聚多巴胺纳米颗粒在缺血性卒中脑保护治疗的应用研究进展
Research Progress on the Application of Polydopamine Nanoparticles in the Protective Treatment of the Brain in Ischemic Stroke
DOI: 10.12677/acm.2025.152407, PDF, HTML, XML,   
作者: 梁思婉*, 付 雪, 李贝贝:暨南大学附属第一医院(广州华侨医院)神经内科,广东 广州;杨万勇#:暨南大学附属第五医院(河源市深河人民医院)神经内科,广东 河源
关键词: 聚多巴胺纳米颗粒缺血性卒中神经保护大脑靶向多靶点治疗Polydopamine Nanoparticles Ischemic Stroke Neuroprotection Brain Targeting Multi-Target Therapy
摘要: 缺血性卒中是一种高致残率和致死率的脑血管疾病,早期治疗以溶栓和神经保护为主。神经保护剂可改善溶栓再通引发的缺血再灌注损伤,但因存在脑靶向性不足和作用靶点单一等缺陷,在临床应用中疗效欠佳。聚多巴胺纳米颗粒是一种具有自由基清除、多功能修饰、光热转换等特性的纳米材料,在神经保护、药物靶向、多靶点治疗方面具有独特优势,为突破目前神经保护治疗的局限提供了一个多功能集合平台。本文总结了聚多巴胺纳米颗粒的抗炎抗氧化的神经保护作用,系统阐述了聚多巴胺纳米颗粒通过各种途径促进神经保护剂靶向大脑,并结合其本身的自由基清除功能发挥多靶点治疗,为疗效确切的脑保护治疗方案的开发和应用提供新的策略。
Abstract: Ischemic stroke is a cerebrovascular disease with a high disabling and lethal rate, and early treatment is mainly thrombolysis and neuroprotection. Neuroprotective agents can improve ischemia-reperfusion injury caused by thrombolytic recanalization, but they have poor efficacy in clinical application due to shortcomings such as insufficient brain targeting and single target. Polydopamine nanoparticles are nanomaterials with the characteristics of free radical scavenging, multifunctional modification, photothermal conversion, etc., which have unique advantages in neuroprotection, drug targeting, and multi-target therapy, and provide a multifunctional platform for breaking through the limitations of current neuroprotective therapy. In this paper, we summarize the neuroprotective effects of polydopamine nanoparticles on anti-inflammatory and antioxidant effects, and systematically elaborate that polydopamine nanoparticles promote the targeting of neuroprotective agents to the brain through various pathways, and combine their own free radical scavenging functions to exert multi-target therapy, providing a new strategy for the development and application of brain protection therapy regimens with definite efficacy.
文章引用:梁思婉, 付雪, 李贝贝, 杨万勇. 聚多巴胺纳米颗粒在缺血性卒中脑保护治疗的应用研究进展[J]. 临床医学进展, 2025, 15(2): 782-789. https://doi.org/10.12677/acm.2025.152407

1. 引言

缺血性卒中(ischemic storke, IS)是常见脑血管疾病,是全球死亡和致残的主要原因之一。2021年全球IS的病例总数达约699万例,年龄标准化的死亡率达44.2例/每10万人和年龄标准化的残疾调整生命年率达837.4例/10万人[1],造成严重的疾病负担。目前针对IS的早期治疗包括溶栓和神经保护。溶栓剂在3~4.5小时内可挽救缺血半暗带,且已在临床试验中证明疗效确切[2] [3],但由于诊疗时长导致超过时间窗,且溶栓再通后容易引起缺血再灌注损伤,因此积极脑保护治疗对改善IS的预后至关重要。神经保护剂已被证实在临床前研究可有效管理缺血微环境和改善神经损伤,然而,100多种进入临床试验的神经保护剂,因为存在循环半衰期短、难以通过血脑屏障(blood-brain-barrier, BBB)、难以靶向特定脑区和治疗靶点单一等的问题[4],在随机对照试验中都没有显示出疗效[5] [6]

聚多巴胺(polydopamine, PDA)是一种人工合成的类黑色素纳米材料,本身具有自由基清除能力,有助于在氧化应激和神经炎症中发挥神经保护作用。同时,其富含儿茶酚胺、领二苯酚基团的使可粘附于所有材料,且能够与多种化合物二次反应,实现材料的改性和功能修饰,成为一个多功能的药物递送平台[7]-[9]。这些强大的功能使PDA有望在神经保护、药物靶向、多靶点治疗方面为IS脑保护治疗提供新的策略。

