环境内分泌干扰物在多囊卵巢综合征中的作用机制
Mechanism of Environmental Endocrine Disruptors in Polycystic Ovary Syndrome
DOI: 10.12677/acm.2025.152406, PDF, HTML, XML,   
作者: 刘嘉玲, 李泊琳, 李欣萌:黑龙江中医药大学研究生院,黑龙江 哈尔滨;李 妍*:黑龙江中医药大学附属第一医院中医转化医学研究中心,黑龙江 哈尔滨
关键词: 环境内分泌干扰物多囊卵巢综合征作用机制Environmental Endocrine Disrupting Chemicals Polycystic Ovarian Syndromer Mechanism of Action
摘要: 多囊卵巢综合征(polycystic ovarian syndrome, PCOS)是育龄女性常见疾病,多囊卵巢综合征的发病机制复杂,目前尚不清楚。该文关注环境因素对PCOS的影响,有助于加深对PCOS病因的理解,并为预防和治疗提供新思路。
Abstract: Polycystic ovary syndrome (PCOS) is a frequently encountered disease among women of childbearing age. This review focuses on the impact of environmental factors on PCOS, which will help to deepen the understanding of the etiology of PCOS and provide new ideas for prevention and treatment.
文章引用:刘嘉玲, 李泊琳, 李欣萌, 李妍. 环境内分泌干扰物在多囊卵巢综合征中的作用机制[J]. 临床医学进展, 2025, 15(2): 775-781. https://doi.org/10.12677/acm.2025.152406

1. 引言

多囊卵巢综合征(polycystic ovarian syndrome, PCOS)是一种常见的女性生殖内分泌疾病,影响11%~13%育龄期女性[1],临床上以排卵障碍或无排卵、高雄激素血症、胰岛素抵抗等为主要症状[2]。目前对多囊卵巢综合征的发病机制仍然不清楚,遗传因素和环境因素占据重要的位置。遗传因素如与PCOS相关的29个遗传基因位点和蛋白质中的激素信号通路被认为是主要的致病因素[3],而环境因素如环境内分泌干扰物(environmental endocrine-disrupting chemicals, EDCs)的作用也逐渐受到重视。EDCs可模拟内源性激素干扰人体的内分泌系统,导致肥胖、高血压、糖尿病及生殖系统疾病等。本文简要阐述EDCs的定义和特性以及EDCs在PCOS发生发展中的作用机制,为加强EDCs风险管理提供科学依据,最终为PCOS防治提供新思路。

2. EDCs的基本情况

EDCs广泛存在于人类生产生活和自然界中,被美国环境保护署定义为“干扰负责人体稳态、生殖和发育过程的重要天然血源性激素的合成、分泌、运输、代谢、结合或清除的外源性物质[4]”。常见的EDCs包括酚类(Phenols)、邻苯二甲酸酯(Phthalates, PAEs)、全氟烷基类物质(Perfluoro alkyls substances, PFASs)、多氯联苯(Polychlorinated biphenyls, PCBs)、有机氯农药(Organochlorine pesticides, OCPs)、多溴联苯醚(Polybrominated diphenyl ethers, PBDEs)、多环芳烃(Polycyclic aromatic hydrocarbons, PAHs)、对羟基苯甲酸酯(Parabens)金属类等[5],可通过饮食、呼吸、皮肤的直接接触进入机体,在人体的血液、尿液、卵泡液、羊水和脐带血中均可检出不同种类的EDCs [6]。它们大部分具有亲脂性、不易降解、易挥发、残留期长等特点,可模拟或拮抗类固醇激素,影响体内激素的动态平衡,从而对内分泌产生各种干扰作用,并被证明具有生殖毒性作用,且能转移给子代[7]

