[1]
|
Shah, A.R. and Gardner, T.W. (2017) Diabetic Retinopathy: Research to Clinical Practice. Clinical Diabetes and Endocrinology, 3, Article No. 9. https://doi.org/10.1186/s40842-017-0047-y
|
[2]
|
Guariguata, L., Whiting, D.R., Hambleton, I., Beagley, J., Linnenkamp, U. and Shaw, J.E. (2014) Global Estimates of Diabetes Prevalence for 2013 and Projections for 2035. Diabetes Research and Clinical Practice, 103, 137-149. https://doi.org/10.1016/j.diabres.2013.11.002
|
[3]
|
Yau, J.W.Y., Rogers, S.L., Kawasaki, R., Lamoureux, E.L., Kowalski, J.W., Bek, T., et al. (2012) Global Prevalence and Major Risk Factors of Diabetic Retinopathy. Diabetes Care, 35, 556-564. https://doi.org/10.2337/dc11-1909
|
[4]
|
Fanaro, G.B., Marques, M.R., Calaza, K.D.C., Brito, R., Pessoni, A.M., Mendonça, H.R., et al. (2023) New Insights on Dietary Polyphenols for the Management of Oxidative Stress and Neuroinflammation in Diabetic Retinopathy. Antioxidants, 12, Article 1237. https://doi.org/10.3390/antiox12061237
|
[5]
|
de Brito Alves, J.L., de Sousa, V.P., Cavalcanti Neto, M.P., Magnani, M., Braga, V.d.A., Costa-Silva, J.H.d., et al. (2016) New Insights on the Use of Dietary Polyphenols or Probiotics for the Management of Arterial Hypertension. Frontiers in Physiology, 7, Article 448. https://doi.org/10.3389/fphys.2016.00448
|
[6]
|
Rana, A., Samtiya, M., Dhewa, T., Mishra, V. and Aluko, R.E. (2022) Health Benefits of Polyphenols: A Concise Review. Journal of Food Biochemistry, 46, e14264. https://doi.org/10.1111/jfbc.14264
|
[7]
|
Whiting, D.R., Guariguata, L., Weil, C. and Shaw, J. (2011) IDF Diabetes Atlas: Global Estimates of the Prevalence of Diabetes for 2011 and 2030. Diabetes Research and Clinical Practice, 94, 311-321. https://doi.org/10.1016/j.diabres.2011.10.029
|
[8]
|
刘涵, 方晏红, 陈健. 糖尿病视网膜病变的全科医学管理[J]. 眼科学报, 2023, 38(4): 350-359.
|
[9]
|
Putta, S., Sastry Yarla, N., Kumar Kilari, E., Surekha, C., Aliev, G., Basavaraju Divakara, M., et al. (2016) Therapeutic Potentials of Triterpenes in Diabetes and Its Associated Complications. Current Topics in Medicinal Chemistry, 16, 2532-2542. https://doi.org/10.2174/1568026616666160414123343
|
[10]
|
Bloomquist, R.F., Bloomquist, D.T. and Gardner, T.W. (2024) Current Treatment Options for Diabetic Retinal Disease. Diabetes Technology & Therapeutics. https://doi.org/10.1089/dia.2024.0548
|
[11]
|
Teng, Y., Li, D., Guruvaiah, P., Xu, N. and Xie, Z. (2018) Dietary Supplement of Large Yellow Tea Ameliorates Metabolic Syndrome and Attenuates Hepatic Steatosis in Db/Db Mice. Nutrients, 10, Article 75. https://doi.org/10.3390/nu10010075
|
[12]
|
Dulloo, A.G. (2011) The Search for Compounds That Stimulate Thermogenesis in Obesity Management: From Pharmaceuticals to Functional Food Ingredients. Obesity Reviews, 12, 866-883. https://doi.org/10.1111/j.1467-789x.2011.00909.x
|
[13]
|
Bracesco, N., Dell, M., Rocha, A., Behtash, S., Menini, T., Gugliucci, A., et al. (2003) Antioxidant Activity of a Botanical Extract Preparation of ilex Paraguariensis: Prevention of DNA Double-Strand Breaks in saccharomyces Cerevisiae and Human Low-Density Lipoprotein Oxidation. The Journal of Alternative and Complementary Medicine, 9, 379-387. https://doi.org/10.1089/107555303765551606
