脓毒症所致急性呼吸窘迫综合征的研究进展
Advances in the Study of Sepsis-Induced ARDS
DOI: 10.12677/acm.2025.152417, PDF, HTML, XML,    科研立项经费支持
作者: 王 旋, 王若彤:华北理工大学临床医学院,河北 唐山;冯 凯, 白 静*:华北理工大学附属医院重症医学科,河北 唐山;张 于:唐山市人民医院重症医学科,河北 唐山
关键词: 脓毒症急性呼吸窘迫综合征Sepsis Acute Respiratory Distress Syndrome
摘要: 脓毒症(sepsis)是重症监护室(Intensive Care Unit, ICU)常见的急危重症,而急性呼吸窘迫综合征(Acute Respiratory Distress Syndrome, ARDS)是脓毒症的常见并发症,其特点为肺毛细血管内皮细胞被破坏,导致肺损伤,最终引发严重的低氧血症。尽管近年来对脓毒症所致ARDS的研究不断深入,但尚缺乏针对该综合征的特异性治疗方法。本文根据现有文献,对脓毒症所致ARDS的病理生理机制及治疗方案进行综述。
Abstract: Sepsis is a common critical condition in the intensive care unit (ICU), and acute respiratory distress syndrome (ARDS) is a common complication of sepsis, characterized by damage to the pulmonary capillary endothelial cells, leading to pulmonary edema and lung injury, ultimately resulting in severe hypoxemia. Despite the deepening research on sepsis-induced ARDS in recent years, there is still a lack of specific treatment methods for this syndrome. This article reviews the pathophysiological mechanisms and treatment strategies of sepsis and ARDS based on relevant literature.
文章引用:王旋, 王若彤, 冯凯, 张于, 白静. 脓毒症所致急性呼吸窘迫综合征的研究进展[J]. 临床医学进展, 2025, 15(2): 852-860. https://doi.org/10.12677/acm.2025.152417

1. 引言

脓毒症,依据既往定义,可被描述为一种由感染引起的全身性炎症反应综合征,2016年发布的Sepsis3.0指南将脓毒症定义为机体对感染反应失调致器官功能障碍的临床综合征[1],可能导致多个器官功能衰竭。根据最新的流行病学数据,脓毒症在全球范围内的发病率逐年上升,在老年人和免疫功能低下的患者中尤为常见。脓毒症的住院死亡率为20%~40%,其取决于患者的基础疾病、脏器功能及感染的严重程度[2]。ARDS是各种肺内或肺外原因如严重感染、创伤、休克及烧伤等导致肺毛细血管内皮细胞和肺泡上皮细胞炎症损伤,引起弥漫性肺间质及肺泡水肿,导致严重低氧血症、肺顺应性降低,肺部影像学表现为渗出性病变。ARDS是脓毒症的常见并发症,且脓毒症所致ARDS的死亡率显著高于非脓毒症所致ARDS [3]。本文参阅相关文献及数据,对脓毒症所致ARDS进行讨论,着重介绍其病理生理机制及治疗部分。

2. 病理生理机制

2.1. 炎症反应

脓毒症引发的炎症反应是ARDS发生的核心机制之一。脓毒症时,病原体的入侵激活了宿主的免疫系统,导致大量炎症细胞聚集,释放大量炎症因子和趋化因子,引起细胞因子风暴。参与ARDS炎症反应的细胞主要有巨噬细胞(macrophage)、中性粒细胞(neutrophils)、血管内皮细胞及肺泡上皮细胞等。肺泡中巨噬细胞是肺部炎症介质和细胞因子的重要来源,在炎症初期阶段,肺泡中的巨噬细胞可被激活,释放大量炎症因子,如白介素8 (Interleukin-8, IL-8)、白介素1β (Interleukin-1β, IL-1β)和肿瘤坏死因子α (Tumor Necrosis Factor-α, TNF-α)等,中性粒细胞经这些炎症因子诱导,进而活化其他炎症细胞,引起炎症级联反应[4]。IL-8是一种中性粒细胞趋化因子,其诱导中性粒细胞及其他免疫细胞向感染部位迁移,并促进其产生吞噬作用。重症COVID-19患者会进展为严重呼吸衰竭和/或ARDS,与重症COVID-19的生存组相比,死亡组的IL-8水平明显更高,血清IL-8的水平动态变化与预后相关[5],提示IL-8可能是影响脓毒症所致ARDS预后的因素,其对脓毒症所致ARDS的预测价值有待进一步研究。

2.2. 肺血管内皮细胞损伤

肺血管内皮细胞覆盖在肺血管内壁,维持屏障功能。脓毒症时,细胞因子的释放和氧化应激导致微血管内皮细胞的功能障碍,表现为内皮细胞的通透性增加。内皮细胞的损伤不仅使得液体和蛋白质从血管内漏出,导致肺水肿,还使得炎症细胞更易于渗透入肺泡腔和肺间质中,加重了局部的炎症反应[6] [7]。肺内皮细胞的损伤与微血管通透性的增加共同促进了ARDS的发生和发展,严重影响患者的预后[8]。糖萼(glycocalyx)是覆盖肺血管内皮细胞表面的糖基化脂质–蛋白混合物的复杂凝胶状层,在抗炎、抗凝和细胞黏附、血管通透性、剪切应力的机械传感中发挥重要调节作用。ARDS患者的血管内皮糖萼遭受严重损伤,这与严重的炎症反应、微血管通透性增加和血栓形成密切相关[9]

