[1]
|
Singer, M., Deutschman, C.S., Seymour, C.W., Shankar-Hari, M., Annane, D., Bauer, M., et al. (2016) The Third International Consensus Definitions for Sepsis and Septic Shock (Sepsis-3). JAMA, 315, 801-810. https://doi.org/10.1001/jama.2016.0287
|
[2]
|
Shappell, C., Rhee, C. and Klompas, M. (2023) Update on Sepsis Epidemiology in the Era of COVID-19. Seminars in Respiratory and Critical Care Medicine, 44, 173-184. https://doi.org/10.1055/s-0042-1759880
|
[3]
|
Peng, R., Dong, Y., Kang, H., Guo, Q., Zhu, M. and Li, F. (2022) Identification of Genes with Altered Methylation in Osteoclast Differentiation and Its Roles in Osteoporosis. DNA and Cell Biology, 41, 575-589. https://doi.org/10.1089/dna.2021.0699
|
[4]
|
吴素丽, 何炜, 李珊. 急性呼吸窘迫综合征的炎症反应机制及机械通气治疗进展[J]. 武警医学, 2023, 34(2): 177-180.
|
[5]
|
Cesta, M.C., Zippoli, M., Marsiglia, C., Gavioli, E.M., Mantelli, F., Allegretti, M., et al. (2022) The Role of Interleukin-8 in Lung Inflammation and Injury: Implications for the Management of COVID-19 and Hyperinflammatory Acute Respiratory Distress Syndrome. Frontiers in Pharmacology, 12, Article 808797. https://doi.org/10.3389/fphar.2021.808797
|
[6]
|
Chen, X., Chen, J., Liu, S. and Li, X. (2023) Everolimus-Induced Hyperpermeability of Endothelial Cells Causes Lung Injury. Experimental Biology and Medicine, 248, 2440-2448. https://doi.org/10.1177/15353702231220672
|
[7]
|
Meegan, J.E., Shaver, C.M., Putz, N.D., Jesse, J.J., Landstreet, S.R., Lee, H.N.R., et al. (2020) Cell-Free Hemoglobin Increases Inflammation, Lung Apoptosis, and Microvascular Permeability in Murine Polymicrobial Sepsis. PLOS ONE, 15, e0228727. https://doi.org/10.1371/journal.pone.0228727
|
[8]
|
Rashid, M., Ramakrishnan, M., Muthu, D.S., Chandran, V.P., Thunga, G., Kunhikatta, V., et al. (2022) Factors Affecting the Outcomes in Patients with Acute Respiratory Distress Syndrome in a Tertiary Care Setting. Clinical Epidemiology and Global Health, 13, Article 100972. https://doi.org/10.1016/j.cegh.2022.100972
|
[9]
|
Zha, D., Fu, M. and Qian, Y. (2022) Vascular Endothelial Glycocalyx Damage and Potential Targeted Therapy in Covid-19. Cells, 11, Article 1972. https://doi.org/10.3390/cells11121972
|
[10]
|
Wei, Y., Jia, S., Ding, Y., Xia, S. and Giunta, S. (2023) Balanced Basal-Levels of ROS (Redox-Biology), and Very-Low-Levels of Pro-Inflammatory Cytokines (Cold-Inflammaging), as Signaling Molecules Can Prevent or Slow-Down Overt-Inflammaging, and the Aging-Associated Decline of Adaptive-Homeostasis. Experimental Gerontology, 172, Article 112067. https://doi.org/10.1016/j.exger.2022.112067
|
[11]
|
Lu, J., Liu, J. and Li, A. (2022) Roles of Neutrophil Reactive Oxygen Species (ROS) Generation in Organ Function Impairment in Sepsis. Journal of Zhejiang University-SCIENCE B, 23, 437-450. https://doi.org/10.1631/jzus.b2101075
|
[12]
|
Qudus, M.S., Tian, M., Sirajuddin, S., Liu, S., Afaq, U., Wali, M., et al. (2023) The Roles of Critical Pro‐Inflammatory Cytokines in the Drive of Cytokine Storm during SARS‐CoV‐2 Infection. Journal of Medical Virology, 95, e28751. https://doi.org/10.1002/jmv.28751
|
[13]
|
Azzouz, D. and Palaniyar, N. (2024) How Do ROS Induce NETosis? Oxidative DNA Damage, DNA Repair, and Chromatin Decondensation. Biomolecules, 14, Article 1307. https://doi.org/10.3390/biom14101307
|
[14]
|
Pokharel, M.D., Fu, P., Garcia-Flores, A., Yegambaram, M., Lu, Q., Sun, X., et al. (2024) Inflammatory Lung Injury Is Associated with Endothelial Cell Mitochondrial Fission and Requires the Nitration of Rhoa and Cytoskeletal Remodeling. Free Radical Biology and Medicine, 221, 125-135. https://doi.org/10.1016/j.freeradbiomed.2024.05.019
|
[15]
|