多项研究表明EDCs能够破环性腺的正常功能,影响由下丘脑–垂体–性腺(hypothalamic-pituitary-gonadal, HPG)轴调控的性激素生物合成[8] [9]。HPG轴通过促性腺激素释放激素(gonadotropin-releasing hormone, GnRH)、促性腺激素(gonadotropins, Gn)和性腺激素(如雌激素、雄激素和孕激素)间的相互作用参与调控女性生殖系统生理活动[10]。EDC发挥雌激素作用并通过各种途径阻碍GnRH和Gn的分泌,破坏HPG轴稳态并通过损害卵泡发育、干扰卵母细胞减数分裂、阻碍类固醇激素的合成等途径破坏卵巢功能,影响排卵、受精及胚胎种植。本文就几种日常生活中较常见的且具有代表性的EDCs与PCOS的相关性进行具体阐述,包括双酚A (bisphenol A, BPA)及其类似物、PAEs和PFASs。

3. EDCs在PCOS中的作用

3.1. BPA及其类似物

BPA是一种有机合成化合物,常通过食品包装、医疗设备和牙科材料等引入到环境中,是现代社会广泛存在的环境内分泌干扰物,人类接触到BPA最主要的途径为口服受污染的食品。BPA一旦进入人体,就会在生物组织中积累,对健康产生长期影响[11]

BPA及其类似物可能是引起PCOS发生的外部环境因素之一。既往在血清[12]、尿液[13]、血清和卵泡液[14]样本中,均检测到PCOS患者体内BPA水平较对照组更高。另有研究小组发现,与健康女性相比,PCOS患者的血清BPA浓度明显更高,并且与血清总睾酮和游离雄激素指数呈正相关,说明体内高BPA水平与PCOS发病相关[15]。Kawa等进行的一项病例对照研究发现,与对照组(n = 39)相比,PCOS组(n = 49)患者血清BPA水平较高,且BPA水平与雄激素水平呈正相关,而雄激素升高可下调尿苷二磷酸葡萄糖醛酸基转移酶(UDP-glucuronosyl transferases, UGT)的活性和转录,使得该酶对BPA的降解和清除作用降低,从而导致恶性循环[16]。除BPA外,BPA类似物也与PCOS的发生发展存在潜在关联。在一项病例对照研究中,研究人员定量了321例PCOS病例和412例对照受试者尿液样本中的七种双酚类似物,包括BPA、双酚AP (bisphenol AP, BPAP)、双酚AF (bisphenol AF, BPAF)、双酚B (bisphenol B, BPB)、双酚S (bisphenol S, BPS)、双酚P (bisphenol P, BPP)和双酚Z (bisphenol Z, BPZ),发现混合暴露于7种双酚类似物与PCOS的几率呈正相关,且这种关联在超重和肥胖女性中更强[17]。Joanna等测量199例PCOS女性和158例对照受试者的血清BPA、BPS和BPF浓度,发现与对照组相比,PCOS女性血清BPS浓度显著升高,但血清BPA和BPF浓度与对照女性无显著差异[18]。现有研究表明,BPA能够与雌激素受体(estrogen receptor, ER)、雄激素受体(androgen receptor, AR)、G蛋白偶联受体30 (G-protein-coupled receptors 30, GPR30)等多种受体相结合。BPA可以与特定的核受体如ER、AR结合,直接调节基因的表达,也可以由膜受体ER、GPR30介导,通过快速的非基因组作用引发信号传导途径。有学者认为BPA能够刺激卵巢卵泡膜细胞以产生过多的雄激素,在此过程中,BPA可能会使17α-羟化酶(cytochrome P450, family 17, subfamily A, polypeptide 1, cyp17a1)过度表达而增加17-羟孕酮水平(PCOS的一个关键特征),从而导致卵巢产生过多雄激素。Liu Y等[19]进一步通过研究暴露于BPA (15 μg/L)后的稀有鮈鲫在21、42、63天中四种卵巢类固醇生成基因转录的表观遗传学效应显示,短期BPA暴露(21天)与长期BPA暴露(63天)分别导致雌二醇和睾酮水平显著增加和降低,并且BPA暴露后卵母细胞发育受阻。BPA暴露21天和42天导致卵巢中基因组DNA甲基化显著增加,而63天暴露导致显著降低。在短期(21天)和长期(63天)BPA暴露后,卵巢中组蛋白三甲基化(H3K9me3)介导了类固醇激素合成急性调节蛋白(steroidogenic acute regulatory protein, StAR)、胆固醇侧链裂解酶(cytochrome P450, family 11, subfamily A, polypeptide 1, cyp11a1)和cyp17a1的mRNA表达下调和上调。BPA暴露后DNA甲基化可能参与cyp17a1和性腺型芳香化酶(cytochrome P450, family 19, subfamily A, polypeptide 1a, cyp19a1a)的基因表达调控。这项研究表明,BPA诱导的卵巢组织表观遗传学改变通过干扰多个类固醇基因的转录参与调节类固醇的合成,最终导致卵巢组织E2/T比值的偏斜和发育障碍,并且短期或长期BPA暴露可能以完全不同的机制干扰类固醇生成。

