神经母细胞瘤循环肿瘤细胞检测及临床应用进展
Detection of Circulating Tumor Cells in Neuroblastoma and Its Clinical Application Progress
DOI: 10.12677/acm.2025.152404, PDF, HTML, XML,   
作者: 周哲蝶, 袁秀丽*:深圳市儿童医院血液肿瘤科,广东 深圳;曹年华, 刘宗彬:深圳瑞格生物科技有限公司,广东 深圳
关键词: 神经母细胞瘤循环肿瘤细胞肿瘤标志物液体活检Neuroblastoma Circulating Tumor Cells Tumor Markers Liquid Biopsy
摘要: 神经母细胞瘤是儿童最常见的颅外实体瘤,具有早期无自觉症状,发病隐匿,极易复发和转移等特点。高危的神经母细胞瘤患者即使进行综合治疗,仍有复发风险,预后不良。通过肿瘤标志物实现对神经母细胞瘤早期筛查,快速诊断,精准治疗,预后监测至关重要。液体活检作为一种非侵入性的肿瘤检测方法,在神经母细胞瘤的诊疗领域具有重要研究意义。循环肿瘤细胞是由原发灶或转移灶脱落进入外周血的肿瘤转移“种子”,是液体活检肿瘤标志物研究的热点之一,可持续无创地评估患者肿瘤转归及临床进展情况。本文主要阐述了神经母细胞瘤循环肿瘤细胞的富集,检测,及其在肿瘤病人的诊疗分期、病情监测、个体化治疗、以及复发耐药监测等方面的临床应用进展。
Abstract: Neuroblastoma is the most common extracranial solid tumor in children. It has the characteristics of early asymptomatic, insidious onset, and easy recurrence and metastasis. High-risk neuroblastoma patients, even with comprehensive treatment, still have the risk of recurrence and poor prognosis. It is very important to realize early screening, rapid diagnosis, accurate treatment and prognosis monitoring of neuroblastoma through tumor markers. As a non-invasive tumor detection method, liquid biopsy has important research significance in the field of diagnosis and treatment of neuroblastoma. Circulating tumor cells are the “seeds” of tumor metastasis that fall off from the primary tumor or metastasis into the peripheral blood. It is one of the hot spots in the study of liquid biopsy tumor markers, and can continuously and noninvasively evaluate the tumor outcome and clinical progress of patients. This article mainly describes the enrichment and detection of circulating tumor cells in neuroblastoma, and its clinical application progress in the diagnosis and treatment staging, disease monitoring, individualized treatment, and recurrence and drug resistance monitoring of tumor patients.
文章引用:周哲蝶, 曹年华, 刘宗彬, 袁秀丽. 神经母细胞瘤循环肿瘤细胞检测及临床应用进展[J]. 临床医学进展, 2025, 15(2): 757-767. https://doi.org/10.12677/acm.2025.152404

1. 引言

神经母细胞瘤(Neuroblastoma, NB)是儿童时期最常见的颅外实体瘤,占儿童恶性肿瘤的8%~10% [1] [2]。3~5岁为发病高峰年龄,NB来源于未分化的交感神经节细胞,肾上腺是最常见的原发部位,其次是腹部、胸部、颈部和盆腔交感神经节[3] [4]。神经母细胞瘤具有高度异质性,根据国际神经母细胞瘤风险组织(International Neuroblastoma risk Group, INRG)制定的风险分类标准[5],根据患者诊断年龄、INRG肿瘤分期、组织学分类、分化程度、DNA倍性、MYCN状态、以及11q染色体的拷贝数状态等因素[6] [7],将NB分为极低危、低危、中危和高危[5] [8]。极低危、低危、中危的患者预后较好,但高危的患者即使进行多模式强化治疗,包括诱导化疗、手术、清骨髓巩固治疗、自体干细胞移植和局部放疗、免疫治疗、靶向治疗和分化治疗,生存率仍然很低(5年生存率 < 50%) [8]。所以开发个性化治疗和临床动态监测治疗反应至关重要[9]

目前组织病理检测结合影像学的手段仍然是神经母细胞瘤诊疗评估的“金标准”,然而这两种方法仍有一定局限性。一方面影像学检查如计算机断层扫描(CT)由于存在辐射不宜在短时间内重复检测,同时由于存在容积效应,难以发现微小转移病灶,易发生漏诊[10]。另一方面组织病理检查依赖于有创性操作,包括肿瘤活检、骨髓穿刺以及骨髓活检等,对于患儿来说都是痛苦的,不适用于肿瘤急症患者、多发转移或无法手术的患者。而非创伤性检查方式如代谢物评估,包括尿香草–杏仁酸、同型香草酸、血清乳酸脱氢酶(LDH)以及神经元烯醇化酶(NSE)等,虽然具有无创性质,但相应的敏感性及特异性并不高[11],因此难以对疾病的复发和治疗反应进行有效的监测[10] [12]-[15]。因此,利用新的方法检测早期NB,评估治疗效果,监测肿瘤复发至关重要。目前液体活检作为一种非侵入性的肿瘤检测方法,可实时微创跟踪疾病进展和纵向评估治疗效果[16]。液体活检的主要检测指标包括循环肿瘤细胞(Circulating tumor cell, CTC)、循环肿瘤DNA (Circulating tumor DNA, ctDNA)、cfDNA、外泌体、mi-RNA等[15] [17]-[23]。CTC作为液体活检标志物的临床研究已经取得了一定进展,本文将综合阐述循环肿瘤细胞的生物特征,富集及检测的方法,及在神经母细胞瘤临床诊疗中的应用进展。