Wang, C., Yuan, J. and Du, J. (2021) Resveratrol Alleviates Acute Lung Injury through Regulating PLSCR-3-Mediated Mitochondrial Dysfunction and Mitophagy in a Cecal Ligation and Puncture Model. European Journal of Pharmacology, 913, Article 174643. https://doi.org/10.1016/j.ejphar.2021.174643
|
[16]
|
Wang, Y., Gong, F., Qi, X., Zheng, Y., Zheng, X., Chen, Y., et al. (2022) Mucin 1 Inhibits Ferroptosis and Sensitizes Vitamin E to Alleviate Sepsis-Induced Acute Lung Injury through GSK3β/Keap1-Nrf2-GPX4 Pathway. Oxidative Medicine and Cellular Longevity, 2022, Article ID: 2405943. https://doi.org/10.1155/2022/2405943
|
[17]
|
Zhang, Z., Han, N. and Shen, Y. (2020) S100A12 Promotes Inflammation and Cell Apoptosis in Sepsis-Induced ARDS via Activation of NLRP3 Inflammasome Signaling. Molecular Immunology, 122, 38-48. https://doi.org/10.1016/j.molimm.2020.03.022
|
[18]
|
Sun, M., Yang, Q., Hu, C., Zhang, H. and Xing, L. (2022) Identification and Validation of Autophagy-Related Genes in Sepsis-Induced Acute Respiratory Distress Syndrome and Immune Infiltration. Journal of Inflammation Research, 15, 2199-2212. https://doi.org/10.2147/jir.s355225
|
[19]
|
Xie, Y., Hu, W., Chen, X., Ren, P., Ye, C., Wang, Y., et al. (2022) Identification and Validation of Autophagy‐Related Genes in Exogenous Sepsis‐Induced Acute Respiratory Distress Syndrome. Immunity, Inflammation and Disease, 10, e691. https://doi.org/10.1002/iid3.691
|
[20]
|
Li, Z., Zheng, B., Liu, C., Zhao, X., Zhao, Y., Wang, X., et al. (2023) BMSC-Derived Exosomes Alleviate Sepsis-Associated Acute Respiratory Distress Syndrome by Activating the Nrf2 Pathway to Reverse Mitochondrial Dysfunction. Stem Cells International, 2023, Article ID: 7072700. https://doi.org/10.1155/2023/7072700
|
[21]
|
Villar, J., Herrán-Monge, R., González-Higueras, E., Prieto-González, M., Ambrós, A., Rodríguez-Pérez, A., et al. (2021) Clinical and Biological Markers for Predicting ARDS and Outcome in Septic Patients. Scientific Reports, 11, Article No. 22702. https://doi.org/10.1038/s41598-021-02100-w
|
[22]
|
Wang, L., Tang, Y., Tang, J., Liu, X., Zi, S., Li, S., et al. (2024) Endothelial Cell‐Derived Extracellular Vesicles Expressing Surface VCAM1 Promote Sepsis‐Related Acute Lung Injury by Targeting and Reprogramming Monocytes. Journal of Extracellular Vesicles, 13, e12423. https://doi.org/10.1002/jev2.12423
|
[23]
|
Zhu, Y., Wang, Z., Zheng, J., Wang, J., Chen, Y., Huang, C., et al. (2024) RNA-Seq Revealed the Anti-Pyroptotic Effect of Suramin by Suppressing NLRP3/Caspase-1/GSDMD Pathway in LPS-Induced MH-S Alveolar Macrophages. Gene, 893, Article 147888. https://doi.org/10.1016/j.gene.2023.147888
|
[24]
|
Liu, C., Zhou, Y., Tu, Q., Yao, L., Li, J. and Yang, Z. (2023) Alpha-Linolenic Acid Pretreatment Alleviates Nets-Induced Alveolar Macrophage Pyroptosis by Inhibiting Pyrin Inflammasome Activation in a Mouse Model of Sepsis-Induced ALI/ARDS. Frontiers in Immunology, 14, Article 1146612. https://doi.org/10.3389/fimmu.2023.1146612
|
[25]
|
Li, M., Ren, X., Lu, F., Pang, S., Ding, L., Wang, L., et al. (2024) Identifying Potential Key Ferroptosis-Related Genes and Therapeutic Drugs in Sepsis-Induced Ards by Bioinformatics and Experimental Verification. Shock, 63, 141-154. https://doi.org/10.1097/shk.0000000000002478
|
[26]
|
Chen, Z., Li, J., Peng, H., Zhang, M., Wu, X., Gui, F., et al. (2023) Meteorin-Like/Meteorin-β Protects LPS-Induced Acute Lung Injury by Activating SIRT1-P53-SLC7A11 Mediated Ferroptosis Pathway. Molecular Medicine, 29, Article No. 144. https://doi.org/10.1186/s10020-023-00714-6
|
[27]
|
Lai, K., Song, C., Gao, M., Deng, Y., Lu, Z., Li, N., et al. (2023) Uridine Alleviates Sepsis-Induced Acute Lung Injury by Inhibiting Ferroptosis of Macrophage. International Journal of Molecular Sciences, 24, Article 5093. https://doi.org/10.3390/ijms24065093
