金黄色葡萄球菌群体感应系统及毒力调控机制
Quorum Sensing System and Virulence Regulation Mechanism of Staphylococcus aureus
DOI: 10.12677/acm.2025.152419, PDF, HTML, XML,    科研立项经费支持
作者: 张晨晨*, 田代印#:重庆医科大学附属儿童医院呼吸科,国家儿童健康与疾病临床医学研究中心,儿童发育疾病研究教育部重点实验室,儿童代谢与炎症性疾病重庆市重点实验室,儿童感染与免疫罕见病重庆市重点实验室,重庆
关键词: 金黄色葡萄球菌agr基因毒力调控系统Staphylococcus aureus agr Gene Virulence Regulation System
摘要: 辅助基因调控(agr)群体感应系统通过调控毒力因子及生物被膜形成等影响金黄色葡萄球菌毒力的表达。agr的信号传导主要依赖于自诱导信号肽(AIP)与AgrC结合后激活AgrA,而后直接由AgrA或转录后调节因子RNAIII作用于下游靶基因调控金黄色葡萄球菌的毒力因子。本综述主要讲述了AIP与AgrC结合以及AgrA作用于下游靶基因的机制。讨论了agr阴性突变菌株感染对临床患者的影响,还讨论了多种毒力调控基因与agr共同作用调节金葡菌毒力的复杂网络。
Abstract: Accessory gene regulator (agr) quorum sensing network affects the expression of Staphylococcus aureus virulence by regulating virulence factors and biofilm formation. The signal transduction of agr mainly depends on the activation of AgrA after the binding of AIP with AgrC, and then the direct action of AgrA or the post-transcriptional regulatory factor RNAIII on the downstream target gene to regulate the virulence factors of Staphylococcus aureus. This review mainly describes the mechanism of AIP binding to AgrC and AgrA acting on downstream target genes. The effects of agr negative mutant strains on clinical patients were discussed, and the complex network of virulence regulation genes and agr regulating Staphylococcus aureus was discussed.
文章引用:张晨晨, 田代印. 金黄色葡萄球菌群体感应系统及毒力调控机制[J]. 临床医学进展, 2025, 15(2): 867-873. https://doi.org/10.12677/acm.2025.152419

1. 引言

金黄色葡萄球菌是一种机会致病菌,主要定植在人体鼻腔及皮肤上,大多数情况下金葡菌定植在人体内并不致病,但由于其大量的毒力因子及多重耐药属性,在免疫力低下等特定情况下可能会引起极端的致病性[1]。金葡菌的毒力因子受到多种调控因子共同调节[2],其中辅助基因调控(agr)是最早被发现的参与调控金黄色葡萄球菌毒力表达并影响其致病性的基因簇。在细菌达到一定密度后,agr调控毒力相关基因的表达,包括金葡菌的各种酶(如aursspAsspBlipgeh)、毒素(如HlaHlbHldTstLuk)和表面蛋白相关基因[2] [3]。探究agr系统的作用机制及功能及其与其他调控因子的相互作用是研究金葡菌化学治疗靶点的关键。在这篇综述中,我们概述了金葡菌agr系统复杂的分子机制,讨论了agr突变对临床感染的影响,梳理了金葡菌毒力调控因子的相互作用影响毒力表达的机制。

2. 金黄色葡萄球菌agr群体感应系统

金葡菌agr系统由四个蛋白(AgrBDCA)组成,具有两个不同的转录单元,其中P2通过调控RNAII进一步调控AgrBDCA的转录,P3通过调控RNAIII调控各种毒力因子、酶及表面蛋白的转录[3] [4]。具体而言,首先AgrD的N端会与膜蛋白AgrB结合,通过AgrB的切割修饰形成由AgrD N端、一个5元大环以及一个外环尾部组成的结构被释放到细胞外,再由膜蛋白MroQ切割AgrD N端,最后形成由一个5元大环及拥有2~4个残基的外环尾部组成的成熟AIP [5]。当细菌生长到指数后期时,AIP激活AgrC,招募AgrA与其结合,导致AgrA磷酸化。磷酸化的AgrA与P2结合,形成了自诱导的正反馈回路;AgrA还可与P3结合,诱导RNAIII转录,进而调控毒力因子表面蛋白及酶相关基因转录,从而增强金葡菌的致病性[2]。根据agr系统基因序列、AIP和与之结合的受体的不同,agr可分为4个亚型,不同亚型的AIP之间相互抑制,也就是说AIP-I可以激活同组的Agr-I,但却是AgrII、III、IV的抑制剂[6] [7]。同时I型的AgrB可以识别I型和III型菌株的AgrD,但不能识别II型的AgrD [8]

