[1]
|
Li, X., Kong, X., Yang, C., Cheng, Z., Lv, J., Guo, H., et al. (2024) Global, Regional, and National Burden of Ischemic Stroke, 1990-2021: An Analysis of Data from the Global Burden of Disease Study 2021. eClinicalMedicine, 75, Article 102758. https://doi.org/10.1016/j.eclinm.2024.102758
|
[2]
|
Hacke, W., Kaste, M., Fieschi, C., von Kummer, R., Davalos, A., Meier, D., et al. (1998) Randomised Double-Blind Placebo-Controlled Trial of Thrombolytic Therapy with Intravenous Alteplase in Acute Ischaemic Stroke (ECASS II). The Lancet, 352, 1245-1251. https://doi.org/10.1016/s0140-6736(98)08020-9
|
[3]
|
Wang, Y., Li, S., Pan, Y., Li, H., Parsons, M.W., Campbell, B.C.V., et al. (2023) Tenecteplase versus Alteplase in Acute Ischaemic Cerebrovascular Events (TRACE-2): A Phase 3, Multicentre, Open-Label, Randomised Controlled, Non-Inferiority Trial. The Lancet, 401, 645-654. https://doi.org/10.1016/s0140-6736(22)02600-9
|
[4]
|
Parvez, S., Kaushik, M., Ali, M., Alam, M.M., Ali, J., Tabassum, H., et al. (2022) Dodging Blood Brain Barrier with “Nano” Warriors: Novel Strategy against Ischemic Stroke. Theranostics, 12, 689-719. https://doi.org/10.7150/thno.64806
|
[5]
|
Tian, X., Fan, T., Zhao, W., Abbas, G., Han, B., Zhang, K., et al. (2021) Recent Advances in the Development of Nanomedicines for the Treatment of Ischemic Stroke. Bioactive Materials, 6, 2854-2869. https://doi.org/10.1016/j.bioactmat.2021.01.023
|
[6]
|
Li, C., Sun, T. and Jiang, C. (2021) Recent Advances in Nanomedicines for the Treatment of Ischemic Stroke. Acta Pharmaceutica Sinica B, 11, 1767-1788. https://doi.org/10.1016/j.apsb.2020.11.019
|
[7]
|
Wu, Z., Yuan, K., Zhang, Q., Guo, J.J., Yang, H. and Zhou, F. (2022) Antioxidant PDA-PEG Nanoparticles Alleviate Early Osteoarthritis by Inhibiting Osteoclastogenesis and Angiogenesis in Subchondral Bone. Journal of Nanobiotechnology, 20, Article No. 479. https://doi.org/10.1186/s12951-022-01697-y
|
[8]
|
Li, H., Yin, D., Li, W., Tang, Q., Zou, L. and Peng, Q. (2021) Polydopamine-Based Nanomaterials and Their Potentials in Advanced Drug Delivery and Therapy. Colloids and Surfaces B: Biointerfaces, 199, Article 111502. https://doi.org/10.1016/j.colsurfb.2020.111502
|
[9]
|
Jin, A., Wang, Y., Lin, K. and Jiang, L. (2020) Nanoparticles Modified by Polydopamine: Working as “Drug” Carriers. Bioactive Materials, 5, 522-541. https://doi.org/10.1016/j.bioactmat.2020.04.003
|
[10]
|
Ma, J., Li, J., Wang, X., Li, M., Teng, W., Tao, Z., et al. (2023) GDNF‐Loaded Polydopamine Nanoparticles‐Based Anisotropic Scaffolds Promote Spinal Cord Repair by Modulating Inhibitory Microenvironment. Advanced Healthcare Materials, 12, Article ID: 2202377. https://doi.org/10.1002/adhm.202202377
|
[11]
|
Huang, Q., Jiang, C., Xia, X., Wang, Y., Yan, C., Wang, X., et al. (2023) Pathological BBB Crossing Melanin-Like Nanoparticles as Metal-Ion Chelators and Neuroinflammation Regulators against Alzheimer’s Disease. Research, 6, Article ID: 0180. https://doi.org/10.34133/research.0180
|
[12]
|
Shi, T., Chen, Y., Zhou, L., Wu, D., Chen, Z., Wang, Z., et al. (2024) Carboxymethyl Cellulose/Quaternized Chitosan Hydrogel Loaded with Polydopamine Nanoparticles Promotes Spinal Cord Injury Recovery by Anti-Ferroptosis and M1/M2 Polarization Modulation. International Journal of Biological Macromolecules, 275, Article 133484. https://doi.org/10.1016/j.ijbiomac.2024.133484
|
[13]
|