|
[28]
|
Gu, Y., Lv, L., Jin, J., Hua, X., Xu, Q., Wu, R., et al. (2024) STING Mediates LPS-Induced Acute Lung Injury by Regulating Ferroptosis. Experimental Cell Research, 438, Article 114039. https://doi.org/10.1016/j.yexcr.2024.114039
|
[29]
|
Mammen, M.J., Aryal, K., Alhazzani, W. and Alexander, P.E. (2020) Corticosteroids for Patients with Acute Respiratory Distress Syndrome: A Systematic Review and Meta-Analysis of Randomized Trials. Polish Archives of Internal Medicine, 130, 276-286. https://doi.org/10.20452/pamw.15239
|
[30]
|
Xiang, Z., Liu, J., Shi, D., Chen, W., Li, J., Yan, R., et al. (2020) Glucocorticoids Improve Severe or Critical COVID-19 by Activating ACE2 and Reducing IL-6 Levels. International Journal of Biological Sciences, 16, 2382-2391. https://doi.org/10.7150/ijbs.47652
|
[31]
|
Alhazzani, W., Alshahrani, M., Jaeschke, R., Forel, J.M., Papazian, L., Sevransky, J., et al. (2013) Neuromuscular Blocking Agents in Acute Respiratory Distress Syndrome: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. Critical Care, 17, Article No. R43. https://doi.org/10.1186/cc12557
|
[32]
|
Grasselli, G., Calfee, C.S., Camporota, L., Poole, D., Amato, M.B.P., Antonelli, M., et al. (2023) ESICM Guidelines on Acute Respiratory Distress Syndrome: Definition, Phenotyping and Respiratory Support Strategies. Intensive Care Medicine, 49, 727-759. https://doi.org/10.1007/s00134-023-07050-7
|
[33]
|
Alhazzani, W., Belley-Cote, E., Møller, M.H., Angus, D.C., Papazian, L., Arabi, Y.M., et al. (2020) Neuromuscular Blockade in Patients with ARDS: A Rapid Practice Guideline. Intensive Care Medicine, 46, 1977-1986. https://doi.org/10.1007/s00134-020-06227-8
|
[34]
|
Quijada, H., Bermudez, T., Kempf, C.L., Valera, D.G., Garcia, A.N., Camp, S.M., et al. (2020) Endothelial Enampt Amplifies Pre-Clinical Acute Lung Injury: Efficacy of an Enampt-Neutralising Monoclonal Antibody. European Respiratory Journal, 57, Article 2002536. https://doi.org/10.1183/13993003.02536-2020
|
[35]
|
Mannes, M., Mastellos, D.C., Ekdahl, K.N., Nilsson, B., Yancopoulou, D., Lambris, J.D., et al. (2022) Complement C3 Activation in the ICU: Disease and Therapy as Bonnie and Clyde. Seminars in Immunology, 60, Article 101640. https://doi.org/10.1016/j.smim.2022.101640
|
[36]
|
Chang, J. (2021) COVID-19 Sepsis: Pathogenesis and Endothelial Molecular Mechanisms Based on “Two-Path Unifying Theory” of Hemostasis and Endotheliopathy-Associated Vascular Microthrombotic Disease, and Proposed Therapeutic Approach with Antimicrothrombotic Therapy. Vascular Health and Risk Management, 17, 273-298. https://doi.org/10.2147/vhrm.s299357
|
[37]
|
Amini, S., Rezabakhsh, A., Hashemi, J., Saghafi, F., Azizi, H., Sureda, A., et al. (2022) Pharmacotherapy Consideration of Thrombolytic Medications in COVID-19-Associated ARDS. Journal of Intensive Care, 10, Article No. 38. https://doi.org/10.1186/s40560-022-00625-4
|
[38]
|
Battaglini, D., Iavarone, I.G., Robba, C., Ball, L., Silva, P.L. and Rocco, P.R.M. (2023) Mechanical Ventilation in Patients with Acute Respiratory Distress Syndrome: Current Status and Future Perspectives. Expert Review of Medical Devices, 20, 905-917. https://doi.org/10.1080/17434440.2023.2255521
|
[39]
|
Grasselli, G., Calfee, C.S., Camporota, L., Poole, D., Amato, M.B.P., Antonelli, M., et al. (2023) ESICM Guidelines on Acute Respiratory Distress Syndrome: Definition, Phenotyping and Respiratory Support Strategies. Intensive Care Medicine, 49, 727-759. https://doi.org/10.1007/s00134-023-07050-7
|
[40]
|
蔡玉伟, 张宇茂. 新生儿急性呼吸窘迫综合征治疗中应用肺保护性通气策略的临床价值[J]. 中国处方药, 2019, 17(12): 132-133.