2.3. 氧化应激

氧化应激是指活性氧(Reactive Oxygen Species, ROS)产生过多,从而导致机体氧化–抗氧化系统失衡。通常情况下,ROS水平处于动态平衡稳态,基础水平的ROS和极低浓度的炎症因子可作为信号分子,对细胞稳态起到调节与维持的作用,提升机体对环境刺激的适应能力,可预防或减轻过度炎症反应的出现[10]。脓毒症时,浸润肺泡间隙的中性粒细胞可借助NADPH氧化酶(NADPH oxidase)复合体生成大量ROS。ROS会引发脂质过氧化(lipid peroxidation)反复进行,不断消耗脂质分子,生成大量脂质过氧化物,使得细胞膜脂质成分和膜流动动力学发生改变,直接对肺泡上皮细胞和血管内皮细胞造成损伤,并促使诸如TNF-α、IL-1β等炎症因子释放,进而加剧炎症反应,进一步加速ARDS的进展[11] [12]。ROS还参与了中性粒细胞外陷阱(Neutrophil Extracellular Traps, NETs)的形成,这一过程是ARDS进展的机制之一[13]

2.4. 线粒体功能损伤

线粒体功能损伤被认为是脓毒症所致ARDS的病理机制之一。在脓毒症所致ARDS中,线粒体生物能量学受到破坏,导致氧化应激和细胞凋亡加剧。RhoA-ROCK信号通路主要由Ras同源基因家族蛋白A (Ras homolog gene family member A, RhoA)和Rho相关卷曲螺旋蛋白激酶(Rho-associatedcoiled-coil kinase, ROCK)组成,RhoA是一种小的G蛋白,而ROCK是RhoA的下游效应因子,包括ROCK1和ROCK2两种亚型。在C57BL/6小鼠模型中,通过抑制RhoA-ROCK信号通路可以减少细胞外烟酰胺磷酸核糖转移酶(extracellular nicotinamide phosphoribosyltransferase, eNAMPT)介导的线粒体分裂,从而改善内皮屏障完整性并减轻炎症反应[14],从而改善ARDS患者的预后。另外,白藜芦醇被证明能够通过调节磷脂加扰酶3 (phospholipid scramblase 3, PLSCR-3)介导的线粒体功能和自噬来缓解脓毒症所致ARDS [15]。线粒体功能损伤导致细胞能量代谢障碍,使细胞无法正常工作,进而影响组织和器官的功能。

2.5. 细胞凋亡

在脓毒症所致ARDS中,肺泡上皮细胞和中性粒细胞的凋亡是影响疾病进展的重要因素。在脓毒症小鼠模型中,肺泡II型上皮细胞的凋亡与线粒体功能障碍及炎症反应密切相关,这一过程受到多种信号通路的调控,包括NF-κB及PI3K-Akt通路[16]。促炎因子S100A12,一种钙结合蛋白,其表达水平与脓毒症所致ARDS的严重程度呈正相关,可通过激活正常人支气管上皮细胞(Normal Human Bronchial Epithelial cells)的Nod样受体蛋白3 (Nucleotide-binding oligomerization domain leucine-rich repeat and pyrin domain-containing protein 3, NLRP3)炎性小体信号通路,导致黏液蛋白和炎性细胞因子过量分泌,增加趋化因子和细胞粘附分子的表达,进而促进了细胞凋亡、加剧了氧化应激,使肺损伤进展[17]。目前的动物模型研究为脓毒症所致ARDS的细胞凋亡机制提供了重要线索,为开发新型靶向疗法开辟了广阔的前景。

2.6. 细胞自噬

自噬(autophagy)是一种细胞内降解和回收过程,通过清除受损细胞器和蛋白质来维持细胞稳态。在脓毒症所致ARDS中,自噬功能障碍可能加重肺损伤,从而加速ARDS的进展[18] [19]。研究表明,自噬可以通过调节炎症因子的释放来影响肺部炎症反应。S100A12作为一种促炎因子,其通过激活NLRP3炎性小体信号通路促进了自噬介导的炎症和细胞凋亡,S100A12水平的升高与脓毒症所致ARDS的发生密切相关[17]。同时,骨髓间充质干细胞衍生的外泌体(Bone Marrow Mesenchymal Stem Cells Exosome, BMSC-exos)被发现能够通过激活核因子E2相关因子2 (Nuclear factor erythroid 2-related factor 2, Nrf2)通路逆转线粒体功能障碍,从而减轻肺泡II型上皮细胞的凋亡,进一步强调了自噬在保护肺组织中的潜在作用[20]。此外,自噬还参与调节免疫细胞浸润及其对肺部损伤的响应,进一步强调了其在脓毒症所致ARDS中的潜在治疗价值[21] [22]