2. PDA作为自由基清除剂在IS中的神经保护作用

2.1. PDA减轻氧化应激损伤发挥神经保护作用

PDA纳米颗粒作为自由基清除剂具有多重抗氧化活性[10] [11],可有效减轻氧化应激损伤在IS中发挥神经保护作用。PDA纳米颗粒可有效清除活性氧(reactive oxygen, ROS)减少线粒体损伤,改善线粒体呼吸功能并可以逆转调亡标志物Bax蛋白和半胱氨酸蛋白酶-3的上调和抗调亡标志物Bcl-2下调发挥抗调亡作用[12]。另一方面,PDA纳米颗粒可通过清除ROS、螯合铁离子、抑制泛素介导的GPX4降解和增加脂质修复酶的表达等多途径改善组织铁死亡[13]。PDA纳米颗粒可有效抑制IS中ROS剧增导致的氧化应激损伤过程,通过抗氧化途径发挥线粒体保护,抗调亡和抗铁死亡的神经保护作用。

2.2. PDA减轻神经炎症发挥神经保护作用

PDA纳米颗粒作为自由基清除剂可通过免疫调节和清除ROS减轻神经炎症在IS中发挥神经保护作用[14]。IS造成的缺氧和缺血再灌注损伤均会诱导神经胶质细胞活化为M1表型,激活NF-κB炎症通路,增加促炎因子的转录,并进一步激活内皮细胞和星形胶质细胞中的炎症级联反应。PDA纳米颗粒可有效逆转小胶质细胞MI表型的活化,通过TLR4/NF-κB信号通路下调TNF-α、IL-1β和iNOS等促炎因子的表达,并上调包括IL-10和TGF-β抗炎因子的表达,同时还能抑制星型胶质细胞的活化和神经瘢痕的形成,通过免疫调节有效减轻IS中神经炎症[15] [16]。PDA纳米颗粒还可有效清除ROS,阻断ROS增加和小胶质细胞MI表型活化的相互促进过程,有效抑制IS炎症级联反应管理缺血炎症微环境发挥神经保护作用。

3. PDA作为药物载体有助于提高神经保护剂的治疗效果

神经保护剂因为循环半衰期短、难以通过BBB、难以靶向特定脑区等靶向效率低的特点,在临床试验中的疗效不佳。PDA纳米颗粒作为药物载体可构建一个多功能药物递送平台,通过各种途径从延长作用时间,促进穿透BBB和靶向特定脑区三个方面增强神经保护剂的大脑靶向性,增强大脑缺血损伤区域的药物聚集浓度,从而提高神经保护剂疗效。

3.1. PDA可延长神经保护剂作用时间

PDA纳米颗粒可延长药物在体内的作用时间,提高药物递送浓度。PDA富含多个官能团具有分散性和亲水性,并且可通过模拟生物相容性材料特性减少蛋白质在药物的表面吸附,最终减少免疫系统激活、识别与清除,延长药物的循环半衰期[17],由此可增强神经保护剂在脑内皮的递送浓度。此外,PDA纳米颗粒还可以被红细胞、巨噬细胞或间充质细胞的细胞膜包裹以降低其免疫原性[18]-[20],逃避单核巨噬系统的清除,实现稳定长循环。PDA纳米颗粒可通过调节物理化学性质和细胞膜介导的方式,避免药物在循环中过快被清除,延长和增加药物在脑内皮处的作用时间和浓度,为神经保护剂进入大脑提供前提条件。