|
[14]
|
Ning, J., Li, D., Luo, X., Ding, D., Song, Y., Zhang, Z., et al. (2016) Stepwise Identification of Six Tea (camellia Sinensis (L.)) Categories Based on Catechins, Caffeine, and Theanine Contents Combined with Fisher Discriminant Analysis. Food Analytical Methods, 9, 3242-3250. https://doi.org/10.1007/s12161-016-0518-2
|
[15]
|
Xu, L., Li, W., Chen, Z., Guo, Q., Wang, C., Santhanam, R.K., et al. (2019) Inhibitory Effect of Epigallocatechin-3-O-Gallate on α-Glucosidase and Its Hypoglycemic Effect via Targeting PI3K/AKT Signaling Pathway in L6 Skeletal Muscle Cells. International Journal of Biological Macromolecules, 125, 605-611. https://doi.org/10.1016/j.ijbiomac.2018.12.064
|
[16]
|
Li, X., Li, S., Chen, M., Wang, J., Xie, B. and Sun, Z. (2018) (−)-Epigallocatechin-3-Gallate (EGCG) Inhibits Starch Digestion and Improves Glucose Homeostasis through Direct or Indirect Activation of PXR/CAR-Mediated Phase II Metabolism in Diabetic Mice. Food & Function, 9, 4651-4663. https://doi.org/10.1039/c8fo01293h
|
[17]
|
Rossino, M.G. and Casini, G. (2019) Nutraceuticals for the Treatment of Diabetic Retinopathy. Nutrients, 11, Article 771. https://doi.org/10.3390/nu11040771
|
[18]
|
Xu, R., Bai, Y., Yang, K. and Chen, G. (2020) Effects of Green Tea Consumption on Glycemic Control: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. Nutrition & Metabolism, 17, Article No. 56. https://doi.org/10.1186/s12986-020-00469-5
|
[19]
|
Tang, G., Meng, X., Gan, R., Zhao, C., Liu, Q., Feng, Y., et al. (2019) Health Functions and Related Molecular Mechanisms of Tea Components: An Update Review. International Journal of Molecular Sciences, 20, Article 6196. https://doi.org/10.3390/ijms20246196
|
[20]
|
Xu, C., Bi, M., Jin, X., Zhu, M., Wang, G., Zhao, P., et al. (2020) Long-Term Tea Consumption Is Associated with Reduced Risk of Diabetic Retinopathy: A Cross-Sectional Survey among Elderly Chinese from Rural Communities. Journal of Diabetes Research, 2020, Article ID: 1860452. https://doi.org/10.1155/2020/1860452
|
[21]
|
Ma, Q., Chen, D., Sun, H., Yan, N., Xu, Y. and Pan, C. (2015) Regular Chinese Green Tea Consumption Is Protective for Diabetic Retinopathy: A Clinic-Based Case-Control Study. Journal of Diabetes Research, 2015, Article ID: 231570. https://doi.org/10.1155/2015/231570
|
[22]
|
Meng, J., Cao, S., Wei, X., Gan, R., Wang, Y., Cai, S., et al. (2019) Effects and Mechanisms of Tea for the Prevention and Management of Diabetes Mellitus and Diabetic Complications: An Updated Review. Antioxidants, 8, Article 170. https://doi.org/10.3390/antiox8060170
|
[23]
|
Hirata, A., Ohnaka, K., Tashiro, N., et al. (2017) Effect Modification of Green Tea on the Association between Rice Intake and the Risk of Diabetes Mellitus: A Prospective Study in Japanese Men and Women. Asia Pacific Journal of Clinical Nutrition, 26, 545-555.
|
[24]
|
Yu-Qiong, C., Zhi, Y.U., Yun, Z., et al. (2006) Influence of Oolong Tea Polysaccharides on Immunomodulatory Function of Diabetic Mice And Rats. Journal of Acta Nutrimenta Sinica, 28, 156-159.