BPA还能使性激素脱位,从而增加游离雄激素的数量。此外,BPA似乎可以激活糖皮质激素受体,从而导致某种酶的表达,进而促进脂肪生成。BPA还可以通过直接影响胰腺β细胞来增加体外胰岛素的产生,持续的高胰岛素血症影响外周组织,使机体产生胰岛素抵抗。PCOS女性较高的双酚A水平与较高等级的胰岛素抵抗、肝脂肪变性、游离雄激素指数和炎症及脾脏体积增加相关,这表明BPA诱发的炎症通路是一种可能导致PCOS发生的机制[20]。研究人员通过对喂食含有BPA (50 μg/kg body weight/day)的饮食24周后的雄性CD-1小鼠分析,发现肝脏中的脂质含量和脂肪堆积增加,而肠道紧密连接蛋白(zona occludens-1和occludin)的表达水平急剧下降,导致肠道通透性增加和内毒素水平升高;此外,BPA上调肝脏中Toll样受体4 (TLR4)的表达和NF-κB的磷酸化,并增加炎症细胞因子的产生,包括IL-1β、IL-18、TNF-α和IL-6 [21]。进一步的动物实验证明,暴露于BPA之下,尤其是在发育的早期阶段,会导致雌性动物生殖道的形态和功能异常[22]-[24]。新生雌性大鼠暴露于BPA环境,会出现发情周期不规则和卵巢发育紊乱,黄体和窦卵泡较少,但闭锁卵泡和囊肿较多,血清睾酮和黄体生成素水平显著升高,导致PCOS样综合征,这表明BPA引起的PCOS发病机制很可能是由脂质代谢和类固醇生成途径介导的[25]。小鼠胎儿期暴露于双酚A二缩水甘油醚(bisphenol A diglycidyl ether, BADGE)和双酚AF (bisphenol AF, BPAF)会诱导生殖细胞中DNA氧化性损伤,延迟生殖细胞减数分裂的启动,增加非整倍体卵母细胞数量[26]

3.2. PAEs及其类似物

PAEs是脂溶性化合物,被普遍用于食品加工包装、地板制造及化妆品生产行业中,人类通常容易在塑胶制品包装中接触到PAEs。PAEs在人体和动物体内蓄积,可干扰内分泌,损害生殖系统功能,甚至增加患肿瘤几率[27]

