|
[1]
|
Shah, A.R. and Gardner, T.W. (2017) Diabetic Retinopathy: Research to Clinical Practice. Clinical Diabetes and Endocrinology, 3, Article No. 9. [Google Scholar] [CrossRef] [PubMed]
|
|
[2]
|
Guariguata, L., Whiting, D.R., Hambleton, I., Beagley, J., Linnenkamp, U. and Shaw, J.E. (2014) Global Estimates of Diabetes Prevalence for 2013 and Projections for 2035. Diabetes Research and Clinical Practice, 103, 137-149. [Google Scholar] [CrossRef] [PubMed]
|
|
[3]
|
Yau, J.W.Y., Rogers, S.L., Kawasaki, R., Lamoureux, E.L., Kowalski, J.W., Bek, T., et al. (2012) Global Prevalence and Major Risk Factors of Diabetic Retinopathy. Diabetes Care, 35, 556-564. [Google Scholar] [CrossRef] [PubMed]
|
|
[4]
|
Fanaro, G.B., Marques, M.R., Calaza, K.D.C., Brito, R., Pessoni, A.M., Mendonça, H.R., et al. (2023) New Insights on Dietary Polyphenols for the Management of Oxidative Stress and Neuroinflammation in Diabetic Retinopathy. Antioxidants, 12, Article 1237. [Google Scholar] [CrossRef] [PubMed]
|
|
[5]
|
de Brito Alves, J.L., de Sousa, V.P., Cavalcanti Neto, M.P., Magnani, M., Braga, V.d.A., Costa-Silva, J.H.d., et al. (2016) New Insights on the Use of Dietary Polyphenols or Probiotics for the Management of Arterial Hypertension. Frontiers in Physiology, 7, Article 448. [Google Scholar] [CrossRef] [PubMed]
|
|
[6]
|
Rana, A., Samtiya, M., Dhewa, T., Mishra, V. and Aluko, R.E. (2022) Health Benefits of Polyphenols: A Concise Review. Journal of Food Biochemistry, 46, e14264. [Google Scholar] [CrossRef] [PubMed]
|
|
[7]
|
Whiting, D.R., Guariguata, L., Weil, C. and Shaw, J. (2011) IDF Diabetes Atlas: Global Estimates of the Prevalence of Diabetes for 2011 and 2030. Diabetes Research and Clinical Practice, 94, 311-321. [Google Scholar] [CrossRef] [PubMed]
|
|
[8]
|
刘涵, 方晏红, 陈健. 糖尿病视网膜病变的全科医学管理[J]. 眼科学报, 2023, 38(4): 350-359.
|
|
[9]
|
Putta, S., Sastry Yarla, N., Kumar Kilari, E., Surekha, C., Aliev, G., Basavaraju Divakara, M., et al. (2016) Therapeutic Potentials of Triterpenes in Diabetes and Its Associated Complications. Current Topics in Medicinal Chemistry, 16, 2532-2542. [Google Scholar] [CrossRef] [PubMed]
|
|
[10]
|
Bloomquist, R.F., Bloomquist, D.T. and Gardner, T.W. (2024) Current Treatment Options for Diabetic Retinal Disease. Diabetes Technology & Therapeutics. [Google Scholar] [CrossRef] [PubMed]
|
|
[11]
|
Teng, Y., Li, D., Guruvaiah, P., Xu, N. and Xie, Z. (2018) Dietary Supplement of Large Yellow Tea Ameliorates Metabolic Syndrome and Attenuates Hepatic Steatosis in Db/Db Mice. Nutrients, 10, Article 75. [Google Scholar] [CrossRef] [PubMed]
|
|
[12]
|
Dulloo, A.G. (2011) The Search for Compounds That Stimulate Thermogenesis in Obesity Management: From Pharmaceuticals to Functional Food Ingredients. Obesity Reviews, 12, 866-883. [Google Scholar] [CrossRef] [PubMed]
|
|
[13]
|
Bracesco, N., Dell, M., Rocha, A., Behtash, S., Menini, T., Gugliucci, A., et al. (2003) Antioxidant Activity of a Botanical Extract Preparation of ilex Paraguariensis: Prevention of DNA Double-Strand Breaks in saccharomyces Cerevisiae and Human Low-Density Lipoprotein Oxidation. The Journal of Alternative and Complementary Medicine, 9, 379-387. [Google Scholar] [CrossRef] [PubMed]