|
[41]
|
中华医学会麻醉学分会“围术期肺保护性通气策略临床应用专家共识”工作小组. 围术期肺保护性通气策略临床应用专家共识[J]. 中华麻醉学杂志, 2020, 40(5): 513-519.
|
[42]
|
Cavalcanti, A.B., Suzumura, É.A., Laranjeira, L.N., Paisani, D.d.M., Damiani, L.P., Guimarães, H.P., et al. (2017) Effect of Lung Recruitment and Titrated Positive End-Expiratory Pressure (PEEP) vs Low PEEP on Mortality in Patients with Acute Respiratory Distress Syndrome: A Randomized Clinical Trial. JAMA, 318, 1335-1345. https://doi.org/10.1001/jama.2017.14171
|
[43]
|
Papazian, L., Munshi, L. and Guérin, C. (2022) Prone Position in Mechanically Ventilated Patients. Intensive Care Medicine, 48, 1062-1065. https://doi.org/10.1007/s00134-022-06731-z
|
[44]
|
Dos Santos Rocha, A., Diaper, J., Balogh, A.L., Marti, C., Grosgurin, O., Habre, W., et al. (2022) Effect of Body Position on the Redistribution of Regional Lung Aeration during Invasive and Non-Invasive Ventilation of COVID-19 Patients. Scientific Reports, 12, Article No. 11085. https://doi.org/10.1038/s41598-022-15122-9
|
[45]
|
Ahmed, T., Ahmed, T., Karimi, H., Tolle, L. and Iqbal, M.N. (2020) COVID19 Acute Respiratory Distress Syndrome and Extra-Corporeal Membrane Oxygenation; a Mere Option or Ultimate Necessity. Perfusion, 36, 559-563. https://doi.org/10.1177/0267659120961507
|
[46]
|
Golicnik, A., Zivanovic, I., Gorjup, V. and Berden, J. (2023) Same but Different—ECMO in COVID-19 and ARDS of Other Etiologies. Comparison of Survival Outcomes and Management in Different ARDS Groups. Journal of Intensive Care Medicine, 38, 635-642. https://doi.org/10.1177/08850666231157286
|
[47]
|
Hayanga, J.W.A., Kakuturu, J., Dhamija, A., Asad, F., McCarthy, P., Sappington, P., et al. (2023) Cannulate, Extubate, Ambulate Approach for Extracorporeal Membrane Oxygenation for COVID-19. The Journal of Thoracic and Cardiovascular Surgery, 166, 1132-1142.E33. https://doi.org/10.1016/j.jtcvs.2022.02.049
|
[48]
|
Guan, C., Shen, H., Dong, S., Zhan, Y., Yang, J., Zhang, Q., et al. (2023) Research Status and Development Trend of Extracorporeal Membrane Oxygenation Based on Bibliometrics. Frontiers in Cardiovascular Medicine, 10, Article 1048903. https://doi.org/10.3389/fcvm.2023.1048903
|
[49]
|
Kakabadze, Z., Kipshidze, N., Paresishvili, T., Kipshidze, N., Vadachkoria, Z. and Chakhunashvili, D. (2022) Human Placental Mesenchymal Stem Cells for the Treatment of ARDS in Rat. Stem Cells International, 2022, Article ID: 8418509. https://doi.org/10.1155/2022/8418509
|