目前研究表明,PAEs及其类似物是PCOS发生的潜在环境因素。Al-Saleh进行的一项病例对照研究中,检测了82例PCOS女性和359例对照女性尿液中8种PAEs代谢物水平,发现尿液中4种邻苯二甲酸二乙基己酯(di (2-ethylhexyl) phthalate, DEHP)代谢物的总浓度升高与PCOS发生风险升高相关[28]。Zhang等通过重复测量96例多囊卵巢(polycystic ovary, PCO)、96例PCOS和370例对照受试者尿液中PAEs代谢物,发现邻苯二甲酸单异丁酯(mono-isobutyl phthalate, MiBP)、邻苯二甲酸单苄酯(monobenzyl phthalate, MBzP)和DEHP总和与PCO患病率增加有关,而邻苯二甲酸单二乙基己酯(Mono 2-ethylhexyl phthalate, MEHP)、MBzP和DEHP总和与PCOS患病率升高有关[29]。动物实验证明,DEHP暴露降低雌性大鼠卵巢和子宫系数,减少原始卵泡的积累,增加卵巢组织中闭锁和囊性卵泡以及纤维化的发生率,并改变血清激素水平,升高血糖水平和增加胰岛素抵抗,破坏内分泌系统并导致卵巢组织显著氧化损伤,导致PCOS样的病变发生,且PCOS样病变的出现被证实与DEHP暴露引起的过氧化物酶体增殖物激活受体(peroxisome proliferator-activated receptor γ, PPARγ)信号通路激活有关[30]

3.3. PFASs

PFASs是一组多样化的人造化学品,人类可通过包括饮用水、食物和室内环境介质等来源接触PFASs。PFASs可影响发育、并可能对血清胆固醇、肝脏和免疫系统产生不利影响。

多项研究表明,PFASs暴露与PCOS的发生相关。Heffernan AL等收集30例PCOS女性和29例对照女性的血清和卵泡液样本并分析13种全氟烷基酸(perfluorinated alkyl acids, PFAAs),检测到全氟辛烷磺酸盐(perfluorooctane sulfonate, PFOS)、全氟辛酸(perfluorooctanoic acid, PFOA)、全氟己烷磺酸盐(perfluorohexane sulfonate, PFHxS)和全氟壬酸(perfluorononanoic acid, PFNA)与性类固醇和甲状腺激素以及代谢标志物的浓度高度相关,并且血清PFOS水平在PCOS病例和月经周期不规律女性中分别高于对照组及月经周期规则的女性,还发现PCOS病例的糖化血红蛋白水平与血清PFOA、PFHxs和PFAAs总浓度呈负相关[31]。Zhang Y等于2005~2019年期间在美国收集了502例PCOS女性的非空腹血清样本,定量了9种PFASs,发现血清PFOS和PFHxS浓度与PCOS增加几率呈正相关,该研究还显示PFOS是导致PCOS风险的最重要因素[32]。Li S等共招募73例PCOS患者和218名对照受试者并测定卵泡液样本中12种PFAS和血清中性激素的浓度,发现相对于对照组,PCOS组的LH和T水平显著升高,他们通过相关性分析和多元线性回归发现PFOA和T浓度之间存在正相关,并且进行了中介效应分析,发现PFOA通过T直接参与PCOS的发病机制[33]。动物研究表明,PFOA暴露通过增强妊娠小鼠体内氧化应激水平和细胞促凋亡蛋白p53和BAX的水平,降低bcl-2蛋白水平,使黄体功能受到抑制,降低血清孕酮水平[34]

3.4. EDCs在PCOS中作用的研究异质性分析

不同研究中使用的PCOS诊断标准、EDCs暴露评估方法存在差异,这些差异可能会影响结果的可比性和结论的可靠性。

4. 总结

总之,既往研究阐明了EDCs的暴露与PCOS发生密切相关,包括破坏体内激素平衡、干扰卵巢发育、改变体内氧化应激水平。这些研究表明EDCs影响PCOS的机制迫切需要得到进一步的研究。然而,PCOS的根本原因尚不清楚。目前的大多数研究都是回顾性的,方法学问题限制了流行病学研究中EDCs与PCOS之间关联的因果关系的推断。总体而言,通过体外细胞、动物实验和临床研究确定EDCs暴露与PCOS之间的因果关系是有限的,应进行与人体暴露剂量相关的实验研究和更多前瞻性研究以完善其在PCOS中的作用机制,对于预防或阻断EDCs对健康的影响及PCOS的发生至关重要。