|
|
[14]
|
Ning, J., Li, D., Luo, X., Ding, D., Song, Y., Zhang, Z., et al. (2016) Stepwise Identification of Six Tea (camellia Sinensis (L.)) Categories Based on Catechins, Caffeine, and Theanine Contents Combined with Fisher Discriminant Analysis. Food Analytical Methods, 9, 3242-3250. [Google Scholar] [CrossRef]
|
|
[15]
|
Xu, L., Li, W., Chen, Z., Guo, Q., Wang, C., Santhanam, R.K., et al. (2019) Inhibitory Effect of Epigallocatechin-3-O-Gallate on α-Glucosidase and Its Hypoglycemic Effect via Targeting PI3K/AKT Signaling Pathway in L6 Skeletal Muscle Cells. International Journal of Biological Macromolecules, 125, 605-611. [Google Scholar] [CrossRef] [PubMed]
|
|
[16]
|
Li, X., Li, S., Chen, M., Wang, J., Xie, B. and Sun, Z. (2018) (−)-Epigallocatechin-3-Gallate (EGCG) Inhibits Starch Digestion and Improves Glucose Homeostasis through Direct or Indirect Activation of PXR/CAR-Mediated Phase II Metabolism in Diabetic Mice. Food & Function, 9, 4651-4663. [Google Scholar] [CrossRef] [PubMed]
|
|
[17]
|
Rossino, M.G. and Casini, G. (2019) Nutraceuticals for the Treatment of Diabetic Retinopathy. Nutrients, 11, Article 771. [Google Scholar] [CrossRef] [PubMed]
|
|
[18]
|
Xu, R., Bai, Y., Yang, K. and Chen, G. (2020) Effects of Green Tea Consumption on Glycemic Control: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. Nutrition & Metabolism, 17, Article No. 56. [Google Scholar] [CrossRef] [PubMed]
|
|
[19]
|
Tang, G., Meng, X., Gan, R., Zhao, C., Liu, Q., Feng, Y., et al. (2019) Health Functions and Related Molecular Mechanisms of Tea Components: An Update Review. International Journal of Molecular Sciences, 20, Article 6196. [Google Scholar] [CrossRef] [PubMed]
|
|
[20]
|
Xu, C., Bi, M., Jin, X., Zhu, M., Wang, G., Zhao, P., et al. (2020) Long-Term Tea Consumption Is Associated with Reduced Risk of Diabetic Retinopathy: A Cross-Sectional Survey among Elderly Chinese from Rural Communities. Journal of Diabetes Research, 2020, Article ID: 1860452. [Google Scholar] [CrossRef] [PubMed]
|
|
[21]
|
Ma, Q., Chen, D., Sun, H., Yan, N., Xu, Y. and Pan, C. (2015) Regular Chinese Green Tea Consumption Is Protective for Diabetic Retinopathy: A Clinic-Based Case-Control Study. Journal of Diabetes Research, 2015, Article ID: 231570. [Google Scholar] [CrossRef] [PubMed]
|
|
[22]
|
Meng, J., Cao, S., Wei, X., Gan, R., Wang, Y., Cai, S., et al. (2019) Effects and Mechanisms of Tea for the Prevention and Management of Diabetes Mellitus and Diabetic Complications: An Updated Review. Antioxidants, 8, Article 170. [Google Scholar] [CrossRef] [PubMed]
|
|
[23]
|
Hirata, A., Ohnaka, K., Tashiro, N., et al. (2017) Effect Modification of Green Tea on the Association between Rice Intake and the Risk of Diabetes Mellitus: A Prospective Study in Japanese Men and Women. Asia Pacific Journal of Clinical Nutrition, 26, 545-555.
|
|
[24]
|
Yu-Qiong, C., Zhi, Y.U., Yun, Z., et al. (2006) Influence of Oolong Tea Polysaccharides on Immunomodulatory Function of Diabetic Mice And Rats. Journal of Acta Nutrimenta Sinica, 28, 156-159.