3.2. PDA有助于协同神经保护剂穿透BBB

PDA纳米颗粒可通过转胞吞作用和光热可控性等多种主动靶向策略穿透BBB,提高神经保护剂在大脑内的血药浓度。缺血性卒中引起的BBB损伤有利于PDA借助其长循环稳定性被动靶向至大脑[15] [17]。然而,BBB只能在特定的时间窗内短暂打开,这仍极大限制了药物的积累,因此通过主动靶向跨越BBB是一种更有效的BBB穿透方式。IS诱发的神经炎症反应引起趋化因子CXCL12的上调表达,并介导间充质干细胞向缺血区域迁移[21] [22]。Shi等报道PDA纳米颗粒可被CXCR4过表达的间充质干细胞膜包裹,与上调的CXCL12结合并基于间充质细胞的趋化性向缺血区域迁移,通过受体介导和细胞介导的转胞吞作用的有效渗透BBB [20]。除此之外,已有研究证明PDA纳米颗粒通过修饰相关配体如载脂蛋白E [23]、受体相关蛋白短肽配体[24]、血管生成抑制肽-2 [21]、乳铁蛋白[25]以及糖基化修饰等方式与BBB上大量表达的低密度脂蛋白受体、低密度脂蛋白相关蛋白1受体、转铁蛋白受体、葡萄糖转运蛋白-1受体[26]结合,通过受体介导或载体介导的转胞吞作用成功穿透BBB实现脑靶向。另一方面,基于PDA优异的光热转换性能(≈40%),PDA纳米系统可以通过外部近红外激光照射产生低温光热效应,可控地增强BBB通透性促进药物进入大脑[27]。可见PDA纳米颗粒在辅助神经保护剂穿透BBB靶向大脑实现高浓度聚集方面具有巨大应用潜力,有助于充分发挥神经保护剂的疗效,有效改善IS引发的缺血再灌注损伤。

3.3. PDA有助于神经保护剂靶向脑区

PDA可通过多种药物响应机制促进神经保护剂在大脑缺血区域精准释放。在缺血半暗带微环境中,缺血和再灌注会导致ROS水平升高。Shi等研究证明PDA可与缺血部位上调的ROS触发响应控释药物[26]。另一方面,大脑中动脉闭塞后1小时,缺血组织(pH值6.73)和正常组织(pH值7.12)之间的pH梯度用于实现靶向释放[28]。Li等研究证明基于PDA的纳米颗粒暴露于较低pH环境时,出现负载药物爆发释放,并且累积释放的药物剂量在近红外光辐照下增强[29]。由此可见PDA纳米颗粒可通过缺血微环境中pH值和外部控制的近红外照射在特定区域响应释放药物。已证明PDA纳米颗粒可通过调整近红外光的照射时间和功率密度远程控制药物释放,延长药物在该脑区的停留时间[27]。此外,PDA纳米颗粒可与超声、磁性材料共组装构成多响应平台,通过超声[30]、磁场[31]的外部干扰控制药物到特定脑区释放。PDA纳米颗粒通过ROS响应、pH响应和近红外(Near-Infrared, NIR)响应等多种途径促进神经保护剂靶向大脑缺血区域释放,更高效趋向和作用于IS缺血微环境,发挥更强效的神经保护作用。

4. PDA联合不同的神经保护剂发挥多靶点治疗

IS发病机制复杂,涉及兴奋性毒性、氧化应激、神经炎症等多个过程相互作用[6]。单一靶点的神经保护剂作用局限,难以控制缺血和炎症级联反应,最终促进神经再生和功能恢复疗效有限。PDA纳米颗粒具有自由基清除剂和药物载体的双重属性,可负载不同的神经保护剂实现单靶点向多靶点转化的脑保护治疗。

4.1. PDA联合兴奋性毒性抑制剂

兴奋性毒性过程引发N-甲基-d-天冬氨酸受体(N-methyl-D-aspartate receptor, NMDAR)的过度激活、γ-氨基丁酸受体(Gamma-Aminobutyric Acid Receptor, GABAR)活性抑制,导致大量活性氮/ROS产生、神经炎症和细胞凋亡。Lou等研究发现,与单一的NMDAR拮抗剂溴莫尼定相比,使用PDA纳米颗粒负载溴莫尼定更有效挽救视神经细胞凋亡和促进视觉功能的恢复,而且显着减少了小胶质细胞的数量和促进轴突再生,这可能归因于PDA强大的抗氧化特性,因此表现出比单靶点治疗显著强效的神经保护作用[14]。另外,调节GABAR活性是抑制兴奋性毒性另一个关键靶点,具有抗氧化特性PDA纳米颗粒联用GABAR激动剂多靶点脑保护疗效值得进一步研究。