声 明

该病例报道已获得病人的知情同意。

NOTES

*通讯作者。

参考文献

[1] Teede, H.J., Tay, C.T., Laven, J.J.E., Dokras, A., Moran, L.J., Piltonen, T.T., et al. (2023) Recommendations from the 2023 International Evidence-Based Guideline for the Assessment and Management of Polycystic Ovary Syndrome. European Journal of Endocrinology, 189, G43-G64.
https://doi.org/10.1093/ejendo/lvad096
[2] 多囊卵巢综合征诊治路径专家共识编写组. 多囊卵巢综合征诊治路径专家共识[J]. 中华生殖与避孕杂志, 2023, 43(4): 337-345.
[3] Stener-Victorin, E. and Deng, Q. (2024) Epigenetic Inheritance of PCOS by Developmental Programming and Germline Transmission. Trends in Endocrinology & Metabolism.
https://doi.org/10.1016/j.tem.2024.12.002
[4] Benvenga, S., Elia, G., Ragusa, F., Paparo, S.R., Sturniolo, M.M., Ferrari, S.M., et al. (2020) Endocrine Disruptors and Thyroid Autoimmunity. Best Practice & Research Clinical Endocrinology & Metabolism, 34, Article 101377.
https://doi.org/10.1016/j.beem.2020.101377
[5] Ding, T., Yan, W., Zhou, T., Shen, W., Wang, T., Li, M., et al. (2022) Endocrine Disrupting Chemicals Impact on Ovarian Aging: Evidence from Epidemiological and Experimental Evidence. Environmental Pollution, 305, Article 119269.
https://doi.org/10.1016/j.envpol.2022.119269
[6] Gore, A.C., Chappell, V.A., Fenton, S.E., Flaws, J.A., Nadal, A., Prins, G.S., et al. (2015) Executive Summary to EDC-2: The Endocrine Society’s Second Scientific Statement on Endocrine-Disrupting Chemicals. Endocrine Reviews, 36, 593-602.
https://doi.org/10.1210/er.2015-1093
[7] Gao, P., da Silva, E., Hou, L., Denslow, N.D., Xiang, P. and Ma, L.Q. (2018) Human Exposure to Polycyclic Aromatic Hydrocarbons: Metabolomics Perspective. Environment International, 119, 466-477.
https://doi.org/10.1016/j.envint.2018.07.017
[8] Czarnywojtek, A., Borowska, M., Dyrka, K., Moskal, J., Kościński, J., Krela-Kaźmierczak, I., et al. (2023) The Influence of Various Endocrine Disruptors on the Reproductive System. Endokrynologia Polska, 74, 221-233.
https://doi.org/10.5603/ep.a2023.0034
[9] Lei, B., Yang, Y., Xu, L., Zhang, X., Yu, M., Yu, J., et al. (2024) Molecular Insights into the Effects of Tetrachlorobisphenol a on Puberty Initiation in Wistar Rats. Science of the Total Environment, 911, Article 168643.
https://doi.org/10.1016/j.scitotenv.2023.168643
[10] Pan, J., Liu, P., Yu, X., Zhang, Z. and Liu, J. (2024) The Adverse Role of Endocrine Disrupting Chemicals in the Reproductive System. Frontiers in Endocrinology, 14, Article 1324993.
https://doi.org/10.3389/fendo.2023.1324993
[11] Dualde, P., Pardo, O., Corpas-Burgos, F., Kuligowski, J., Gormaz, M., Vento, M., et al. (2019) Biomonitoring of Bisphenols A, F, S in Human Milk and Probabilistic Risk Assessment for Breastfed Infants. Science of the Total Environment, 668, 797-805.
https://doi.org/10.1016/j.scitotenv.2019.03.024