|
[25]
|
Kumar, D. and Rizvi, S.I. (2015) Black Tea Extract Improves Anti-Oxidant Profile in Experimental Diabetic rats. Archives of Physiology and Biochemistry, 121, 109-115. https://doi.org/10.3109/13813455.2015.1043308
|
[26]
|
Zhang, X., Zhang, L., Zhang, B., Liu, K., Sun, J., Li, Q., et al. (2022) Herbal Tea, a Novel Adjuvant Therapy for Treating Type 2 Diabetes Mellitus: A Review. Frontiers in Pharmacology, 13, Article 982387. https://doi.org/10.3389/fphar.2022.982387
|
[27]
|
Olcha, P., Winiarska-Mieczan, A., Kwiecień, M., Nowakowski, Ł., Miturski, A., Semczuk, A., et al. (2022) Antioxidative, Anti-Inflammatory, Anti-Obesogenic, and Antidiabetic Properties of Tea Polyphenols—The Positive Impact of Regular Tea Consumption as an Element of Prophylaxis and Pharmacotherapy Support in Endometrial Cancer. International Journal of Molecular Sciences, 23, Article 6703. https://doi.org/10.3390/ijms23126703
|
[28]
|
Boroughani, M., Tahmasbi, Z., Heidari, M.M., Johari, M., Hashempur, M.H. and Heydari, M. (2024) Potential Therapeutic Effects of Green Tea (Camellia sinensis) in Eye Diseases, a Review. Heliyon, 10, e28829. https://doi.org/10.1016/j.heliyon.2024.e28829
|
[29]
|
Yi, D., Tan, X., Zhao, Z., Cai, Y., Li, Y., Lin, X., et al. (2013) Reduced Risk of Dyslipidaemia with Oolong Tea Consumption: A Population-Based Study in Southern China. British Journal of Nutrition, 111, 1421-1429. https://doi.org/10.1017/s0007114513003644
|
[30]
|
Liu, C., Zeng, H., Jiang, R., Wang, K., Ouyang, J., Wen, S., et al. (2023) Effects of Mulberry Leaf Fu Tea on the Intestines and Intestinal Flora of Goto-Kakizaki Type 2 Diabetic Rats. Foods, 12, Article 4006. https://doi.org/10.3390/foods12214006
|
[31]
|
James, A., Wang, K. and Wang, Y. (2023) Therapeutic Activity of Green Tea Epigallocatechin-3-Gallate on Metabolic Diseases and Non-Alcoholic Fatty Liver Diseases: The Current Updates. Nutrients, 15, Article 3022. https://doi.org/10.3390/nu15133022
|
[32]
|
Teng, W., Yin, W., Zhao, L., Ma, C., Huang, J. and Ren, F. (2018) Resveratrol Metabolites Ameliorate Insulin Resistance in HepG2 Hepatocytes by Modulating IRS-1/AMPK. RSC Advances, 8, 36034-36042. https://doi.org/10.1039/c8ra05092a
|
[33]
|
Ng, T.K., Chu, K.O., Wang, C.C. and Pang, C.P. (2023) Green Tea Catechins as Therapeutic Antioxidants for Glaucoma Treatment. Antioxidants, 12, Article 1320. https://doi.org/10.3390/antiox12071320
|
[34]
|
Shao, Y., Zhang, Y., Zou, S., Wang, J., Li, X., Qin, M., et al. (2024) (−)-Epigallocatechin 3-Gallate Protects Pancreatic β-Cell against Excessive Autophagy-Induced Injury through Promoting FTO Degradation. Autophagy, 20, 2460-2477. https://doi.org/10.1080/15548627.2024.2370751
|
[35]
|
Fu, Q., Li, Q., Lin, X., Qiao, R., Yang, R., Li, X., et al. (2017) Antidiabetic Effects of Tea. Molecules, 22, Article 849. https://doi.org/10.3390/molecules22050849
|
[36]
|
Yang, C., Yu, Y. and An, J. (2024) Effect of High-Sucrose Diet on the Occurrence and Progression of Diabetic Retinopathy and Dietary Modification Strategies. Nutrients, 16, Article 1393. https://doi.org/10.3390/nu16091393
|
[37]
|
Esmaeelpanah, E., Razavi, B.M. and Hosseinzadeh, H. (2021) Green Tea and Metabolic Syndrome: A 10-Year Research Update Review. Iranian Journal of Basic Medical Sciences, 24, 1159-1172.
|
[38]
|
Tang, W., Li, S., Liu, Y., Huang, M. and Ho, C. (2013) Anti-Diabetic Activity of Chemically Profiled Green Tea and Black Tea Extracts in a Type 2 Diabetes Mice Model via Different Mechanisms. Journal of Functional Foods, 5, 1784-1793. https://doi.org/10.1016/j.jff.2013.08.007
|
[39]
|
Dias, T.R., G, T., Teixeira, N.F., et al. (2013) White Tea (Camellia sinensis (L.)): Antioxidant Properties and Beneficial Health Effects. Journal of International Journal of Food Science Nutrition Dietetics, 2, 19-26.