4.2. PDA联合抗氧化剂

活性氧的过量产生导致氧化应激损伤,介导炎症发生和细胞凋亡。依达拉奉作为一种自由基清除剂已在临床应用于IS的治疗,但其作为单靶点药物疗效局限。同样作为自由基清除剂的PDA纳米颗粒可与具有抗氧化性能的二硒化物和依达拉奉共组装,协同发挥三重ROS清除效应以及显著减少神经元凋亡,表现出比单一药物更强大的神经保护作用[16]。另外,具有强大的抗氧化特性的纳米酶的开发成为IS治疗的潜在靶点。Zhao等研究发现PDA纳米材料包被普鲁士蓝纳米酶可发挥强效抗氧化效应,不仅有效递送普鲁士蓝靶向线粒体,而且可高效清除线粒体ROS、减少神经胶质细胞活化和促炎细胞因子表达、挽救线粒体介导的神经元凋亡、减轻突触损伤等多机制管理缺血微环境[32],对比单药治疗更有效地减少梗死面积和改善神经功能预后。

4.3. PDA联合抗炎药物

炎症级联反应与氧化应激损伤相互促进,进一步加重缺血半暗带的扩张。PDA纳米颗粒负载抗炎药物米诺环素,不仅协同发挥高效的ROS清除、抑制ROS介导的细胞凋亡和自噬、通过NF-κB等途径抑制小胶质细胞促炎极化等多重神经保护效应,并且可通过偶联基质金属蛋白酶反应肽,实现按需调控两种靶点药物在氧化应激损伤和神经炎症不同病理阶段续贯释放,对比单纯联合给药可更有效地促进脑损伤康复[33],为多靶点脑保护剂的进一步优化提供了依据和前景。另外,多途径抑制炎症通路有利于减少缺血半暗带扩张。Shi等报道PDA纳米颗粒负载炎症通路抑制剂,通过有效吸附和中和炎症因子CXCL12、抑制小胶质细胞中的cGAS-STING通路和清除ROS,协同控制外周和中枢炎症,阻断ROS的炎症介导等多途径管理过度激活的脑免疫微环境[20],在减少缺血半暗带扩张和保护神经功能方面显示更突出的疗效。

4.4. PDA联合神经再生治疗

神经修复和再生是IS长期脑保护治疗的关键靶点。PDA负载神经营养因子GDNF,不仅清除ROS和调节小胶质细胞极化,而且释放GDNF促进轴突再生并与下游形成新突触,通过有效管理炎症微环境和营养神经减轻神经损伤和促进神经再生,协同促进运动功能的恢复[10],具有潜在的临床应用前景。另外,PDA纳米颗粒负载肌酸,可通过琥珀酸/HIF-1α/IL-1β信号轴重编程促炎巨噬细胞为促再生表型,并激活巨噬细胞的mTOR通路和旁分泌功能来促进神经细胞的再生和分化[34],为PDA联合能量补充促进神经修复和再生的临床应用提供理论依据和前景。另一方面,Wang等研究发现PDA与磁性材料Fe3O4共组装,可被神经元内吞并在磁场作用力下精确、无创地远程操纵神经元再生。转录组测序和生物信息学分析表明,两者可以通过调Cdh11和Csf1r基因的表达来改善Cadherin-11和Csf1的生物学功能促进轴突再生[35]。但该研究并未深入阐明PDA在轴突生长的靶点治疗作用,其潜在机制值得进一步探索。