2.7. 细胞焦亡

细胞焦亡(pyroptosis)是一种程序性细胞死亡形式,与炎症密切相关,被认为是加重肺部炎症和损伤的机制之一。中性粒细胞释放的外源性网状结构(Neutrophil Extracellular Traps, NETs)可以诱导巨噬细胞发生焦亡,从而加剧肺部损伤[23]。此外,NLRP3炎症小体在这一过程中发挥了关键作用,其激活会导致促炎因子的释放,如IL-1β,这进一步推动了局部和系统性的炎症反应[24]。研究发现,α-亚麻酸(Alpha-Linolenic Acid, ALA)能够通过抑制Pyrin炎症小体的激活来减轻NETs诱导的巨噬细胞焦亡,从而改善LPS诱导的小鼠模型中的肺损伤[25]。GSDMD全称为Gasdermin D,属于Gasdermin (GSDM)蛋白家族。GSDMD裂解生成的GSDMD-N能够与细胞膜结合并形成孔道,导致细胞内容物的释放,进而触发焦亡。萘磺苯酰脲作为一种抗锥虫药物,通过抑制NLRP3/caspase-1/GSDMD通路来减轻脂多糖(Lipopolysaccharide, LPS)诱导的小鼠肺泡巨噬细胞焦亡,从而缓解急性肺损伤[23]。通过调节细胞焦亡途径,有望为脓毒症所致ARDS提供新的治疗策略。

2.8. 铁死亡

铁死亡(ferroptosis)是一种新型的程序性细胞死亡形式,与凋亡和坏死不同,其特征是细胞内铁离子的积累和脂质过氧化物的生成。铁代谢失调会导致氧化应激程度加剧,Fe2+通过芬顿反应(Fenton reaction)产生的大量羟自由基能够剥夺不饱和脂肪酸长链双键间的氢原子,导致脂质过氧化,这导致细胞膜损伤和线粒体功能障碍,从而诱导肺泡上皮细胞发生铁死亡,进一步加重肺损伤[25]。Mucin 1 (MUC1)是一种高度糖基化的跨膜蛋白,可以通过调节多个分子靶点和代谢途径来影响铁死亡的发生。在氧化应激或其他刺激下,Keap1 (Kelch-like ECH-associated protein 1)蛋白与Nrf2解离,激活谷胱甘肽过氧化物酶4 (Glutathione Peroxidase 4, GPX4)是一种细胞内的抗氧化酶,在抵抗铁死亡中起着重要作用。总之,MUC1通过抑制Keap-Nrf2-GPX4通路,使维生素E增敏,抑制铁死亡,从而减轻脓毒症引起的急性肺损伤[16] [20]。铁死亡在ARDS中涉及信号通路复杂,除Nrf2外,还涉及p53、ACSL4、STAT3 [26]-[28]等通路,作用机制仍需进一步阐明。基于铁死亡机制的研究进展,未来可能会开发出针对脓毒症所致ARDS的新型治疗方法。这些方法可能包括针对铁代谢、脂质过氧化或相关信号通路的干预措施。

3. ARDS治疗策略的最新进展

3.1. ARDS药物治疗关键词

3.1.1. 糖皮质激素

糖皮质激素在ARDS中的应用基于其抑制炎症介质释放、减轻肺部炎症反应的药理作用。糖皮质激素能够通过抑制白细胞的活化与迁移,减少细胞因子的产生,进而减轻炎症反应的程度。此外,糖皮质激素还可以通过调节肺部内皮细胞的通透性,减轻肺泡–血管屏障的损伤,从而改善氧合状态。皮质类固醇的使用能够显著降低ARDS患者的死亡率,并缩短了机械通气持续时间,在重症病例中积极效果尤为显著,然而,皮质类固醇的使用会增加高血糖风险[29]。应用于重症COVID-19患者时,糖皮质激素能够通过激活血管紧张素转化酶2 (Angiotensin-Converting Enzyme 2, ACE2)并降低IL-6水平,显著改善ARDS患者的呼吸功能,并缩短住院时间,其中氢化可的松在激活ACE2表达方面的效果最强,其次是泼尼松和地塞米松等其他糖皮质激素[30]。尽管糖皮质激素在脓毒症所致ARDS治疗中展现出积极效果,但其最佳使用方案仍存在较大争议。剂量、给药时机和持续时间等因素均可能影响糖皮质激素的疗效和安全性。高剂量或长期使用糖皮质激素可能导致免疫抑制、感染风险增加等不良后果。