2. 循环肿瘤细胞(CTC)

CTC是从原发肿瘤中脱落并进入血液循环的肿瘤细胞,能够提供肿瘤DNA、RNA、蛋白质和代谢物水平的丰富而全面的信息,是目前研究最广泛的液体活检标记物,已被广泛用于提供关于原发性肿瘤或转移瘤特征的信息,在肺癌、乳腺癌、食管癌、肠癌、胃癌、卵巢癌等成人肿瘤病人的诊疗分期、病情监测,个体化治疗,以及复发等方面都显示出其重要的临床价值[24]-[33],CTC在儿童NB诊疗的临床意义也有相关研究报道,具有潜在的应用价值[15] [19] [20] [22] [34]

2.1. 循环肿瘤细胞的生物学特征

1869年,Ashworth首次发现患者的外周血中存在肿瘤细胞CTC [35],尽管CTC起源于原发肿瘤,其外观与原发性肿瘤中的肿瘤细胞相似,但它们与原发肿瘤细胞在基因表达及生物功能上具有很大差异[28] [36]。转移是一个多步骤的进程,主要包括侵袭,循环,定植三个阶段,原发肿瘤(或转移性病变)中具有侵袭性、转移能力的细胞通过侵袭组织血管并作为肿瘤播散的“种子”以CTC的形式在血液中循环,部分浸润骨髓的肿瘤细胞也被称为DTC (Disseminated tumor cell),最后定植于适合的“土壤”形成转移灶。

肿瘤患者外周血中CTC具有稀缺性,每毫升只有几个或几百个,CTC在血液循环中的存在时间较短,受到血流剪切力(Shear stress),失巢凋亡(Anoikis),氧化应激(Oxidative stress)以及免疫攻击(Immune attack)等生存压力,只有少数CTC能够成功定植并形成远处转移(图1)。因此,解析CTC生物学特征及其在血流系统中的生存策略,识别具有干细胞样特性的转移起始细胞,对认识肿瘤转移过程及开发基于CTC的转移靶向治疗新方法至关重要。有研究表明,CTC在具有上皮–间充质可塑性,可先后通过上皮–间充质转化(Epithelial-mesenchymal transition, EMT)和间充质–上皮转化(Mesenchymal-epithelial transition, MET)完成肿瘤的播散和定植[37] [38]。EMT是上皮肿瘤细胞失去细胞间粘附并获得间充质和侵袭特性的过程[39]。在传播过程中,肿瘤细胞通过EMT激活从基底膜上脱离并直接进入循环系统,作为CTC传播到远处。当CTC外渗时,它们会经历MET的逆过程并增殖形成宏观转移。因此,转移的形成取决于这两种表型之间可逆性转变的平衡,不能单纯理解为间质型CTC有利于成功转移,而是CTC在不同时空环境下的上皮–间质的可塑性在CTC的转移过程中发挥重要作用[40] [41],Padmanaban等也证实,上皮标志E-cadherin的缺失反而降低了CTC的存活和转移灶形成[42]。与此同时,一些研究也认为,EMT在肿瘤转移灶的形成过程中并非不可或缺,但在CTC的化疗耐药中起重要作用[43] [44]。此外,Gkountela等报道CTC在外周血中可聚集成CTC簇(CTC cluster)并调控其表观遗传,上调其干细胞特征,与单个CTC相比,其转移潜力增加了100倍[45]。总而言之,外周血CTC具有稀缺性并表现出高度的异质性,在表面抗原的表达上存在差异。不同肿瘤类型和个体之间的CTC可能会呈现出不同的表面标志物表达;同一患者体内的CTC也由于上皮–间质转换呈现差异性的抗原表达模式[37]。这导致了CTC的分离,富集和检测具有一定挑战性。

2.2. 循环肿瘤细胞的富集和检测方法

2.2.1. 分离富集

CTC分离和富集的技术主要有两大类:包括基于抗原–抗体依赖的亲和性捕获或非抗原–抗体依赖的非亲和性捕获[15] [28] (图2)。

Figure 1. Production and dissemination of circulating tumor cells

1. 循环肿瘤细胞产生及其播散过程

Figure 2. The principle of separation and enrichment of circulating tumor cells

2. 循环肿瘤细胞的分离富集原理

亲和性捕获依赖于细胞表面标记物的差异表达,包括阳性选择和阴性选择。NB中的CTC通过荧光活化细胞分选(FACS)和免疫磁珠细胞选择富集,要么通过使用肿瘤特异性标记物进行阳性选择,NB中的CTC常用的肿瘤特异性标记物为双唾液酸神经节苷脂GD2、PHOX2A (Paired like homeobox 2B)、PHOX2B (Paired like homeobox 2B)、TH (Tyrosine hydroxylase)等。研究也表明CD56在神经母细胞瘤CTC上具有高度敏感性但特异性不足,在部分形态学表现为肿瘤细胞但GD2表达阴性的样本里可进一步通过CD56免疫荧光进行确定[46]。Izhar S. Batth等也报道cell surface vimentin (CSV)阳性的儿童神经母细胞瘤CTC可预测NB术后复发[22]。要么通过使用抗CD45抗体这类常见的白细胞生物标志物进行阴性选择,从而去除外周血中的免疫细胞。近年来,不同技术的联合应用包括免疫磁珠法、微流体芯片免疫捕获法、微流体芯片 + 纳米材料法等,得到了更高纯度和回收率的CTC。如MACS (Magnetic-activated cell separation)基于抗体包被的磁珠和微流控分离CTC [47];GEDI (Geometrically enhanced differential immunocapture)-Chip将微流体与不同的抗体(如乳腺癌中的HER2,前列腺癌中的PMSA)相结合,能够从乳腺癌和前列腺癌等患者外周血中分选高纯度的CTC,在神经母细胞瘤CTC的分离上也有一定应用前景[48]