[12] Luo, Y., Nie, Y., Tang, L., Xu, C.C. and Xu, L. (2020) The Correlation between UDP-Glucuronosyltransferase Polymorphisms and Environmental Endocrine Disruptors Levels in Polycystic Ovary Syndrome Patients. Medicine, 99, e19444.
https://doi.org/10.1097/md.0000000000019444
[13] Akgül, S., Sur, Ü., Düzçeker, Y., Balcı, A., Kızılkan, M.P., Kanbur, N., et al. (2019) Bisphenol a and Phthalate Levels in Adolescents with Polycystic Ovary Syndrome. Gynecological Endocrinology, 35, 1084-1087.
https://doi.org/10.1080/09513590.2019.1630608
[14] Wang, Y., Zhu, Q., Dang, X., He, Y., Li, X. and Sun, Y. (2016) Local Effect of Bisphenol a on the Estradiol Synthesis of Ovarian Granulosa Cells from PCOS. Gynecological Endocrinology, 33, 21-25.
https://doi.org/10.1080/09513590.2016.1184641
[15] 张文阳. 多囊卵巢综合征与双酚A暴露行为相关性及影响因素研究[D]: [硕士学位论文]. 昆明: 昆明医科大学, 2023.
[16] Kawa, I.A., Masood, A., Ganie, M.A., Fatima, Q., Jeelani, H., Manzoor, S., et al. (2019) Bisphenol a (BPA) Acts as an Endocrine Disruptor in Women with Polycystic Ovary Syndrome: Hormonal and Metabolic Evaluation. Obesity Medicine, 14, Article 100090.
https://doi.org/10.1016/j.obmed.2019.100090
[17] Zhan, W., Tang, W., Shen, X., Xu, H. and Zhang, J. (2023) Exposure to Bisphenol a and Its Analogs and Polycystic Ovarian Syndrome in Women of Childbearing Age: A Multicenter Case-Control Study. Chemosphere, 313, Article 137463.
https://doi.org/10.1016/j.chemosphere.2022.137463
[18] Jurewicz, J., Majewska, J., Berg, A., Owczarek, K., Zajdel, R., Kaleta, D., et al. (2021) Serum Bisphenol a Analogues in Women Diagnosed with the Polycystic Ovary Syndrome—Is There an Association? Environmental Pollution, 272, Article 115962.
https://doi.org/10.1016/j.envpol.2020.115962
[19] Liu, Y., Wang, L., Zhu, L., Ran, B. and Wang, Z. (2020) Bisphenol a Disturbs Transcription of Steroidogenic Genes in Ovary of Rare Minnow Gobiocypris rarus via the Abnormal DNA and Histone Methylation. Chemosphere, 240, Article 124935.
https://doi.org/10.1016/j.chemosphere.2019.124935
[20] Tarantino, G., Valentino, R., Somma, C.D., D'Esposito, V., Passaretti, F., Pizza, G., et al. (2013) Bisphenol a in Polycystic Ovary Syndrome and Its Association with Liver-Spleen Axis. Clinical Endocrinology, 78, 447-453.
https://doi.org/10.1111/j.1365-2265.2012.04500.x
[21] Feng, D., Zhang, H., Jiang, X., Zou, J., Li, Q., Mai, H., et al. (2020) Bisphenol a Exposure Induces Gut Microbiota Dysbiosis and Consequent Activation of Gut-Liver Axis Leading to Hepatic Steatosis in CD-1 Mice. Environmental Pollution, 265, Article 114880.
https://doi.org/10.1016/j.envpol.2020.114880
[22] 杨倩, 刘建梅, 丁洁, 等. 双酚F对斑马鱼早期生命阶段内分泌干扰效应研究[J]. 生态毒理学报, 2021, 16(3): 166-178.
[23] 熊忆茗, 李红梅, 秦占芬. 双酚A对哺乳类实验动物雄性生殖系统发育的影响[J]. 生态毒理学报, 2021, 16(4): 43-56.
[24] 冯婉婷, 李亚妮, 夏国珺. 双酚A对啮齿动物生殖毒性的研究进展[J]. 现代畜牧科技, 2023(1): 83-86.
[25] Yang, Z., Shi, J., Guo, Z., Chen, M., Wang, C., He, C., et al. (2019) A Pilot Study on Polycystic Ovarian Syndrome Caused by Neonatal Exposure to Tributyltin and Bisphenol a in Rats. Chemosphere, 231, 151-160.