3.1.2. 神经肌肉阻断剂

神经肌肉阻滞剂(neuromuscular blocking agents, NMBA)是一类通过特异性作用于神经肌肉接头的乙酰胆碱受体,阻断神经冲动的传递,致使肌肉松弛的药物。三项随机对照试验表明,使用NMBA优化机械通气管理,能够降低ARDS患者的死亡率[31],但一项现场快速评价技术(Rapid on-site Evaluation, ROSE)显示,在接受高呼气末正压(Positive End Expiratory Pressure, PEEP)通气策略治疗的中度至重度ARDS患者中,接受NMBA治疗与接受常规镇静的患者在90天死亡率方面无显著差异[32]。因此,在临床应用NMBA时,医生需要权衡其获益与风险,制定个体化方案。ARDS患者的NMBA快速实践指南建议,对于需要深度镇静以行保护性通气或俯卧位通气的患者,输注48小时NMBA是合理的选择[33]

3.1.3. 单克隆抗体

单克隆抗体(Monoclonal Antibody, mAb)是化学组成高度均一、只针对某一特定抗原表位的抗体,其作为一种靶向治疗药物,在ARDS的治疗中展现了一定应用前景。单克隆抗体通过特异性结合特定的细胞因子,能够有效抑制炎症反应。研究表明,细胞外烟酰胺磷酸核糖转移酶(extracellular nicotinamide phosphoribosyltransferase, eNAMPT)通过与Toll样受体4 (TLR4)结合,激活炎症通路,进而加重肺部炎症,ALT-100 mAb,一种靶向eNAMPT的中和性单克隆抗体,在ARDS小鼠模型中显著减轻了炎症性肺损伤,提示eNAMPT中和策略可能成为改善ARDS患者预后的有效治疗方法[34]。单克隆抗体在ARDS治疗中的应用前景是积极的,特别是在针对炎症通路中的关键分子进行靶向治疗方面。随着这些候选药物进入临床试验阶段,未来可能会为ARDS患者提供新的治疗手段。然而,单克隆抗体的安全性、有效性以及最佳给药策略仍需通过更为严谨的临床研究来进一步验证。

3.1.4. 其他

针对ARDS的药物治疗的研究仍在进行,尚有许多有针对性的新思路。及时有效地控制感染,能够显著改善脓毒症所致ARDS患者预后。通过实施抗微生物管理(Antimicrobial Stewardship Management, AMS)程序,可有效避免抗生素滥用,从而降低耐药风险的发生。在脓毒症所致ARDS患者中使用抗凝药物可有效减少深静脉血栓和肺栓塞的发生。在制定抗凝方案时应谨慎评估每位患者的整体状况及其合并症,最大限度地权衡出血风险与潜在获益[35] [36]。纤溶药物,如重组组织型纤溶酶原激活剂(recombinant tissue plasminogen activator, rt-PA),在ARDS治疗中的应用也在不断探索中,对处于高凝状态的ARDS患者可能具有积极意义[37]。ARDS的药物治疗尚无统一标准,需要结合患者的合并症及辅助检查结果,制定个体化治疗方案。

3.2. 机械通气

脓毒症所致ARDS患者机械通气的核心是保护性通气策略(Lung Protective Ventilation Strategy, LPVS),其内容包括低潮气量通气(low tidal volume ventilation)、呼气末正压(Positive End-Expiratory Pressure, PEEP)、肺复张(recruitment maneuver, RM)和限制气道平台压。低潮气量通气是ARDS患者的通气策略中的重要原则,可显著减少通气相关的肺损伤和改善生存率[38]。为避免肺不张和肺泡扩张过度,可参照P-V曲线低位转折点选择PEEP,PEEP的滴定是ARDS的潜在预后因素,其最佳策略仍有待确定[39]。RM是重新开放无通气或通气不足的肺泡而采取的增加跨肺压的过程,可有效增加肺顺应性,改善氧合,一定程度上改善患者的预后[40] [41]。然而,与低PEEP通气相比,肺复张和滴定呼气末正压通气策略在中重度ARDS患者中增加了28天全因死亡率[42]。脓毒症所致ARDS患者病理生理机制复杂,呈现出显著的异质性,机械通气策略的选择应根据患者的具体情况进行个体化调整,以实现最佳的治疗效果。

俯卧位通气是重度ARDS的关键治疗策略,在患者严重低氧血症的情况下,其改善氧合的效果尤为明显。俯卧位通气可改善COVID-19相关ARDS患者的氧合,在有创通气患者中更为显著,其机制为改善重力依赖区的通气和优化通气–灌注匹配,无创通气下ARDS患者从俯卧位通气获益的机制则有待进一步研究[43] [44]

3.3. 体外膜肺氧合

体外膜肺氧合(Extracorporeal Membrane Oxygenation, ECMO)作为一种肺功能严重受损时替代心肺功能的高级生命支持技术,在重度ARDS的治疗中,为后续针对病因的精准治疗提供了时机。在有创机械通气无效的情况下,ECMO能够提供有效的氧合和通气支持[45]。一项回顾性分析显示,与未接受ECMO支持的患者相比,接受ECMO治疗的COVID-19相关ARDS患者表现出更好的生存率[46]。此外,对于在有创机械通气下氧合难以维持的重症患者,ECMO的早期启动可有效降低死亡率[47]。然而,任何治疗都是一把双刃剑,ECMO也不例外,如出血、感染等风险 ,因此在抉择患者上机时机及患者风险与获益方面需仔细评估[48]