非亲和性捕获是利用CTC和血细胞之间的物理性质差异,如细胞尺寸、密度、电荷、弹性和变形能力,从而分离富集CTC,如ISET,CTC-iChip,Smart Biosurface Slides [49]-[51]和FDA批准的Parsortix等技术平台[52]。非亲和性捕获能够避免CTC表面抗原的异质性表达造成的CTC流失,不会因为依赖CTC上某个或某些特定抗原的表达而造成误差。有研究也证实基于CTC大小的捕获能够在CellSearch的废液中捕获到CTC [53] [54],非抗原依赖法捕获及后续分子生物学分析能够进一步探索CTC的异质性,具有广泛的研究意义。但此类收集方法富集的CTC中会伴有和CTC大小及力学特征相似的免疫细胞,其分离纯度和通量有待进一步提升。目前正在开发多模式方法,以进一步提高敏感性和特异性。例如,Isoflux结合了流量控制和免疫磁珠[55]富集CTC。Cyttel系统基于图像的检测工具,依次通过离心,免疫组织化学和荧光原位杂交来识别CTC [56]。微流控自动分选在非抗原依赖法中应用广泛,最新有研究证实基于“级联过滤式确定侧向位移”的微流控芯片CFD-Chip在分离CTC过程中不需要离心、红细胞裂解等预处理,分离不依赖抗体标记,可以更好地还原血液中肿瘤细胞的本来生物学特征,对CTC细胞损伤及活性影响小,可用于肿瘤细胞体外培养,药效药敏筛选,单细胞测序、蛋白组测序等对细胞数量和活性要求高的实验室检测,实现高通量、高效率、高纯度捕获血液中的CTC,具有国际领先水平[57]

2.2.2. 检测鉴定

富集后,CTC需要进行分子生物学鉴定,常规的上皮标志物EpCAM、pan-CK无法用来检测神经母细胞瘤CTC,需要通过检测NB标志性蛋白或RNA的水平来进一步鉴定(图3)。基于肿瘤标志表面抗原的抗原-抗体结合的鉴定方法主要包括免疫荧光(IF)、免疫细胞化学(ICC)、或荧光流式细胞分选(FACS);基于CTC肿瘤标志RNA水平检测的包括逆转录定量聚合酶链式反应(RT-qPCR)、微液滴式数字PCR (ddPCR)和荧光原位杂交(FISH)检测等。ICC是使用针对NB特异性标记物(包括GD2、PHOX2A、PHOX2B、TH、CD56和CD90等)的抗体检测CTC。PCR通过评估血液中单个或组肿瘤mRNA转录物水平,从而能够间接鉴定NB的CTC,在mRNA中,PHOX2B被证明是最特异性的,但在NB肿瘤细胞中差异表达,酪氨酸羟化酶TH是使用最广泛的一个,TH是目前INRG唯一推荐的用于RT-qPCR检测BM、PB肿瘤细胞的mRNA。Liu等人使用CD45免疫磁珠对肿瘤细胞进行了阴性选择以排除免疫细胞。通过FISH的方法检测8号染色体着丝粒探针(CEP8),并进一步CD45、DAPI免疫染色鉴定CTC。DAPI+/CD45−/CEP8 ≥ 3的细胞被定义为神经母细胞瘤CTC。该方法不仅可以发现单个CTC,还可以从高危患者中识别出CTC簇。然而这些检测均为低通量。高通量的检测方式包括Merugu等人首次使用的Amnis Imagestream成像流式细胞仪(ISx),其结合了FACS和荧光显微镜的特点,允许在短时间内鉴定GD2+/CD45−的神经母细胞瘤CTC。另一种联合微流体和介电泳方法的DEPArray利用介电泳原理从GD2和CD45标记的BM样品中捕获的单个NB肿瘤细胞,其灵敏度为每106个白细胞检测一个肿瘤细胞[58]

3. CTC检测在神经母细胞瘤中的应用

3.1. CTC检测协助儿童肿瘤急症分型及救治

根据原发肿瘤和转移灶的部位及范围,神经母细胞瘤患儿临床表现有所不同。局限性肿瘤患者可无症状,但肿瘤晚期的儿童在就诊时一般状况差,通常有全身症状,如肿瘤压迫造成的肠梗阻、呼吸困难、运动或感觉障碍、大便失禁和(或)尿潴留等急症表现。对于神经母细胞瘤的诊断方法而言,骨髓穿刺和肿瘤组织穿刺均属于侵入性操作,耗时较长。而外周血CTC可以快速检测,结合其他影像学和临床评估,可以在短时间内获得较为全面的急症患者疾病信息,因此,CTC有望成为神经母细胞瘤急症快速分型及救治以及动态监测的一种有效方式。

