, A.J., Oriyomi, I.A., Olofinbiyi, B.A., Yusuf, G.O., Afuye, D.C., et al. (2023) Synergistic Action of Carvedilol and Clomiphene in Mitigating the Behavioral Phenotypes of Letrozole-Model of PCOS Rats by Modulating the NRF2/NFKB Pathway. Life Sciences, 324, Article ID: 121737.
https://doi.org/10.1016/j.lfs.2023.121737
[44] Gao, Z., Ma, X., Liu, J., et al. (2020) Troxerutin Protects against DHT-Induced Polycystic Ovary Syndrome in Rats. Journal of Ovarian Research, 13, 133.
[45] Raoofi, A., Rezaie, M.J., Delbari, A., Ghoreishi, S.A., Sichani, P.H., Maleki, S., et al. (2022) Therapeutic Potentials of the Caffeine in Polycystic Ovary Syndrome in a Rat Model: Via Modulation of Proinflammatory Cytokines and Antioxidant Activity. Allergologia et Immunopathologia, 50, 137-146.
https://doi.org/10.15586/aei.v50i6.715
[46] Bednarz, K., Kowalczyk, K., Cwynar, M., Czapla, D., Czarkowski, W., Kmita, D., et al. (2022) The Role of Glp-1 Receptor Agonists in Insulin Resistance with Concomitant Obesity Treatment in Polycystic Ovary Syndrome. International Journal of Molecular Sciences, 23, Article No. 4334.
https://doi.org/10.3390/ijms23084334
[47] Zangeneh, F.Z., Muhammadnejad, S., Naghizadeh, M.M., Jafarabadi, M., Sarmast Shoushtari, M. and Masoumi, M. (2021) The First Report of Clonidine in Vivo/in Vitro Effects on Infertile Women with Polycystic Ovary Syndrome (in Vivo/in Vitro Study). Journal of Obstetrics and Gynaecology, 42, 1331-1339.
https://doi.org/10.1080/01443615.2021.1963221
[48] Alkan, I. and Kaplan, S. (2023) An Investigation of the Potential Effects of Amitriptyline on Polycystic Ovary Syndrome Induced by Estradiol Valerate. Histochemistry and Cell Biology, 160, 27-37.
https://doi.org/10.1007/s00418-023-02188-3