3.4. 其他新型疗法

近年来,间充质干细胞(Mesenchymal Stem Cells, MSC)疗法被认为是ARDS有潜力的治疗方案。研究表明,在ARDS大鼠模型中,人类胎盘间充质干细胞(Human Placental Mesenchymal Stem Cells, HPMSCs)能够附着于受损的肺组织表面,促进组织细胞损伤的修复及肺泡的重建,HPMSCs的治疗显著下调了IL-1β、IL-6及TNF-α等炎症因子的表达水平[49]。HPMSCs作为一种具有潜力的生物治疗材料,在治疗ARDS方面展现出了广阔的应用前景,值得进一步深入研究与探索。然而,MSC疗法的具体机制仍待进一步探究,以优化其临床应用和提高疗效。还有一些新型疗法尚在研讨中,如纳米疗法、中医药疗法。在脓毒症所致ARDS的治疗中,纳米颗粒可携带抗炎药物、生长因子或其他治疗性分子,通过精确靶向肺部受损区域,减少全身性副作用。纳米颗粒还可以作为传感器,监测肺部微环境的变化,以便实时调整治疗方案。纳米疗法在ARDS的治疗中仍处于早期研究阶段,其安全性和长期效果仍需进一步验证,以确保其在临床应用中的安全性和可靠性。中医药疗法在脓毒症所致ARDS的治疗中已取得一定的疗效,未来,中医药疗法需要在标准化治疗方案、药物质量控制等方面进行进一步探索,以提高其疗效和安全性。

4. 展望

综上所述,脓毒症所致ARDS具有高发病率和病死率,其病理生理机制复杂,且当前尚缺乏针对性的治疗方案,构成了一个复杂而严峻的临床挑战。未来需进一步深入探索脓毒症所致ARDS的潜在病理生理机制,致力于研发创新性的治疗手段,进一步验证新型药物与治疗策略的有效性与安全性,以期提升脓毒症所致ARDS患者的生存率。除此之外,将脓毒症所致ARDS同机器学习结合,建立辅助临床决策的深度强化学习模型,具有广阔的研究前景,这将是当前乃至将来的一个重要研究方向。