5. PDA纳米颗粒的生物安全性评价

PDA纳米颗粒具有良好的生物安全性。PDA纳米颗粒在400 μg/mL的高浓度下,48 h后未诱导显着细胞毒性,在500 μg/mL的浓度下仅产生轻微的毒性作用,这表明PDA纳米颗粒具有较低的细胞毒性[11] [12] [15]。PDA纳米颗粒全身安全性评估至关重要。溶血实验显示PDA纳米颗粒在200 μg/mL的高浓度下4小时后未见明显的溶血,具有较好的血液相容性[15]。另外,Zhao等研究发现,接受PDA纳米颗粒治疗28天后的假手术组,在脑组织中没有神经元损伤或病变,并在脑形态学上、血液生化检测、组织染色(心肌细胞、肝细胞、脾、肺和肾)方面相比假手术组未见显著差异。这表明PDA纳米系统对大脑和外周器官无明显毒性[32]。并且,在相同剂量下,相比潜在肝毒性的米诺环素,PDA负载米诺环素对肝功能无明显影响,进一步验证PDA纳米系统的组织相容性[33]。目前研究尚未发现PDA纳米颗粒引起显著的免疫反应,研究表明,PDA纳米颗粒在白细胞、血红蛋白、血小板等血常规检查与对照组无异,表明对血红素或免疫反应没有明显影响[29],但仍需更多研究探索其潜在相关性。PDA纳米颗粒能否降解是长期体内毒性关键。He等研究发现PDA负载依达拉奉主要由尿路主动排泄,少量通过胆道排泄,并随时间推移逐渐增加,这表明PDA纳米药物可从体内顺利清除[16]。此外,已证明PDA纳米药物可被体内的过氧化氢氧化降解[29] [36],进一步表明具有生物可降解性。综上所述,PDA纳米颗粒具有低细胞毒性、良好的血液/组织相容性、较低的免疫原性、一定的生物降解性,在IS脑保护治疗中具有应用前景,但仍需进一步研究以确保在临床应用中绝对安全。

6. 总结和展望

PDA的纳米颗粒在IS的神经保护治疗具有多重优势:(1) 强自由基清除能力:有效抑制氧化应激损伤和神经炎症。(2) 高效脑靶向性:低免疫清除、多靶肽修饰实现高BBB渗透、ROS/pH/NIR响应脑区。(3) 多靶点神经保护治疗,对比单药治疗显著改善临床症状和预后。因此,PDA纳米系统在突破IS脑保护治疗脑靶向不足和作用靶点单一的瓶颈方面具有潜在的基础价值和临床应用前景。

然而PDA纳米颗粒实现临床转化仍需面临诛多挑战和问题:(1) 基于PDA纳米颗粒的制备停留在实验室阶段,无法适配大规模临床需求。仍需进一步明确聚合机制和化学结构、优化合成和反应条件、建立标准化的提取和纯化程序以获得性能稳定、低成本的产品适应临床需求。(2) PDA纳米颗粒的靶向效率和控释性能仍需优化,需要更多研究结合IS病理机制整合PDA纳米颗粒多种靶向机制,深入探索ROS/PH响应机制在脑缺血区域的药物释放规律、药物与载体的整合模式,并联合磁性材料、NIR照射等构建多重靶向和多重刺激响应平台更有利于药物在脑缺血区域精准地积累和释放。(3) PDA联合神经保护剂在IS中发挥多靶点脑保护作用的分子机制有待进一步阐明,为未来临床转化提供确切的理论依据。另外,PDA纳米平台能否靶向运送基因药物(比如环状RNA)至脑缺血区域和管理缺血炎症微环境提高干细胞存活,促进IS脑保护新靶点药物的开发,值得深入研究。(4) 虽然多项研究表明PDA纳米颗粒具有良好的生物安全性,但仍需进一步探索其潜在的免疫反应,具体的生物降解过程和代谢途径。(5) 需要选择合适的缺血性卒中模型,进行初步的临床前实验,确定最佳的剂量,治疗周期和疗效评估标准,并进行安全性评估,为进一步临床试验设计提供依据。