|
|
[25]
|
Kumar, D. and Rizvi, S.I. (2015) Black Tea Extract Improves Anti-Oxidant Profile in Experimental Diabetic rats. Archives of Physiology and Biochemistry, 121, 109-115. [Google Scholar] [CrossRef] [PubMed]
|
|
[26]
|
Zhang, X., Zhang, L., Zhang, B., Liu, K., Sun, J., Li, Q., et al. (2022) Herbal Tea, a Novel Adjuvant Therapy for Treating Type 2 Diabetes Mellitus: A Review. Frontiers in Pharmacology, 13, Article 982387. [Google Scholar] [CrossRef] [PubMed]
|
|
[27]
|
Olcha, P., Winiarska-Mieczan, A., Kwiecień, M., Nowakowski, Ł., Miturski, A., Semczuk, A., et al. (2022) Antioxidative, Anti-Inflammatory, Anti-Obesogenic, and Antidiabetic Properties of Tea Polyphenols—The Positive Impact of Regular Tea Consumption as an Element of Prophylaxis and Pharmacotherapy Support in Endometrial Cancer. International Journal of Molecular Sciences, 23, Article 6703. [Google Scholar] [CrossRef] [PubMed]
|
|
[28]
|
Boroughani, M., Tahmasbi, Z., Heidari, M.M., Johari, M., Hashempur, M.H. and Heydari, M. (2024) Potential Therapeutic Effects of Green Tea (Camellia sinensis) in Eye Diseases, a Review. Heliyon, 10, e28829. [Google Scholar] [CrossRef] [PubMed]
|
|
[29]
|
Yi, D., Tan, X., Zhao, Z., Cai, Y., Li, Y., Lin, X., et al. (2013) Reduced Risk of Dyslipidaemia with Oolong Tea Consumption: A Population-Based Study in Southern China. British Journal of Nutrition, 111, 1421-1429. [Google Scholar] [CrossRef] [PubMed]
|
|
[30]
|
Liu, C., Zeng, H., Jiang, R., Wang, K., Ouyang, J., Wen, S., et al. (2023) Effects of Mulberry Leaf Fu Tea on the Intestines and Intestinal Flora of Goto-Kakizaki Type 2 Diabetic Rats. Foods, 12, Article 4006. [Google Scholar] [CrossRef] [PubMed]
|
|
[31]
|
James, A., Wang, K. and Wang, Y. (2023) Therapeutic Activity of Green Tea Epigallocatechin-3-Gallate on Metabolic Diseases and Non-Alcoholic Fatty Liver Diseases: The Current Updates. Nutrients, 15, Article 3022. [Google Scholar] [CrossRef] [PubMed]
|
|
[32]
|
Teng, W., Yin, W., Zhao, L., Ma, C., Huang, J. and Ren, F. (2018) Resveratrol Metabolites Ameliorate Insulin Resistance in HepG2 Hepatocytes by Modulating IRS-1/AMPK. RSC Advances, 8, 36034-36042. [Google Scholar] [CrossRef] [PubMed]
|
|
[33]
|
Ng, T.K., Chu, K.O., Wang, C.C. and Pang, C.P. (2023) Green Tea Catechins as Therapeutic Antioxidants for Glaucoma Treatment. Antioxidants, 12, Article 1320. [Google Scholar] [CrossRef] [PubMed]
|
|
[34]
|
Shao, Y., Zhang, Y., Zou, S., Wang, J., Li, X., Qin, M., et al. (2024) (−)-Epigallocatechin 3-Gallate Protects Pancreatic β-Cell against Excessive Autophagy-Induced Injury through Promoting FTO Degradation. Autophagy, 20, 2460-2477. [Google Scholar] [CrossRef] [PubMed]
|
|
[35]
|
Fu, Q., Li, Q., Lin, X., Qiao, R., Yang, R., Li, X., et al. (2017) Antidiabetic Effects of Tea. Molecules, 22, Article 849. [Google Scholar] [CrossRef] [PubMed]
|
|
[36]
|
Yang, C., Yu, Y. and An, J. (2024) Effect of High-Sucrose Diet on the Occurrence and Progression of Diabetic Retinopathy and Dietary Modification Strategies. Nutrients, 16, Article 1393. [Google Scholar] [CrossRef] [PubMed]
|
|
[37]
|
Esmaeelpanah, E., Razavi, B.M. and Hosseinzadeh, H. (2021) Green Tea and Metabolic Syndrome: A 10-Year Research Update Review. Iranian Journal of Basic Medical Sciences, 24, 1159-1172.
|
|
[38]
|
Tang, W., Li, S., Liu, Y., Huang, M. and Ho, C. (2013) Anti-Diabetic Activity of Chemically Profiled Green Tea and Black Tea Extracts in a Type 2 Diabetes Mice Model via Different Mechanisms. Journal of Functional Foods, 5, 1784-1793. [Google Scholar] [CrossRef]
|
|
[39]
|
Dias, T.R., G, T., Teixeira, N.F., et al. (2013) White Tea (Camellia sinensis (L.)): Antioxidant Properties and Beneficial Health Effects. Journal of International Journal of Food Science Nutrition Dietetics, 2, 19-26.