Yang, X., Chen, Y., Guo, J., Li, J., Zhang, P., Yang, H., et al. (2023) Polydopamine Nanoparticles Targeting Ferroptosis Mitigate Intervertebral Disc Degeneration via Reactive Oxygen Species Depletion, Iron Ions Chelation, and GPX4 Ubiquitination Suppression. Advanced Science, 10, Article ID: 2207216. https://doi.org/10.1002/advs.202207216
|
[14]
|
Lou, X., Hu, Y., Zhang, H., Liu, J. and Zhao, Y. (2021) Polydopamine Nanoparticles Attenuate Retina Ganglion Cell Degeneration and Restore Visual Function after Optic Nerve Injury. Journal of Nanobiotechnology, 19, Article No. 436. https://doi.org/10.1186/s12951-021-01199-3
|
[15]
|
Zhu, T., Wang, H., Gu, H., Ju, L., Wu, X., Pan, W., et al. (2023) Melanin-Like Polydopamine Nanoparticles Mediating Anti-Inflammatory and Rescuing Synaptic Loss for Inflammatory Depression Therapy. Journal of Nanobiotechnology, 21, Article No. 52. https://doi.org/10.1186/s12951-023-01807-4
|
[16]
|
He, Y., Zhang, M., Gong, X., Liu, X., Zhou, F. and Yang, B. (2024) Diselenide-Bridged Mesoporous Silica-Based Nanoplatform with a Triple Ros-Scavenging Effect for Intracerebral Hemorrhage Treatment. ACS Applied Materials & Interfaces, 16, 40739-40752. https://doi.org/10.1021/acsami.4c08726
|
[17]
|
Huang, E., Li, H., Han, H., Guo, L., Liang, Y., Huang, Z., et al. (2024) Polydopamine-Coated Kaempferol-Loaded MOF Nanoparticles: A Novel Therapeutic Strategy for Postoperative Neurocognitive Disorder. International Journal of Nanomedicine, 19, 4569-4588. https://doi.org/10.2147/ijn.s455492
|
[18]
|
Cao, Z., Liu, X., Zhang, W., Zhang, K., Pan, L., Zhu, M., et al. (2023) Biomimetic Macrophage Membrane-Camouflaged Nanoparticles Induce Ferroptosis by Promoting Mitochondrial Damage in Glioblastoma. ACS Nano, 17, 23746-23760. https://doi.org/10.1021/acsnano.3c07555
|
[19]
|
Liu, J., Chi, M., Li, L., Zhang, Y. and Xie, M. (2024) Erythrocyte Membrane Coated with Nitrogen-Doped Quantum Dots and Polydopamine Composite Nano-System Combined with Photothermal Treatment of Alzheimer’s Disease. Journal of Colloid and Interface Science, 663, 856-868. https://doi.org/10.1016/j.jcis.2024.02.219
|
[20]
|
Shi, J., Yang, Y., Yin, N., Liu, C., Zhao, Y., Cheng, H., et al. (2021) Engineering CXCL12 Biomimetic Decoy‐Integrated Versatile Immunosuppressive Nanoparticle for Ischemic Stroke Therapy with Management of Overactivated Brain Immune Microenvironment. Small Methods, 6, Article 2101158. https://doi.org/10.1002/smtd.202101158
|
[21]
|
Yu, X., Chen, D., Zhang, Y., Wu, X., Huang, Z., Zhou, H., et al. (2012) Overexpression of CXCR4 in Mesenchymal Stem Cells Promotes Migration, Neuroprotection and Angiogenesis in a Rat Model of Stroke. Journal of the Neurological Sciences, 316, 141-149. https://doi.org/10.1016/j.jns.2012.01.001
|
[22]
|
Li, X., Zhang, Y., Wang, Y., Zhao, D., Sun, C., Zhou, S., et al. (2020) Exosomes Derived from CXCR4-Overexpressing BMSC Promoted Activation of Microvascular Endothelial Cells in Cerebral Ischemia/Reperfusion Injury. Neural Plasticity, 2020, Article ID: 8814239. https://doi.org/10.1155/2020/8814239
|
[23]
|
Zhang, S., Asghar, S., Ye, J., Lin, L., Ping, Q., Chen, Z., et al. (2020) A Combination of Receptor Mediated Transcytosis and Photothermal Effect Promotes BBB Permeability and the Treatment of Meningitis Using Itraconazole. Nanoscale, 12, 23709-23720. https://doi.org/10.1039/d0nr04035e
|
[24]
|
Chen, X., Zheng, Y., Zhang, Q., Chen, Q., Chen, Z. and Wu, D. (2024) Dual-Targeted Delivery of Temozolomide by Multi-Responsive Nanoplatform via Tumor Microenvironment Modulation for Overcoming Drug Resistance to Treat Glioblastoma. Journal of Nanobiotechnology, 22, Article No. 264. https://doi.org/10.1186/s12951-024-02531-3