NOTES

*第一作者。

#通讯作者。

参考文献

[1] Li, X., Kong, X., Yang, C., Cheng, Z., Lv, J., Guo, H., et al. (2024) Global, Regional, and National Burden of Ischemic Stroke, 1990-2021: An Analysis of Data from the Global Burden of Disease Study 2021. eClinicalMedicine, 75, Article 102758.
https://doi.org/10.1016/j.eclinm.2024.102758
[2] Hacke, W., Kaste, M., Fieschi, C., von Kummer, R., Davalos, A., Meier, D., et al. (1998) Randomised Double-Blind Placebo-Controlled Trial of Thrombolytic Therapy with Intravenous Alteplase in Acute Ischaemic Stroke (ECASS II). The Lancet, 352, 1245-1251.
https://doi.org/10.1016/s0140-6736(98)08020-9
[3] Wang, Y., Li, S., Pan, Y., Li, H., Parsons, M.W., Campbell, B.C.V., et al. (2023) Tenecteplase versus Alteplase in Acute Ischaemic Cerebrovascular Events (TRACE-2): A Phase 3, Multicentre, Open-Label, Randomised Controlled, Non-Inferiority Trial. The Lancet, 401, 645-654.
https://doi.org/10.1016/s0140-6736(22)02600-9
[4] Parvez, S., Kaushik, M., Ali, M., Alam, M.M., Ali, J., Tabassum, H., et al. (2022) Dodging Blood Brain Barrier with “Nano” Warriors: Novel Strategy against Ischemic Stroke. Theranostics, 12, 689-719.
https://doi.org/10.7150/thno.64806
[5] Tian, X., Fan, T., Zhao, W., Abbas, G., Han, B., Zhang, K., et al. (2021) Recent Advances in the Development of Nanomedicines for the Treatment of Ischemic Stroke. Bioactive Materials, 6, 2854-2869.
https://doi.org/10.1016/j.bioactmat.2021.01.023
[6] Li, C., Sun, T. and Jiang, C. (2021) Recent Advances in Nanomedicines for the Treatment of Ischemic Stroke. Acta Pharmaceutica Sinica B, 11, 1767-1788.
https://doi.org/10.1016/j.apsb.2020.11.019
[7] Wu, Z., Yuan, K., Zhang, Q., Guo, J.J., Yang, H. and Zhou, F. (2022) Antioxidant PDA-PEG Nanoparticles Alleviate Early Osteoarthritis by Inhibiting Osteoclastogenesis and Angiogenesis in Subchondral Bone. Journal of Nanobiotechnology, 20, Article No. 479.
https://doi.org/10.1186/s12951-022-01697-y
[8] Li, H., Yin, D., Li, W., Tang, Q., Zou, L. and Peng, Q. (2021) Polydopamine-Based Nanomaterials and Their Potentials in Advanced Drug Delivery and Therapy. Colloids and Surfaces B: Biointerfaces, 199, Article 111502.
https://doi.org/10.1016/j.colsurfb.2020.111502
[9] Jin, A., Wang, Y., Lin, K. and Jiang, L. (2020) Nanoparticles Modified by Polydopamine: Working as “Drug” Carriers. Bioactive Materials, 5, 522-541.
https://doi.org/10.1016/j.bioactmat.2020.04.003
[10] Ma, J., Li, J., Wang, X., Li, M., Teng, W., Tao, Z., et al. (2023) GDNF‐Loaded Polydopamine Nanoparticles‐Based Anisotropic Scaffolds Promote Spinal Cord Repair by Modulating Inhibitory Microenvironment. Advanced Healthcare Materials, 12, Article ID: 2202377.
https://doi.org/10.1002/adhm.202202377
[11] Huang, Q., Jiang, C., Xia, X., Wang, Y., Yan, C., Wang, X., et al. (2023) Pathological BBB Crossing Melanin-Like Nanoparticles as Metal-Ion Chelators and Neuroinflammation Regulators against Alzheimer’s Disease. Research, 6, Article ID: 0180.
https://doi.org/10.34133/research.0180
[12] Shi, T., Chen, Y., Zhou, L., Wu, D., Chen, Z., Wang, Z., et al. (2024) Carboxymethyl Cellulose/Quaternized Chitosan Hydrogel Loaded with Polydopamine Nanoparticles Promotes Spinal Cord Injury Recovery by Anti-Ferroptosis and M1/M2 Polarization Modulation. International Journal of Biological Macromolecules, 275, Article 133484.
https://doi.org/10.1016/j.ijbiomac.2024.133484