基金项目

河北省医学科学研究课题计划(课题编号:20220186)。

NOTES

*通讯作者。

参考文献

[1] Singer, M., Deutschman, C.S., Seymour, C.W., Shankar-Hari, M., Annane, D., Bauer, M., et al. (2016) The Third International Consensus Definitions for Sepsis and Septic Shock (Sepsis-3). JAMA, 315, 801-810.
https://doi.org/10.1001/jama.2016.0287
[2] Shappell, C., Rhee, C. and Klompas, M. (2023) Update on Sepsis Epidemiology in the Era of COVID-19. Seminars in Respiratory and Critical Care Medicine, 44, 173-184.
https://doi.org/10.1055/s-0042-1759880
[3] Peng, R., Dong, Y., Kang, H., Guo, Q., Zhu, M. and Li, F. (2022) Identification of Genes with Altered Methylation in Osteoclast Differentiation and Its Roles in Osteoporosis. DNA and Cell Biology, 41, 575-589.
https://doi.org/10.1089/dna.2021.0699
[4] 吴素丽, 何炜, 李珊. 急性呼吸窘迫综合征的炎症反应机制及机械通气治疗进展[J]. 武警医学, 2023, 34(2): 177-180.
[5] Cesta, M.C., Zippoli, M., Marsiglia, C., Gavioli, E.M., Mantelli, F., Allegretti, M., et al. (2022) The Role of Interleukin-8 in Lung Inflammation and Injury: Implications for the Management of COVID-19 and Hyperinflammatory Acute Respiratory Distress Syndrome. Frontiers in Pharmacology, 12, Article 808797.
https://doi.org/10.3389/fphar.2021.808797
[6] Chen, X., Chen, J., Liu, S. and Li, X. (2023) Everolimus-Induced Hyperpermeability of Endothelial Cells Causes Lung Injury. Experimental Biology and Medicine, 248, 2440-2448.
https://doi.org/10.1177/15353702231220672
[7] Meegan, J.E., Shaver, C.M., Putz, N.D., Jesse, J.J., Landstreet, S.R., Lee, H.N.R., et al. (2020) Cell-Free Hemoglobin Increases Inflammation, Lung Apoptosis, and Microvascular Permeability in Murine Polymicrobial Sepsis. PLOS ONE, 15, e0228727.
https://doi.org/10.1371/journal.pone.0228727
[8] Rashid, M., Ramakrishnan, M., Muthu, D.S., Chandran, V.P., Thunga, G., Kunhikatta, V., et al. (2022) Factors Affecting the Outcomes in Patients with Acute Respiratory Distress Syndrome in a Tertiary Care Setting. Clinical Epidemiology and Global Health, 13, Article 100972.
https://doi.org/10.1016/j.cegh.2022.100972
[9] Zha, D., Fu, M. and Qian, Y. (2022) Vascular Endothelial Glycocalyx Damage and Potential Targeted Therapy in Covid-19. Cells, 11, Article 1972.
https://doi.org/10.3390/cells11121972
[10] Wei, Y., Jia, S., Ding, Y., Xia, S. and Giunta, S. (2023) Balanced Basal-Levels of ROS (Redox-Biology), and Very-Low-Levels of Pro-Inflammatory Cytokines (Cold-Inflammaging), as Signaling Molecules Can Prevent or Slow-Down Overt-Inflammaging, and the Aging-Associated Decline of Adaptive-Homeostasis. Experimental Gerontology, 172, Article 112067.
https://doi.org/10.1016/j.exger.2022.112067
[11] Lu, J., Liu, J. and Li, A. (2022) Roles of Neutrophil Reactive Oxygen Species (ROS) Generation in Organ Function Impairment in Sepsis. Journal of Zhejiang University-SCIENCE B, 23, 437-450.
https://doi.org/10.1631/jzus.b2101075
[12] Qudus, M.S., Tian, M., Sirajuddin, S., Liu, S., Afaq, U., Wali, M., et al. (2023) The Roles of Critical Pro‐Inflammatory Cytokines in the Drive of Cytokine Storm during SARS‐CoV‐2 Infection. Journal of Medical Virology, 95, e28751.
https://doi.org/10.1002/jmv.28751
[13] Azzouz, D. and Palaniyar, N. (2024) How Do ROS Induce NETosis? Oxidative DNA Damage, DNA Repair, and Chromatin Decondensation. Biomolecules, 14, Article 1307.
https://doi.org/10.3390/biom14101307
[14] Pokharel, M.D., Fu, P., Garcia-Flores, A., Yegambaram, M., Lu, Q., Sun, X., et al. (2024) Inflammatory Lung Injury Is Associated with Endothelial Cell Mitochondrial Fission and Requires the Nitration of Rhoa and Cytoskeletal Remodeling. Free Radical Biology and Medicine, 221, 125-135.
https://doi.org/10.1016/j.freeradbiomed.2024.05.019
[15] Wang, C., Yuan, J. and Du, J. (2021) Resveratrol Alleviates Acute Lung Injury through Regulating PLSCR-3-Mediated Mitochondrial Dysfunction and Mitophagy in a Cecal Ligation and Puncture Model. European Journal of Pharmacology, 913, Article 174643.
https://doi.org/10.1016/j.ejphar.2021.174643
[16] Wang, Y., Gong, F., Qi, X., Zheng, Y., Zheng, X., Chen, Y., et al. (2022) Mucin 1 Inhibits Ferroptosis and Sensitizes Vitamin E to Alleviate Sepsis-Induced Acute Lung Injury through GSK3β/Keap1-Nrf2-GPX4 Pathway. Oxidative Medicine and Cellular Longevity, 2022, Article ID: 2405943.
https://doi.org/10.1155/2022/2405943
[17] Zhang, Z., Han, N. and Shen, Y. (2020) S100A12 Promotes Inflammation and Cell Apoptosis in Sepsis-Induced ARDS via Activation of NLRP3 Inflammasome Signaling. Molecular Immunology, 122, 38-48.