Figure 3. Detection and identification of circulating tumor cells

3. 循环肿瘤细胞的检测与鉴定方法

3.2. CTC检测辅助临床诊断及分期

CTC的检出数量与神经母细胞瘤患者的肿瘤分期有关,较高国际神经母细胞瘤风险组分期系统(INRGSS)分期及危险度分层的患儿中CTCs阳性率及检出数量显著更高。2016年,Lee及其团队采用RT-qPCR检测210例诊断为神经母细胞瘤的患者外周血中TH mRNA的表达,其中发现210例患者中60例(28.6%)诊断时PB中TH表达阳性。TH阳性表达与高危特征(即晚期、高龄、病理不良、MYCN扩增)相关。TH阳性患者的血清LDH、铁蛋白、NSE和尿VMA水平也较高[59]。Kojima等通过FACS在10例患者中分选出GD2+CD90+CD45−CD235a−DAPI+的神经母细胞瘤CTCs,并通过二代单细胞测序进行原发灶和CTCs进行表征。结果显示在晚期神经母细胞瘤患者中,CTC的数量更高。因此,CTC数量可以很好辅助临床患者肿瘤分期,肿瘤组织和CTC中发现了相同的ALK突变,且伴有化疗耐药和神经母细胞瘤复发的患者样本中鉴定出的PTPN11突变,此外单细胞测序显示,CTC中血管生成相关基因和细胞周期相关基因表达上调,而参与这些过程的下游核心因子CCND1在CTC中显著上调。血管生成相关基因和CCND1与神经母细胞瘤的肿瘤进展有关。此外,与原发灶肿瘤细胞相比,TUBA1A在CTC中显著上调,并与神经母细胞瘤的肿瘤进展和高危险度分期有关[21]。我们对64位初发神经母细胞瘤患者的CTC检测也证实:危险度分期更高的患者每2 mL外周血中CTC和CTC cluster数目显著更高(p = 0.0038与p = 0.0013) (图4)。

3.3. CTC作为神经母细胞瘤转移标志物

CTC作为肿瘤血行转移的种子,在神经母细胞瘤中与转移密切相关。2008年,Kuroda通过RT-PCR方法检测TH mRNA的来检测29位晚期神经母细胞瘤患者外周血和骨髓中的CTC,CTC和骨髓中的DTC可能表明存在肿瘤微转移细胞群,这些肿瘤细胞群对治疗具有耐药性并与肿瘤全身扩散有关,因此,它们可被视为神经母细胞瘤的重要危险因素[60]。2018年,Liu及其团队收集了28名NB患者的外周血以及临床和随访数据。采用DAPI、CD45免疫染色、和CEP8荧光原位杂交鉴定CTC,DAPI+/CD45−/CEP8 ≥ 3的细胞被认为是CTC。结果显示不同风险组之间的CTC数量显著不同。发生转移的患者比未发生转移的患者具有更多的CTC。每4毫升外周血 ≥ 3个CTC的患者发生转移的可能性增加(敏感性,88.89%;特异性,78.59%) [20]。2022年Loh等使用基于细胞大小的无标记分离方法,在17位神经母细胞瘤患者外周血中富集和表征了CTC,以及骨髓中对应的DTC,结果显示神经母细胞瘤CTC主要显示促转移和间充质基因表达特征。CTC中促转移相关基因的表达谱与诊断时骨髓转移存在相关性[34]。我们的研究也进一步发现,CTC与CTC cluster在神经母细胞瘤转移患者中显著更高(图5(A)),其中CTC cluster与神经母细胞瘤骨髓转移密切相关(图5(B)),外周血CTC cluster检测可以作为肿瘤骨髓穿刺MRD检测的补充,用于动态监测神经母细胞瘤骨髓转移。

Figure 4. The number of CTC and CTC cluster is correlated with the risk staging of neuroblastoma

4. CTC及CTC cluster数目与神经母细胞瘤危险度分期具有相关性

Figure 5. (A) The number of CTC and CTC cluster is significantly higher in metastatic patients; (B) CTC cluster can predict NB bone marrow metastasis

5. (A) CTC与CTC cluster数目在转移患者中显著更高;(B) CTC cluster可以预测NB骨髓转移

3.4. CTC检测辅助疗效动态评估

CTCs的计数可以实时监测肿瘤的动态变化。在治疗过程中,通过检测外周血中的CTC数目变化,可以帮助了解治疗效果。Liu及其团队根据治疗效果(完全消退(CR)、部分消退(PR)和疾病进展(PD))将28例NB患者分为3组。每4毫升血液CTC中位数CR为0 (0, 4),PR为54 (46, 77),PD为20 (0.25, 55.5)。Kruskal-Wallis检验显示,三组间CTC数量差异有统计学意义(p = 0.013) [20]。Merugu及其团队在40例神经母细胞瘤患者外周血及骨髓样本中,首次利用ISx成功检测到CTCs与DTCs。在研究中,他们利用MDM2抑制剂Nutlin-3处理神经母细胞瘤细胞,观察到p53和p21的表达增加。通过检测这些标志物的表达水平,评估药物对细胞的影响,并预测治疗效果,为早期临床试验中神经母细胞瘤的新疗法提供了非侵入性的药效学生物标志物,同时为骨髓浸润的高危神经母细胞瘤的风险分层及临床诱导化疗实施提供了潜在的预后生物标志物[19]