[13] Yang, X., Chen, Y., Guo, J., Li, J., Zhang, P., Yang, H., et al. (2023) Polydopamine Nanoparticles Targeting Ferroptosis Mitigate Intervertebral Disc Degeneration via Reactive Oxygen Species Depletion, Iron Ions Chelation, and GPX4 Ubiquitination Suppression. Advanced Science, 10, Article ID: 2207216.
https://doi.org/10.1002/advs.202207216
[14] Lou, X., Hu, Y., Zhang, H., Liu, J. and Zhao, Y. (2021) Polydopamine Nanoparticles Attenuate Retina Ganglion Cell Degeneration and Restore Visual Function after Optic Nerve Injury. Journal of Nanobiotechnology, 19, Article No. 436.
https://doi.org/10.1186/s12951-021-01199-3
[15] Zhu, T., Wang, H., Gu, H., Ju, L., Wu, X., Pan, W., et al. (2023) Melanin-Like Polydopamine Nanoparticles Mediating Anti-Inflammatory and Rescuing Synaptic Loss for Inflammatory Depression Therapy. Journal of Nanobiotechnology, 21, Article No. 52.
https://doi.org/10.1186/s12951-023-01807-4
[16] He, Y., Zhang, M., Gong, X., Liu, X., Zhou, F. and Yang, B. (2024) Diselenide-Bridged Mesoporous Silica-Based Nanoplatform with a Triple Ros-Scavenging Effect for Intracerebral Hemorrhage Treatment. ACS Applied Materials & Interfaces, 16, 40739-40752.
https://doi.org/10.1021/acsami.4c08726
[17] Huang, E., Li, H., Han, H., Guo, L., Liang, Y., Huang, Z., et al. (2024) Polydopamine-Coated Kaempferol-Loaded MOF Nanoparticles: A Novel Therapeutic Strategy for Postoperative Neurocognitive Disorder. International Journal of Nanomedicine, 19, 4569-4588.
https://doi.org/10.2147/ijn.s455492
[18] Cao, Z., Liu, X., Zhang, W., Zhang, K., Pan, L., Zhu, M., et al. (2023) Biomimetic Macrophage Membrane-Camouflaged Nanoparticles Induce Ferroptosis by Promoting Mitochondrial Damage in Glioblastoma. ACS Nano, 17, 23746-23760.
https://doi.org/10.1021/acsnano.3c07555
[19] Liu, J., Chi, M., Li, L., Zhang, Y. and Xie, M. (2024) Erythrocyte Membrane Coated with Nitrogen-Doped Quantum Dots and Polydopamine Composite Nano-System Combined with Photothermal Treatment of Alzheimer’s Disease. Journal of Colloid and Interface Science, 663, 856-868.
https://doi.org/10.1016/j.jcis.2024.02.219
[20] Shi, J., Yang, Y., Yin, N., Liu, C., Zhao, Y., Cheng, H., et al. (2021) Engineering CXCL12 Biomimetic Decoy‐Integrated Versatile Immunosuppressive Nanoparticle for Ischemic Stroke Therapy with Management of Overactivated Brain Immune Microenvironment. Small Methods, 6, Article 2101158.
https://doi.org/10.1002/smtd.202101158
[21] Yu, X., Chen, D., Zhang, Y., Wu, X., Huang, Z., Zhou, H., et al. (2012) Overexpression of CXCR4 in Mesenchymal Stem Cells Promotes Migration, Neuroprotection and Angiogenesis in a Rat Model of Stroke. Journal of the Neurological Sciences, 316, 141-149.
https://doi.org/10.1016/j.jns.2012.01.001
[22] Li, X., Zhang, Y., Wang, Y., Zhao, D., Sun, C., Zhou, S., et al. (2020) Exosomes Derived from CXCR4-Overexpressing BMSC Promoted Activation of Microvascular Endothelial Cells in Cerebral Ischemia/Reperfusion Injury. Neural Plasticity, 2020, Article ID: 8814239.
https://doi.org/10.1155/2020/8814239
[23] Zhang, S., Asghar, S., Ye, J., Lin, L., Ping, Q., Chen, Z., et al. (2020) A Combination of Receptor Mediated Transcytosis and Photothermal Effect Promotes BBB Permeability and the Treatment of Meningitis Using Itraconazole. Nanoscale, 12, 23709-23720.
https://doi.org/10.1039/d0nr04035e
[24] Chen, X., Zheng, Y., Zhang, Q., Chen, Q., Chen, Z. and Wu, D. (2024) Dual-Targeted Delivery of Temozolomide by Multi-Responsive Nanoplatform via Tumor Microenvironment Modulation for Overcoming Drug Resistance to Treat Glioblastoma. Journal of Nanobiotechnology, 22, Article No. 264.