https://doi.org/10.1016/j.molimm.2020.03.022
[18] Sun, M., Yang, Q., Hu, C., Zhang, H. and Xing, L. (2022) Identification and Validation of Autophagy-Related Genes in Sepsis-Induced Acute Respiratory Distress Syndrome and Immune Infiltration. Journal of Inflammation Research, 15, 2199-2212.
https://doi.org/10.2147/jir.s355225
[19] Xie, Y., Hu, W., Chen, X., Ren, P., Ye, C., Wang, Y., et al. (2022) Identification and Validation of Autophagy‐Related Genes in Exogenous Sepsis‐Induced Acute Respiratory Distress Syndrome. Immunity, Inflammation and Disease, 10, e691.
https://doi.org/10.1002/iid3.691
[20] Li, Z., Zheng, B., Liu, C., Zhao, X., Zhao, Y., Wang, X., et al. (2023) BMSC-Derived Exosomes Alleviate Sepsis-Associated Acute Respiratory Distress Syndrome by Activating the Nrf2 Pathway to Reverse Mitochondrial Dysfunction. Stem Cells International, 2023, Article ID: 7072700.
https://doi.org/10.1155/2023/7072700
[21] Villar, J., Herrán-Monge, R., González-Higueras, E., Prieto-González, M., Ambrós, A., Rodríguez-Pérez, A., et al. (2021) Clinical and Biological Markers for Predicting ARDS and Outcome in Septic Patients. Scientific Reports, 11, Article No. 22702.
https://doi.org/10.1038/s41598-021-02100-w
[22] Wang, L., Tang, Y., Tang, J., Liu, X., Zi, S., Li, S., et al. (2024) Endothelial Cell‐Derived Extracellular Vesicles Expressing Surface VCAM1 Promote Sepsis‐Related Acute Lung Injury by Targeting and Reprogramming Monocytes. Journal of Extracellular Vesicles, 13, e12423.
https://doi.org/10.1002/jev2.12423
[23] Zhu, Y., Wang, Z., Zheng, J., Wang, J., Chen, Y., Huang, C., et al. (2024) RNA-Seq Revealed the Anti-Pyroptotic Effect of Suramin by Suppressing NLRP3/Caspase-1/GSDMD Pathway in LPS-Induced MH-S Alveolar Macrophages. Gene, 893, Article 147888.
https://doi.org/10.1016/j.gene.2023.147888
[24] Liu, C., Zhou, Y., Tu, Q., Yao, L., Li, J. and Yang, Z. (2023) Alpha-Linolenic Acid Pretreatment Alleviates Nets-Induced Alveolar Macrophage Pyroptosis by Inhibiting Pyrin Inflammasome Activation in a Mouse Model of Sepsis-Induced ALI/ARDS. Frontiers in Immunology, 14, Article 1146612.
https://doi.org/10.3389/fimmu.2023.1146612
[25] Li, M., Ren, X., Lu, F., Pang, S., Ding, L., Wang, L., et al. (2024) Identifying Potential Key Ferroptosis-Related Genes and Therapeutic Drugs in Sepsis-Induced Ards by Bioinformatics and Experimental Verification. Shock, 63, 141-154.
https://doi.org/10.1097/shk.0000000000002478
[26] Chen, Z., Li, J., Peng, H., Zhang, M., Wu, X., Gui, F., et al. (2023) Meteorin-Like/Meteorin-β Protects LPS-Induced Acute Lung Injury by Activating SIRT1-P53-SLC7A11 Mediated Ferroptosis Pathway. Molecular Medicine, 29, Article No. 144.
https://doi.org/10.1186/s10020-023-00714-6
[27] Lai, K., Song, C., Gao, M., Deng, Y., Lu, Z., Li, N., et al. (2023) Uridine Alleviates Sepsis-Induced Acute Lung Injury by Inhibiting Ferroptosis of Macrophage. International Journal of Molecular Sciences, 24, Article 5093.
https://doi.org/10.3390/ijms24065093
[28] Gu, Y., Lv, L., Jin, J., Hua, X., Xu, Q., Wu, R., et al. (2024) STING Mediates LPS-Induced Acute Lung Injury by Regulating Ferroptosis. Experimental Cell Research, 438, Article 114039.
https://doi.org/10.1016/j.yexcr.2024.114039
[29] Mammen, M.J., Aryal, K., Alhazzani, W. and Alexander, P.E. (2020) Corticosteroids for Patients with Acute Respiratory Distress Syndrome: A Systematic Review and Meta-Analysis of Randomized Trials. Polish Archives of Internal Medicine, 130, 276-286.
https://doi.org/10.20452/pamw.15239
[30] Xiang, Z., Liu, J., Shi, D., Chen, W., Li, J., Yan, R., et al. (2020) Glucocorticoids Improve Severe or Critical COVID-19 by Activating ACE2 and Reducing IL-6 Levels. International Journal of Biological Sciences, 16, 2382-2391.
https://doi.org/10.7150/ijbs.47652
[31] Alhazzani, W., Alshahrani, M., Jaeschke, R., Forel, J.M., Papazian, L., Sevransky, J., et al. (2013) Neuromuscular Blocking Agents in Acute Respiratory Distress Syndrome: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. Critical Care, 17, Article No. R43.
https://doi.org/10.1186/cc12557
[32] Grasselli, G., Calfee, C.S., Camporota, L., Poole, D., Amato, M.B.P., Antonelli, M., et al. (2023) ESICM Guidelines on Acute Respiratory Distress Syndrome: Definition, Phenotyping and Respiratory Support Strategies. Intensive Care Medicine, 49, 727-759.
https://doi.org/10.1007/s00134-023-07050-7