3.5. CTC检测预测肿瘤复发与辅助预后评估

CTC的存在反映了肿瘤转移的潜能,而肿瘤转移与患者较低的生存率相关,因此对CTC计数有助于判断患者的预后情况。在复发阶段中,通过检测PB或BM中的CTC,发现其与NB患者全身转移,肿瘤进展和较差生存预后之间存在显著相关性。Liu及其团队也证实每4 mL外周血DAPI+/CD45−/CEP8 ≥ 3的CTC超过10个的患者总生存期较差,证实在影像学数据不明确的情况下,CTC检测可能对预后评估和诊断转移具有临床价值[20]。2020年,Batth及其同事研究了细胞表面波形蛋白(CSV)阳性的CTC,用于监测缓解期NB患者的治疗反应和预测复发的价值。其纵向分析了93例患者27个周期(25个月)的外周血样本,发现在前两个样本(第4个周期(3~4个月))中存在CSV+的CTC是早期复发的重要指标,低于3个CSV + CTC/6 mL外周血的神经母细胞瘤术后复发风险更低[22]。Loh等基于17位神经母细胞瘤患者的纵向分析也发现CTC中促转移相关基因的持续升高表达可能作为神经母细胞瘤患者复发的预测标志物[34]

4. 小结

神经母细胞瘤是一种严重危害儿童健康的恶性肿瘤,其早期发现和诊断对患者的预后至关重要。目前,临床上主要通过电子计算机断层扫描(CT)、磁共振成像(MRI)、PET-CT等影像学手段,以及组织活检等病理学方法来检测和诊断该疾病。然而,这些方法在寻找与神经母细胞瘤相关的高灵敏度和高特异性的肿瘤标志物方面仍然有所欠缺。近年来,液体活检作为一种新兴的检测技术,受到了广泛关注。其中,CTC作为液体活检的基石之一,具有微创、实时、便捷、灵敏等诸多优点,成为了一种具有广阔前景的生物标志物。研究表明,CTC与多种实体肿瘤的早期诊断、疗效监测和预后评估密切相关。虽然CTC在恶性肿瘤领域的检测仍处于探索阶段,现有的研究发现,神经母细胞瘤患者外周血中CTC的检测也具有丰富的临床应用价值,如判断患者预后、监测疾病进展及复发等,为个体化治疗提供了有价值的信息。