|
|
[40]
|
Wagner, B.D., Patnaik, J.L., Palestine, A.G., Frazer-Abel, A.A., Baldermann, R., Holers, V.M., et al. (2021) Association of Systemic Inflammatory Factors with Progression to Advanced Age-Related Macular Degeneration. Ophthalmic Epidemiology, 29, 139-148. [Google Scholar] [CrossRef] [PubMed]
|
|
[41]
|
Fangueiro, J.F., Andreani, T., Fernandes, L., Garcia, M.L., Egea, M.A., Silva, A.M., et al. (2014) Physicochemical Characterization of Epigallocatechin Gallate Lipid Nanoparticles (EGCG-LNs) for Ocular Instillation. Colloids and Surfaces B: Biointerfaces, 123, 452-460. [Google Scholar] [CrossRef] [PubMed]
|
|
[42]
|
Fuentes-Broto, L., Perdices, L., Segura, F., Cavero, A., Orduna-Hospital, E., Insa-Sánchez, G., et al. (2022) Systemic Epigallocatechin Gallate Protects against Retinal Degeneration and Hepatic Oxidative Stress in the P23H-1 Rat. Neural Regeneration Research, 17, 625-631. [Google Scholar] [CrossRef] [PubMed]
|
|
[43]
|
Huang, H., Jin, C., Bi, X., Zhao, Y., Xu, S., Wang, M., et al. (2018) Green Tea Polyphenol Epigallocatechin-3-Gallate Promotes Reendothelialization in Carotid Artery of Diabetic Rabbits by Reactivating Akt/eNOS Pathway. Frontiers in Pharmacology, 9, Article 1305. [Google Scholar] [CrossRef] [PubMed]
|
|
[44]
|
Neyestani, T.R., Shariatzade, N., Kalayi, A., Gharavi, A., Khalaji, N., Dadkhah, M., et al. (2010) Regular Daily Intake of Black Tea Improves Oxidative Stress Biomarkers and Decreases Serum C-Reactive Protein Levels in Type 2 Diabetic Patients. Annals of Nutrition and Metabolism, 57, 40-49. [Google Scholar] [CrossRef] [PubMed]
|
|
[45]
|
Deng, X., Sun, L., Lai, X., Xiang, L., Li, Q., Zhang, W., et al. (2018) Tea Polypeptide Ameliorates Diabetic Nephropathy through RAGE and NF-κB Signaling Pathway in Type 2 Diabetes Mice. Journal of Agricultural and Food Chemistry, 66, 11957-11967. [Google Scholar] [CrossRef] [PubMed]
|
|
[46]
|
Yaribeygi, H., Atkin, S.L., Pirro, M. and Sahebkar, A. (2018) A Review of the Anti‐Inflammatory Properties of Antidiabetic Agents Providing Protective Effects against Vascular Complications in Diabetes. Journal of Cellular Physiology, 234, 8286-8294. [Google Scholar] [CrossRef] [PubMed]
|
|
[47]
|
Morya, A.K., Ramesh, P.V., Nishant, P., Kaur, K., Gurnani, B., Heda, A., et al. (2024) Diabetic Retinopathy: A Review on Its Pathophysiology and Novel Treatment Modalities. World Journal of Methodology, 14, 95881. [Google Scholar] [CrossRef] [PubMed]
|
|
[48]
|
Silva, K.C., Rosales, M.A.B., Hamassaki, D.E., Saito, K.C., Faria, A.M., Ribeiro, P.A.O., et al. (2013) Green Tea Is Neuroprotective in Diabetic Retinopathy. Investigative Opthalmology & Visual Science, 54, 1325-1336. [Google Scholar] [CrossRef] [PubMed]
|
|
[49]
|
Semeraro, F., Cancarini, A., dell’Omo, R., Rezzola, S., Romano, M.R. and Costagliola, C. (2015) Diabetic Retinopathy: Vascular and Inflammatory Disease. Journal of Diabetes Research, 2015, Article ID: 582060. [Google Scholar] [CrossRef] [PubMed]
|
|
[50]
|
Kumar, B., Gupta, S.K., Nag, T.C., Srivastava, S. and Saxena, R. (2011) Green Tea Prevents Hyperglycemia-Induced Retinal Oxidative Stress and Inflammation in Streptozotocin-Induced Diabetic Rats. Ophthalmic Research, 47, 103-108. [Google Scholar] [CrossRef] [PubMed]
|
|
[51]
|
Bryl, A., Mrugacz, M., Falkowski, M. and Zorena, K. (2022) The Effect of Diet and Lifestyle on the Course of Diabetic Retinopathy—A Review of the Literature. Nutrients, 14, Article 1252. [Google Scholar] [CrossRef] [PubMed]
|