|
[40]
|
Wagner, B.D., Patnaik, J.L., Palestine, A.G., Frazer-Abel, A.A., Baldermann, R., Holers, V.M., et al. (2021) Association of Systemic Inflammatory Factors with Progression to Advanced Age-Related Macular Degeneration. Ophthalmic Epidemiology, 29, 139-148. https://doi.org/10.1080/09286586.2021.1910314
|
[41]
|
Fangueiro, J.F., Andreani, T., Fernandes, L., Garcia, M.L., Egea, M.A., Silva, A.M., et al. (2014) Physicochemical Characterization of Epigallocatechin Gallate Lipid Nanoparticles (EGCG-LNs) for Ocular Instillation. Colloids and Surfaces B: Biointerfaces, 123, 452-460. https://doi.org/10.1016/j.colsurfb.2014.09.042
|
[42]
|
Fuentes-Broto, L., Perdices, L., Segura, F., Cavero, A., Orduna-Hospital, E., Insa-Sánchez, G., et al. (2022) Systemic Epigallocatechin Gallate Protects against Retinal Degeneration and Hepatic Oxidative Stress in the P23H-1 Rat. Neural Regeneration Research, 17, 625-631. https://doi.org/10.4103/1673-5374.320990
|
[43]
|
Huang, H., Jin, C., Bi, X., Zhao, Y., Xu, S., Wang, M., et al. (2018) Green Tea Polyphenol Epigallocatechin-3-Gallate Promotes Reendothelialization in Carotid Artery of Diabetic Rabbits by Reactivating Akt/eNOS Pathway. Frontiers in Pharmacology, 9, Article 1305. https://doi.org/10.3389/fphar.2018.01305
|
[44]
|
Neyestani, T.R., Shariatzade, N., Kalayi, A., Gharavi, A., Khalaji, N., Dadkhah, M., et al. (2010) Regular Daily Intake of Black Tea Improves Oxidative Stress Biomarkers and Decreases Serum C-Reactive Protein Levels in Type 2 Diabetic Patients. Annals of Nutrition and Metabolism, 57, 40-49. https://doi.org/10.1159/000312666
|
[45]
|
Deng, X., Sun, L., Lai, X., Xiang, L., Li, Q., Zhang, W., et al. (2018) Tea Polypeptide Ameliorates Diabetic Nephropathy through RAGE and NF-κB Signaling Pathway in Type 2 Diabetes Mice. Journal of Agricultural and Food Chemistry, 66, 11957-11967. https://doi.org/10.1021/acs.jafc.8b04819
|
[46]
|
Yaribeygi, H., Atkin, S.L., Pirro, M. and Sahebkar, A. (2018) A Review of the Anti‐Inflammatory Properties of Antidiabetic Agents Providing Protective Effects against Vascular Complications in Diabetes. Journal of Cellular Physiology, 234, 8286-8294. https://doi.org/10.1002/jcp.27699
|
[47]
|
Morya, A.K., Ramesh, P.V., Nishant, P., Kaur, K., Gurnani, B., Heda, A., et al. (2024) Diabetic Retinopathy: A Review on Its Pathophysiology and Novel Treatment Modalities. World Journal of Methodology, 14, 95881. https://doi.org/10.5662/wjm.v14.i4.95881
|
[48]
|
Silva, K.C., Rosales, M.A.B., Hamassaki, D.E., Saito, K.C., Faria, A.M., Ribeiro, P.A.O., et al. (2013) Green Tea Is Neuroprotective in Diabetic Retinopathy. Investigative Opthalmology & Visual Science, 54, 1325-1336. https://doi.org/10.1167/iovs.12-10647
|
[49]
|
Semeraro, F., Cancarini, A., dell’Omo, R., Rezzola, S., Romano, M.R. and Costagliola, C. (2015) Diabetic Retinopathy: Vascular and Inflammatory Disease. Journal of Diabetes Research, 2015, Article ID: 582060. https://doi.org/10.1155/2015/582060
|
[50]
|
Kumar, B., Gupta, S.K., Nag, T.C., Srivastava, S. and Saxena, R. (2011) Green Tea Prevents Hyperglycemia-Induced Retinal Oxidative Stress and Inflammation in Streptozotocin-Induced Diabetic Rats. Ophthalmic Research, 47, 103-108. https://doi.org/10.1159/000330051
|
[51]
|
Bryl, A., Mrugacz, M., Falkowski, M. and Zorena, K. (2022) The Effect of Diet and Lifestyle on the Course of Diabetic Retinopathy—A Review of the Literature. Nutrients, 14, Article 1252. https://doi.org/10.3390/nu14061252
|