https://doi.org/10.1186/s12951-024-02531-3
[25] Gao, Y., Cheng, Y., Chen, J., Lin, D., Liu, C., Zhang, L., et al. (2022) NIR‐Assisted MgO‐Based Polydopamine Nanoparticles for Targeted Treatment of Parkinson’s Disease through the Blood-Brain Barrier. Advanced Healthcare Materials, 11, Article ID: 2201655.
https://doi.org/10.1002/adhm.202201655
[26] Duan, Q., Liu, R., Luo, J., Zhang, J., Zhou, Y., Zhao, J., et al. (2023) Virus-Inspired Glucose and Polydopamine (GPDA)-Coating as an Effective Strategy for the Construction of Brain Delivery Platforms. Nano Letters, 24, 402-410.
https://doi.org/10.1021/acs.nanolett.3c04175
[27] Wang, X., Song, B., Wang, Z., Qin, L. and Liang, W. (2023) The Innovative Design of a Delivery and Real-Time Tracer System for Anti-Encephalitis Drugs That Can Penetrate the Blood-Brain Barrier. Journal of Controlled Release, 363, 136-148.
https://doi.org/10.1016/j.jconrel.2023.09.043
[28] Cui, W., Liu, R., Jin, H., Lv, P., Sun, Y., Men, X., et al. (2016) pH Gradient Difference around Ischemic Brain Tissue Can Serve as a Trigger for Delivering Polyethylene Glycol-Conjugated Urokinase Nanogels. Journal of Controlled Release, 225, 53-63.
https://doi.org/10.1016/j.jconrel.2016.01.028
[29] Li, Y., Jiang, C., Zhang, D., Wang, Y., Ren, X., Ai, K., et al. (2017) Targeted Polydopamine Nanoparticles Enable Photoacoustic Imaging Guided Chemo-Photothermal Synergistic Therapy of Tumor. Acta Biomaterialia, 47, 124-134.
https://doi.org/10.1016/j.actbio.2016.10.010
[30] Cai, W., Wu, Q., Yan, Z.Z., He, W., Zhou, X., Zhou, L., et al. (2021) Neuroprotective Effect of Ultrasound Triggered Astaxanthin Release Nanoparticles on Early Brain Injury after Subarachnoid Hemorrhage. Frontiers in Chemistry, 9, Article 775274.
https://doi.org/10.3389/fchem.2021.775274
[31] Yan, J., Liu, T., Li, Y., Zhang, J., Shi, B., Zhang, F., et al. (2023) Effects of Magnetically Targeted Iron Oxide@Polydopamine-Labeled Human Umbilical Cord Mesenchymal Stem Cells in Cerebral Infarction in Mice. Aging, 15, 1130-1142.
https://doi.org/10.18632/aging.204540
[32] Zhao, Y., Song, C., Wang, H., Gai, C., Li, T., Cheng, Y., et al. (2024) Polydopamine-Cloaked Nanoarchitectonics of Prussian Blue Nanoparticles Promote Functional Recovery in Neonatal and Adult Ischemic Stroke Models. Biomaterials Research, 28, Article ID: 0079.
https://doi.org/10.34133/bmr.0079
[33] Wu, D., Zhou, J., Zheng, Y., Zheng, Y., Zhang, Q., Zhou, Z., et al. (2023) Pathogenesis-Adaptive Polydopamine Nanosystem for Sequential Therapy of Ischemic Stroke. Nature Communications, 14, Article No. 7147.
https://doi.org/10.1038/s41467-023-43070-z
[34] Jiang, X., Wang, W., Tang, J., Han, M., Xu, Y., Zhang, L., et al. (2023) Ligand‐Screened Cerium‐Based MOF Microcapsules Promote Nerve Regeneration via Mitochondrial Energy Supply. Advanced Science, 11, Article ID: 2306780.
https://doi.org/10.1002/advs.202306780
[35] Wang, Y., Li, B., Xu, H., Du, S., Liu, T., Ren, J., et al. (2020) Growth and Elongation of Axons through Mechanical Tension Mediated by Fluorescent-Magnetic Bifunctional Fe3O4·Rhodamine 6G@PDA Superparticles. Journal of Nanobiotechnology, 18, Article No. 64.
https://doi.org/10.1186/s12951-020-00621-6
[36] Liu, Y., Ai, K., Liu, J., Deng, M., He, Y. and Lu, L. (2012) Dopamine‐Melanin Colloidal Nanospheres: An Efficient Near‐Infrared Photothermal Therapeutic Agent for in vivo Cancer Therapy. Advanced Materials, 25, 1353-1359.
https://doi.org/10.1002/adma.201204683