NOTES

*通讯作者。

参考文献

[1] Matthay, K.K., Maris, J.M., Schleiermacher, G., Nakagawara, A., Mackall, C.L., Diller, L., et al. (2016) Neuroblastoma. Nature Reviews Disease Primers, 2, Article No. 16078.
https://doi.org/10.1038/nrdp.2016.78
[2] Stiller, C.A. and Parkin, D.M. (1992) International Variations in the Incidence of Neuroblastoma. International Journal of Cancer, 52, 538-543.
https://doi.org/10.1002/ijc.2910520407
[3] Zeineldin, M., Patel, A.G. and Dyer, M.A. (2022) Neuroblastoma: When Differentiation Goes Awry. Neuron, 110, 2916-2928.
https://doi.org/10.1016/j.neuron.2022.07.012
[4] Maris, J.M., Hogarty, M.D., Bagatell, R. and Cohn, S.L. (2007) Neuroblastoma. The Lancet, 369, 2106-2120.
https://doi.org/10.1016/s0140-6736(07)60983-0
[5] Monclair, T., Brodeur, G.M., Ambros, P.F., Brisse, H.J., Cecchetto, G., Holmes, K., et al. (2009) The International Neuroblastoma Risk Group (INRG) Staging System: An INRG Task Force Report. Journal of Clinical Oncology, 27, 298-303.
https://doi.org/10.1200/jco.2008.16.6876
[6] Schwab, M., Westermann, F., Hero, B. and Berthold, F. (2003) Neuroblastoma: Biology and Molecular and Chromosomal Pathology. The Lancet Oncology, 4, 472-480.
https://doi.org/10.1016/s1470-2045(03)01166-5
[7] Maris, J.M. and Matthay, K.K. (1999) Molecular Biology of Neuroblastoma. Journal of Clinical Oncology, 17, 2264-2264.
https://doi.org/10.1200/jco.1999.17.7.2264
[8] Qiu, B. and Matthay, K.K. (2022) Advancing Therapy for Neuroblastoma. Nature Reviews Clinical Oncology, 19, 515-533.
https://doi.org/10.1038/s41571-022-00643-z
[9] Maris, J.M. (2010) Recent Advances in Neuroblastoma. New England Journal of Medicine, 362, 2202-2211.
https://doi.org/10.1056/nejmra0804577
[10] Hao, J., Sang, J., Xu, X. and Bao, A. (2023) Diagnostic Value of CT and MRI Combined with Serum LDH, NSE, CEA, and MYCN in Pediatric Neuroblastoma. World Journal of Surgical Oncology, 21, Article No. 251.
https://doi.org/10.1186/s12957-023-03131-5
[11] Odelstad, L., Phlman, S., Läckgren, G., Larsson, E., Grotte, G. and Nilsson, K. (1982) Neuron Specific Enolase: A Marker for Differential Diagnosis of Neuroblastoma and Wilms’ Tumor. Journal of Pediatric Surgery, 17, 381-385.
https://doi.org/10.1016/s0022-3468(82)80494-6
[12] Uemura, S., Lin, K., Mon Thwin, K.K., Nakatani, N., Ishida, T., Yamamoto, N., et al. (2021) Limited Correlation between Tumor Markers and Minimal Residual Disease Detected by Seven Neuroblastomaassociated mRNAs in Highrisk Neuroblastoma Patients. Molecular and Clinical Oncology, 15, Article No. 137.
https://doi.org/10.3892/mco.2021.2299
[13] Tsuchida, Y., Honna, T., Iwanaka, T., Saeki, M., Taguchi, N., Kaneko, T., et al. (1987) Serial Determination of Serum Neuron-Specific Enolase in Patients with Neuroblastoma and Other Pediatric Tumors. Journal of Pediatric Surgery, 22, 419-424.
https://doi.org/10.1016/s0022-3468(87)80261-0
[14] Simon, T., Hero, B., Hunneman, D.H. and Berthold, F. (2003) Tumour Markers Are Poor Predictors for Relapse or Progression in Neuroblastoma. European Journal of Cancer, 39, 1899-1903.
https://doi.org/10.1016/s0959-8049(03)00376-9
[15] Yang, R., Zheng, S. and Dong, R. (2022) Circulating Tumor Cells in Neuroblastoma: Current Status and Future Perspectives. Cancer Medicine, 12, 7-19.
https://doi.org/10.1002/cam4.4893
[16] Pantel, K. and Alix-Panabières, C. (2019) Liquid Biopsy and Minimal Residual Disease—Latest Advances and Implications for Cure. Nature Reviews Clinical Oncology, 16, 409-424.
https://doi.org/10.1038/s41571-019-0187-3
[17] Su, Y., Wang, L., Wang, X., Yue, Z., Xing, T., Zhao, W., et al. (2019) Dynamic Alterations of Plasma Cell Free DNA in Response to Chemotherapy in Children with Neuroblastoma. Cancer Medicine, 8, 1558-1566.
https://doi.org/10.1002/cam4.2045
[18] Wang, X., Wang, L., Su, Y., Yue, Z., Xing, T., Zhao, W., et al. (2018) Plasma Cell‐Free DNA Quantification Is Highly Correlated to Tumor Burden in Children with Neuroblastoma. Cancer Medicine, 7, 3022-3030.
https://doi.org/10.1002/cam4.1586
[19] Merugu, S., Chen, L., Gavens, E., Gabra, H., Brougham, M., Makin, G., et al. (2020) Detection of Circulating and Disseminated Neuroblastoma Cells Using the Imagestream Flow Cytometer for Use as Predictive and Pharmacodynamic Biomarkers. Clinical Cancer Research, 26, 122-134.
https://doi.org/10.1158/1078-0432.ccr-19-0656
[20] Liu, X.Q., et al. (2018) Circulating Tumor Cells Detection in Neuroblastoma Patients by EpCAM-Independent Enrichment and Immunostaining-Fluorescence in Situ Hybridization. EBioMedicine, 35, 244-250.
[21] Kojima, M., Harada, T., Fukazawa, T., Kurihara, S., Touge, R., Saeki, I., et al. (2023) Single‐Cell Next‐Generation Sequencing of Circulating Tumor Cells in Patients with Neuroblastoma. Cancer Science, 114, 1616-1624.
https://doi.org/10.1111/cas.15707