|
[25]
|
Gao, Y., Cheng, Y., Chen, J., Lin, D., Liu, C., Zhang, L., et al. (2022) NIR‐Assisted MgO‐Based Polydopamine Nanoparticles for Targeted Treatment of Parkinson’s Disease through the Blood-Brain Barrier. Advanced Healthcare Materials, 11, Article ID: 2201655. https://doi.org/10.1002/adhm.202201655
|
[26]
|
Duan, Q., Liu, R., Luo, J., Zhang, J., Zhou, Y., Zhao, J., et al. (2023) Virus-Inspired Glucose and Polydopamine (GPDA)-Coating as an Effective Strategy for the Construction of Brain Delivery Platforms. Nano Letters, 24, 402-410. https://doi.org/10.1021/acs.nanolett.3c04175
|
[27]
|
Wang, X., Song, B., Wang, Z., Qin, L. and Liang, W. (2023) The Innovative Design of a Delivery and Real-Time Tracer System for Anti-Encephalitis Drugs That Can Penetrate the Blood-Brain Barrier. Journal of Controlled Release, 363, 136-148. https://doi.org/10.1016/j.jconrel.2023.09.043
|
[28]
|
Cui, W., Liu, R., Jin, H., Lv, P., Sun, Y., Men, X., et al. (2016) pH Gradient Difference around Ischemic Brain Tissue Can Serve as a Trigger for Delivering Polyethylene Glycol-Conjugated Urokinase Nanogels. Journal of Controlled Release, 225, 53-63. https://doi.org/10.1016/j.jconrel.2016.01.028
|
[29]
|
Li, Y., Jiang, C., Zhang, D., Wang, Y., Ren, X., Ai, K., et al. (2017) Targeted Polydopamine Nanoparticles Enable Photoacoustic Imaging Guided Chemo-Photothermal Synergistic Therapy of Tumor. Acta Biomaterialia, 47, 124-134. https://doi.org/10.1016/j.actbio.2016.10.010
|
[30]
|
Cai, W., Wu, Q., Yan, Z.Z., He, W., Zhou, X., Zhou, L., et al. (2021) Neuroprotective Effect of Ultrasound Triggered Astaxanthin Release Nanoparticles on Early Brain Injury after Subarachnoid Hemorrhage. Frontiers in Chemistry, 9, Article 775274. https://doi.org/10.3389/fchem.2021.775274
|
[31]
|
Yan, J., Liu, T., Li, Y., Zhang, J., Shi, B., Zhang, F., et al. (2023) Effects of Magnetically Targeted Iron Oxide@Polydopamine-Labeled Human Umbilical Cord Mesenchymal Stem Cells in Cerebral Infarction in Mice. Aging, 15, 1130-1142. https://doi.org/10.18632/aging.204540
|
[32]
|
Zhao, Y., Song, C., Wang, H., Gai, C., Li, T., Cheng, Y., et al. (2024) Polydopamine-Cloaked Nanoarchitectonics of Prussian Blue Nanoparticles Promote Functional Recovery in Neonatal and Adult Ischemic Stroke Models. Biomaterials Research, 28, Article ID: 0079. https://doi.org/10.34133/bmr.0079
|
[33]
|
Wu, D., Zhou, J., Zheng, Y., Zheng, Y., Zhang, Q., Zhou, Z., et al. (2023) Pathogenesis-Adaptive Polydopamine Nanosystem for Sequential Therapy of Ischemic Stroke. Nature Communications, 14, Article No. 7147. https://doi.org/10.1038/s41467-023-43070-z
|
[34]
|
Jiang, X., Wang, W., Tang, J., Han, M., Xu, Y., Zhang, L., et al. (2023) Ligand‐Screened Cerium‐Based MOF Microcapsules Promote Nerve Regeneration via Mitochondrial Energy Supply. Advanced Science, 11, Article ID: 2306780. https://doi.org/10.1002/advs.202306780
|
[35]
|
Wang, Y., Li, B., Xu, H., Du, S., Liu, T., Ren, J., et al. (2020) Growth and Elongation of Axons through Mechanical Tension Mediated by Fluorescent-Magnetic Bifunctional Fe3O4·Rhodamine 6G@PDA Superparticles. Journal of Nanobiotechnology, 18, Article No. 64. https://doi.org/10.1186/s12951-020-00621-6
|
[36]
|
Liu, Y., Ai, K., Liu, J., Deng, M., He, Y. and Lu, L. (2012) Dopamine‐Melanin Colloidal Nanospheres: An Efficient Near‐Infrared Photothermal Therapeutic Agent for in vivo Cancer Therapy. Advanced Materials, 25, 1353-1359. https://doi.org/10.1002/adma.201204683
|