https://doi.org/10.1016/j.chemosphere.2019.05.129
[26] Abdallah, S., Jampy, A., Moison, D., Wieckowski, M., Messiaen, S., Martini, E., et al. (2023) Foetal Exposure to the Bisphenols BADGE and BPAF Impairs Meiosis through DNA Oxidation in Mouse Ovaries. Environmental Pollution, 317, Article 120791.
https://doi.org/10.1016/j.envpol.2022.120791
[27] Leng, J., Li, H., Niu, Y., Chen, K., Yuan, X., Chen, H., et al. (2021) Low-Dose Mono(2-Ethylhexyl) Phthalate Promotes Ovarian Cancer Development through PPARα-Dependent PI3K/Akt/NF-κB Pathway. Science of The Total Environment, 790, Article 147990.
https://doi.org/10.1016/j.scitotenv.2021.147990
[28] Al-Saleh, I. (2022) The Relationship between Urinary Phthalate Metabolites and Polycystic Ovary Syndrome in Women Undergoing in Vitro Fertilization: Nested Case-Control Study. Chemosphere, 286, Article 131495.
https://doi.org/10.1016/j.chemosphere.2021.131495
[29] Zhang, M., Liu, C., Yuan, X., Cui, F., Miao, Y., Yao, W., et al. (2023) Individual and Joint Associations of Urinary Phthalate Metabolites with Polycystic Ovary and Polycystic Ovary Syndrome: Results from the TREE Cohort. Environmental Toxicology and Pharmacology, 102, Article 104233.
https://doi.org/10.1016/j.etap.2023.104233
[30] Wang, S., Xu, K., Du, W., Gao, X., Ma, P., Yang, X., et al. (2024) Exposure to Environmental Doses of DEHP Causes Phenotypes of Polycystic Ovary Syndrome. Toxicology, 509, Article 153952.
https://doi.org/10.1016/j.tox.2024.153952
[31] Heffernan, A.L., Cunningham, T.K., Drage, D.S., Aylward, L.L., Thompson, K., Vijayasarathy, S., et al. (2018) Perfluorinated Alkyl Acids in the Serum and Follicular Fluid of UK Women with and without Polycystic Ovarian Syndrome Undergoing Fertility Treatment and Associations with Hormonal and Metabolic Parameters. International Journal of Hygiene and Environmental Health, 221, 1068-1075.
https://doi.org/10.1016/j.ijheh.2018.07.009
[32] Zhang, Y., Martin, L., Mustieles, V., Ghaly, M., Archer, M., Sun, Y., et al. (2024) Per-and Polyfluoroalkyl Substances Exposure Is Associated with Polycystic Ovary Syndrome Risk among Women Attending a Fertility Clinic. Science of The Total Environment, 950, Article 175313.
https://doi.org/10.1016/j.scitotenv.2024.175313
[33] Li, S., Li, G., Lin, Y., Sun, F., Zheng, L., Yu, Y., et al. (2024) Association between Perfluoroalkyl Substances in Follicular Fluid and Polycystic Ovary Syndrome in Infertile Women. Toxics, 12, Article 104.
https://doi.org/10.3390/toxics12020104
[34] Chen, Y., Zhou, L., Xu, J., Zhang, L., Li, M., Xie, X., et al. (2017) Maternal Exposure to Perfluorooctanoic Acid Inhibits Luteal Function via Oxidative Stress and Apoptosis in Pregnant Mice. Reproductive Toxicology, 69, 159-166.
https://doi.org/10.1016/j.reprotox.2017.02.010