[22] Batth, I.S., Dao, L., Satelli, A., Mitra, A., Yi, S., Noh, H., et al. (2020) Cell Surface Vimentin-Positive Circulating Tumor Cell-Based Relapse Prediction in a Long-Term Longitudinal Study of Postremission Neuroblastoma Patients. International Journal of Cancer, 147, 3550-3559.
https://doi.org/10.1002/ijc.33140
[23] Wang, Y., Song, Z., Hu, X. and Wang, H. (2021) Circulating Tumor DNA Analysis for Tumor Diagnosis. Talanta, 228, Article ID: 122220.
https://doi.org/10.1016/j.talanta.2021.122220
[24] Rack, B., Schindlbeck, C., Jückstock, J., Andergassen, U., Hepp, P., Zwingers, T., et al. (2014) Circulating Tumor Cells Predict Survival in Early Average-to-High Risk Breast Cancer Patients. JNCI: Journal of the National Cancer Institute, 106, dju066.
https://doi.org/10.1093/jnci/dju066
[25] Gasparri, M.L., Savone, D., Besharat, R.A., Farooqi, A.A., Bellati, F., Ruscito, I., et al. (2015) Circulating Tumor Cells as Trigger to Hematogenous Spreads and Potential Biomarkers to Predict the Prognosis in Ovarian Cancer. Tumor Biology, 37, 71-75.
https://doi.org/10.1007/s13277-015-4299-9
[26] Ma, X., Xiao, Z., Liu, L., Liu, X., Nie, W., Li, P., et al. (2012) Meta-Analysis of Circulating Tumor Cells as a Prognostic Marker in Lung Cancer. Asian Pacific Journal of Cancer Prevention, 13, 1137-1144.
https://doi.org/10.7314/apjcp.2012.13.4.1137
[27] Zhang, H., Lin, X., Huang, Y., Wang, M., Cen, C., Tang, S., et al. (2021) Detection Methods and Clinical Applications of Circulating Tumor Cells in Breast Cancer. Frontiers in Oncology, 11, Article ID: 652253.
https://doi.org/10.3389/fonc.2021.652253
[28] Ring, A., Nguyen-Sträuli, B.D., Wicki, A. and Aceto, N. (2022) Biology, Vulnerabilities and Clinical Applications of Circulating Tumour Cells. Nature Reviews Cancer, 23, 95-111.
https://doi.org/10.1038/s41568-022-00536-4
[29] Bidard, F.C., Kiavue, N., Jacot, W., et al. (2023) Overall Survival with Circulating Tumor Cell Count-Driven Choice of Therapy in Advanced Breast Cancer: A Randomized Trial. Journal of Clinical Oncology, 42, 383-389.
[30] Klotz, R. and Yu, M. (2020) Insights into Brain Metastasis: Recent Advances in Circulating Tumor Cell Research. Cancer Reports, 5, e1239.
https://doi.org/10.1002/cnr2.1239
[31] Labib, M. and Kelley, S.O. (2021) Circulating Tumor Cell Profiling for Precision Oncology. Molecular Oncology, 15, 1622-1646.
https://doi.org/10.1002/1878-0261.12901
[32] Palmela Leitão, T., Miranda, M., Polido, J., Morais, J., Corredeira, P., Alves, P., et al. (2021) Circulating Tumor Cell Detection Methods in Renal Cell Carcinoma: A Systematic Review. Critical Reviews in Oncology/Hematology, 161, Article ID: 103331.
https://doi.org/10.1016/j.critrevonc.2021.103331
[33] 中华医学会检验医学分会分子诊断学组. 循环肿瘤细胞临床应用与实验室检测专家共识[J]. 中华检验医学杂志, 2021(11): 1008-1020.
[34] Loh, A.H.P., Angelina, C., Wong, M.K., Tan, S.H., Sukhatme, S.A., Yeo, T., et al. (2022) Pro-Metastatic and Mesenchymal Gene Expression Signatures Characterize Circulating Tumor Cells of Neuroblastoma Patients with Bone Marrow Metastases and Relapse. Frontiers in Oncology, 12, Article ID: 939460.
https://doi.org/10.3389/fonc.2022.939460
[35] Ashworth, T.R. (1869) A Case of Cancer in Which Cells Similar to Those in the Tumours Were Seen in the Blood after Death. The Medical Journal of Australia, 14, 146-147.
[36] Micalizzi, D.S., Maheswaran, S. and Haber, D.A. (2017) A Conduit to Metastasis: Circulating Tumor Cell Biology. Genes & Development, 31, 1827-1840.
https://doi.org/10.1101/gad.305805.117
[37] Gorges, T.M., Tinhofer, I., Drosch, M., Röse, L., Zollner, T.M., Krahn, T., et al. (2012) Circulating Tumour Cells Escape from EPCAM-Based Detection Due to Epithelial-to-Mesenchymal Transition. BMC Cancer, 12, Article No. 178.
https://doi.org/10.1186/1471-2407-12-178
[38] Guarino, M., Rubino, B. and Ballabio, G. (2007) The Role of Epithelial-Mesenchymal Transition in Cancer Pathology. Pathology, 39, 305-318.
https://doi.org/10.1080/00313020701329914
[39] Guarino, M. (2007) Epithelial-Mesenchymal Transition and Tumour Invasion. The International Journal of Biochemistry & Cell Biology, 39, 2153-2160.
https://doi.org/10.1016/j.biocel.2007.07.011
[40] Bakir, B., Chiarella, A.M., Pitarresi, J.R. and Rustgi, A.K. (2020) EMT, MET, Plasticity, and Tumor Metastasis. Trends in Cell Biology, 30, 764-776.
https://doi.org/10.1016/j.tcb.2020.07.003
[41] Jolly, M.K., Ware, K.E., Gilja, S., Somarelli, J.A. and Levine, H. (2017) Emt and Met: Necessary or Permissive for Metastasis? Molecular Oncology, 11, 755-769.
https://doi.org/10.1002/1878-0261.12083
[42] Padmanaban, V., Krol, I., Suhail, Y., Szczerba, B.M., Aceto, N., Bader, J.S., et al. (2019) E-cadherin Is Required for Metastasis in Multiple Models of Breast Cancer. Nature, 573, 439-444.
https://doi.org/10.1038/s41586-019-1526-3