[33] Alhazzani, W., Belley-Cote, E., Møller, M.H., Angus, D.C., Papazian, L., Arabi, Y.M., et al. (2020) Neuromuscular Blockade in Patients with ARDS: A Rapid Practice Guideline. Intensive Care Medicine, 46, 1977-1986.
https://doi.org/10.1007/s00134-020-06227-8
[34] Quijada, H., Bermudez, T., Kempf, C.L., Valera, D.G., Garcia, A.N., Camp, S.M., et al. (2020) Endothelial Enampt Amplifies Pre-Clinical Acute Lung Injury: Efficacy of an Enampt-Neutralising Monoclonal Antibody. European Respiratory Journal, 57, Article 2002536.
https://doi.org/10.1183/13993003.02536-2020
[35] Mannes, M., Mastellos, D.C., Ekdahl, K.N., Nilsson, B., Yancopoulou, D., Lambris, J.D., et al. (2022) Complement C3 Activation in the ICU: Disease and Therapy as Bonnie and Clyde. Seminars in Immunology, 60, Article 101640.
https://doi.org/10.1016/j.smim.2022.101640
[36] Chang, J. (2021) COVID-19 Sepsis: Pathogenesis and Endothelial Molecular Mechanisms Based on “Two-Path Unifying Theory” of Hemostasis and Endotheliopathy-Associated Vascular Microthrombotic Disease, and Proposed Therapeutic Approach with Antimicrothrombotic Therapy. Vascular Health and Risk Management, 17, 273-298.
https://doi.org/10.2147/vhrm.s299357
[37] Amini, S., Rezabakhsh, A., Hashemi, J., Saghafi, F., Azizi, H., Sureda, A., et al. (2022) Pharmacotherapy Consideration of Thrombolytic Medications in COVID-19-Associated ARDS. Journal of Intensive Care, 10, Article No. 38.
https://doi.org/10.1186/s40560-022-00625-4
[38] Battaglini, D., Iavarone, I.G., Robba, C., Ball, L., Silva, P.L. and Rocco, P.R.M. (2023) Mechanical Ventilation in Patients with Acute Respiratory Distress Syndrome: Current Status and Future Perspectives. Expert Review of Medical Devices, 20, 905-917.
https://doi.org/10.1080/17434440.2023.2255521
[39] Grasselli, G., Calfee, C.S., Camporota, L., Poole, D., Amato, M.B.P., Antonelli, M., et al. (2023) ESICM Guidelines on Acute Respiratory Distress Syndrome: Definition, Phenotyping and Respiratory Support Strategies. Intensive Care Medicine, 49, 727-759.
https://doi.org/10.1007/s00134-023-07050-7
[40] 蔡玉伟, 张宇茂. 新生儿急性呼吸窘迫综合征治疗中应用肺保护性通气策略的临床价值[J]. 中国处方药, 2019, 17(12): 132-133.
[41] 中华医学会麻醉学分会“围术期肺保护性通气策略临床应用专家共识”工作小组. 围术期肺保护性通气策略临床应用专家共识[J]. 中华麻醉学杂志, 2020, 40(5): 513-519.
[42] Cavalcanti, A.B., Suzumura, É.A., Laranjeira, L.N., Paisani, D.d.M., Damiani, L.P., Guimarães, H.P., et al. (2017) Effect of Lung Recruitment and Titrated Positive End-Expiratory Pressure (PEEP) vs Low PEEP on Mortality in Patients with Acute Respiratory Distress Syndrome: A Randomized Clinical Trial. JAMA, 318, 1335-1345.
https://doi.org/10.1001/jama.2017.14171
[43] Papazian, L., Munshi, L. and Guérin, C. (2022) Prone Position in Mechanically Ventilated Patients. Intensive Care Medicine, 48, 1062-1065.
https://doi.org/10.1007/s00134-022-06731-z
[44] Dos Santos Rocha, A., Diaper, J., Balogh, A.L., Marti, C., Grosgurin, O., Habre, W., et al. (2022) Effect of Body Position on the Redistribution of Regional Lung Aeration during Invasive and Non-Invasive Ventilation of COVID-19 Patients. Scientific Reports, 12, Article No. 11085.
https://doi.org/10.1038/s41598-022-15122-9
[45] Ahmed, T., Ahmed, T., Karimi, H., Tolle, L. and Iqbal, M.N. (2020) COVID19 Acute Respiratory Distress Syndrome and Extra-Corporeal Membrane Oxygenation; a Mere Option or Ultimate Necessity. Perfusion, 36, 559-563.
https://doi.org/10.1177/0267659120961507
[46] Golicnik, A., Zivanovic, I., Gorjup, V. and Berden, J. (2023) Same but Different—ECMO in COVID-19 and ARDS of Other Etiologies. Comparison of Survival Outcomes and Management in Different ARDS Groups. Journal of Intensive Care Medicine, 38, 635-642.
https://doi.org/10.1177/08850666231157286
[47] Hayanga, J.W.A., Kakuturu, J., Dhamija, A., Asad, F., McCarthy, P., Sappington, P., et al. (2023) Cannulate, Extubate, Ambulate Approach for Extracorporeal Membrane Oxygenation for COVID-19. The Journal of Thoracic and Cardiovascular Surgery, 166, 1132-1142.E33.
https://doi.org/10.1016/j.jtcvs.2022.02.049
[48] Guan, C., Shen, H., Dong, S., Zhan, Y., Yang, J., Zhang, Q., et al. (2023) Research Status and Development Trend of Extracorporeal Membrane Oxygenation Based on Bibliometrics. Frontiers in Cardiovascular Medicine, 10, Article 1048903.
https://doi.org/10.3389/fcvm.2023.1048903
[49] Kakabadze, Z., Kipshidze, N., Paresishvili, T., Kipshidze, N., Vadachkoria, Z. and Chakhunashvili, D. (2022) Human Placental Mesenchymal Stem Cells for the Treatment of ARDS in Rat. Stem Cells International, 2022, Article ID: 8418509.
https://doi.org/10.1155/2022/8418509