[43] Fischer, K.R., Durrans, A., Lee, S., Sheng, J., Li, F., Wong, S.T.C., et al. (2015) Epithelial-to-Mesenchymal Transition Is Not Required for Lung Metastasis but Contributes to Chemoresistance. Nature, 527, 472-476.
https://doi.org/10.1038/nature15748
[44] Zheng, X., Carstens, J.L., Kim, J., Scheible, M., Kaye, J., Sugimoto, H., et al. (2015) Epithelial-to-Mesenchymal Transition Is Dispensable for Metastasis but Induces Chemoresistance in Pancreatic Cancer. Nature, 527, 525-530.
https://doi.org/10.1038/nature16064
[45] Gkountela, S., Castro-Giner, F., Szczerba, B.M., Vetter, M., Landin, J., Scherrer, R., et al. (2019) Circulating Tumor Cell Clustering Shapes DNA Methylation to Enable Metastasis Seeding. Cell, 176, 98-112.e14.
https://doi.org/10.1016/j.cell.2018.11.046
[46] Beiske, K., Burchill, S.A., Cheung, I.Y., Hiyama, E., Seeger, R.C., Cohn, S.L., et al. (2009) Consensus Criteria for Sensitive Detection of Minimal Neuroblastoma Cells in Bone Marrow, Blood and Stem Cell Preparations by Immunocytology and QRT-PCR: Recommendations by the International Neuroblastoma Risk Group Task Force. British Journal of Cancer, 100, 1627-1637.
https://doi.org/10.1038/sj.bjc.6605029
[47] Giordano, A., Gao, H., Anfossi, S., Cohen, E., Mego, M., Lee, B., et al. (2012) Epithelial-Mesenchymal Transition and Stem Cell Markers in Patients with HER2-Positive Metastatic Breast Cancer. Molecular Cancer Therapeutics, 11, 2526-2534.
https://doi.org/10.1158/1535-7163.mct-12-0460
[48] Gleghorn, J.P., Pratt, E.D., Denning, D., Liu, H., Bander, N.H., Tagawa, S.T., et al. (2010) Capture of Circulating Tumor Cells from Whole Blood of Prostate Cancer Patients Using Geometrically Enhanced Differential Immunocapture (GEDI) and a Prostate-Specific Antibody. Lab Chip, 10, 27-29.
https://doi.org/10.1039/b917959c
[49] Karabacak, N.M., Spuhler, P.S., Fachin, F., Lim, E.J., Pai, V., Ozkumur, E., et al. (2014) Microfluidic, Marker-Free Isolation of Circulating Tumor Cells from Blood Samples. Nature Protocols, 9, 694-710.
https://doi.org/10.1038/nprot.2014.044
[50] Rosenberg, R., Gertler, R., Friederichs, J., Fuehrer, K., Dahm, M., Phelps, R., et al. (2002) Comparison of Two Density Gradient Centrifugation Systems for the Enrichment of Disseminated Tumor Cells in Blood. Cytometry, 49, 150-158.
https://doi.org/10.1002/cyto.10161
[51] Krol, I., Schwab, F.D., Carbone, R., Ritter, M., Picocci, S., De Marni, M.L., et al. (2021) Detection of Clustered Circulating Tumour Cells in Early Breast Cancer. British Journal of Cancer, 125, 23-27.
https://doi.org/10.1038/s41416-021-01327-8
[52] Miller, M.C., Robinson, P.S., Wagner, C. and O’Shannessy, D.J. (2018) The Parsortix™ Cell Separation System—A Versatile Liquid Biopsy Platform. Cytometry Part A, 93, 1234-1239.
https://doi.org/10.1002/cyto.a.23571
[53] Barradas, A. and Terstappen, L. (2013) Towards the Biological Understanding of CTC: Capture Technologies, Definitions and Potential to Create Metastasis. Cancers, 5, 1619-1642.
https://doi.org/10.3390/cancers5041619
[54] Andree, K.C., van Dalum, G. and Terstappen, L.W.M.M. (2015) Challenges in Circulating Tumor Cell Detection by the Cell Search System. Molecular Oncology, 10, 395-407.
https://doi.org/10.1016/j.molonc.2015.12.002
[55] Harb, W., Fan, A., Tran, T., Danila, D.C., Keys, D., Schwartz, M., et al. (2013) Mutational Analysis of Circulating Tumor Cells Using a Novel Microfluidic Collection Device and QPCR Assay. Translational Oncology, 6, 528-538.
https://doi.org/10.1593/tlo.13367
[56] Ning, N., Zhan, T., Zhang, Y., Chen, Q., Feng, F., Yang, Z., et al. (2014) Improvement of Specific Detection of Circulating Tumor Cells Using Combined CD45 Staining and Fluorescence in Situ Hybridization. Clinica Chimica Acta, 433, 69-75.
https://doi.org/10.1016/j.cca.2014.02.019
[57] Liu, Z., Huang, Y., Liang, W., Bai, J., Feng, H., Fang, Z., et al. (2021) Cascaded Filter Deterministic Lateral Displacement Microchips for Isolation and Molecular Analysis of Circulating Tumor Cells and Fusion Cells. Lab on a Chip, 21, 2881-2891.
https://doi.org/10.1039/d1lc00360g
[58] Carpenter, E.L., Rader, J., Ruden, J., Rappaport, E.F., Hunter, K.N., Hallberg, P.L., et al. (2014) Dielectrophoretic Capture and Genetic Analysis of Single Neuroblastoma Tumor Cells. Frontiers in Oncology, 4, Article No. 201.
https://doi.org/10.3389/fonc.2014.00201
[59] Lee, N.H., Son, M.H., Choi, Y.B., Yi, E., Lee, J.W., Yoo, K.H., et al. (2016) Clinical Significance of Tyrosine Hydroxylase mRNA Transcripts in Peripheral Blood at Diagnosis in Patients with Neuroblastoma. Cancer Research and Treatment, 48, 1399-1407.
https://doi.org/10.4143/crt.2015.481
[60] Kuroda, T., Morikawa, N., Matsuoka, K., et al. (2008) Prognostic Significance of Circulating Tumor Cells and Bone Marrow Micrometastasis in Advanced Neuroblastoma. Journal of Pediatric Surgery, 43, 2182-2185.