3. 金黄色葡萄球菌AgrC和AgrA双组分调节系统

AgrC属于组氨酸蛋白激酶家族,由膜相关的传感器结构域、胞质组氨酸激酶(HK)模块和连接这两个元件的信号螺旋(s-螺旋)连接区域组成[9]。n端传感器结构域是胞外AIP结合位点,其编码基因区域与AgrD和部分AgrB一起位于agr高度可变区,表明该区域与AgrD、AgrB共同进化[9]。由于金葡菌对环境竞争的适应性变化,AIP的结构可以随着AgrB、AgrC的变化而发生代偿性改变,来保持自身诱导的活性[9]。AgrC胞外结构域包含3个细胞外环,使用拓扑预测模型对AgrC-I和AgrC-IV的3个细胞外环进行预测发现,AgrC-I和AgrC-IV环1和环2的氨基酸变异与AIP-I和AIP-IV的氨基酸变异相互对应,表明AgrC细胞外环1和环2是AIP识别的主要位点[10]。AgrC与AIP结合后,AgrC发生s-螺旋的逆时针旋转从而“解锁”CA结构域,使其能够结合ATP,促进AgrA磷酸化[11]。磷酸化的AgrA与P2和P3之间约115bp的重复序列结合[12]。一般认为P2、P3启动子的激活严格依赖于AgrA。而在金黄色葡萄球菌的体内外感染研究中发现,RNAII的转录先于RNAIII的转录[13] [14]。当细菌密度达到阈值后,RNAII转录稳定增加,随后RNAIII转录出现快速增加。Morfeldt等人[15]的研究表明,AgrA通过减少P2、P3启动子间隔长度激活转录。P2和P3启动子的间隔区大约有18和20个核苷酸,将P3启动子间隔区缩短3个核苷酸可以使RNAIII转录显著升高[15]。一般认为,如果AgrA缺陷,P2、P3不能与RNA聚合酶结合,导致其下游的一系列转录无法完成。然而,Xiong及Novick等人[16]提出P2及P3启动子可以在非依赖于AgrA的情况下调控其下游基因转录。这可能是因为P2启动子在还没有与AgrA结合的情况下仍可以调控转录微量的AgrA及AgrC,反过来低水平的AgrA也可以激活P2及P3启动子[15]。除了激活P2、P3启动子调控下游毒力因子的转录外,AgrA可以直接调控酚可溶性调控蛋白基因(psmα和psmβ)的转录[14]

4. agr阴性突变

尽管在动物实验中已经证实,agr阴性突变的金黄色葡萄球菌会发生毒力减弱的改变。但临床数据表明,agr阴性突变体通常出现在严重感染的患者中,并且具有更强的适应性,导致持续的感染或更差的预后[17]。在健康个体中agr阴性突变体在鼻腔中的定植较少。通过对105例鼻腔定植金黄色葡萄球菌的基因突变分析发现,agr阴性突变菌株在感染者的鼻腔中富集,而在未感染者的鼻腔中不富集,表明其存在宿主选择压力[18]agr功能障碍会导致金黄色葡萄球菌对抗生素敏感性降低。Jiang S等[19]分离了2015~2017年中国临床患者的MRSA菌株,分析了菌株对达托霉素的敏感性和异源耐药性,发现了一种AgrA功能缺失突变(p.I238K),该突变体导致特定MRSA谱系对达托霉素的敏感性降低。agr功能障碍菌株会释放中和抗生素的磷脂[20]。与野生型菌株相比,agr功能障碍菌株出现抗药性的频率显著增加,有数据表明约58%的万古霉素中介菌株中出现agr功能障碍[20]agr功能障碍突变体的克隆传播在医院环境中具有潜在的优势。一项研究收集了金黄色葡萄球菌菌血症患者的639株分离株,发现了具有agr功能障碍的特定克隆,ST5-SCCmec II型agr II组和ST239-SCCmec III型agr I组,主要在医院中传播。而在社区相关的MRSA或甲氧西林敏感金黄色葡萄球菌中,无论社区或医院获得性感染,均未观察到agr功能障碍菌株的克隆传播[21] [22]。一项关于金葡菌血源性感染的回顾性研究发现,agr功能障碍与金黄色葡萄球菌菌血症重症患者30天高死亡率之间存在独立相关性[23]。这可能是由于在宿主–病原体–药物三位一体的影响下,首先,已知万古霉素对agr功能障碍菌株的杀菌活性降低;且agr功能障碍菌株易形成生物被膜,干扰巨噬细胞的激活;分泌蛋白因子,积极抑制巨噬细胞吞噬和诱导细胞死亡,干扰免疫;导致血小板天然宿主防御阳离子肽的杀伤减弱;导致更长的菌血症持续时间,这些因素均导致了agr功能障碍菌株感染者死亡率增加[23] [24]。与野生型菌株相比,agr功能障碍菌株更容易在细胞内存活。这可能是由于agr活性降低,酚可溶性调控蛋白、溶血素和其他毒力因子表达下降,诱导细胞死亡减少导致[25]agr阴性突变菌株在宿主体内存在的策略可能是为了逃避免疫攻击,其既不产生也不响应AIP,潜伏在宿主体内,等待环境适宜后再恢复为agr功能正常的菌株,以达到持续感染的目的[26]。临床MRSA菌血症感染患者由于严重感染通常更依赖于抗生素的有效治疗,而由于较长时间的抗生素选择压力作用,MRSA菌株在此过程中就容易发生agr阴性突变,从而选择性地躲避免疫系统及药物的攻击,延长感染时间。所以agr阴性突变更容易在临床患者中导致更严重的不良后果。而动物实验与临床感染数据产生的差异的原因在于,在动物实验中,往往是在有限观察时间内进行的agr阴性突变体与野生型菌株的毒力比较,可能无法有效持续地观察对比更长时间的感染变化过程,即agr阴性突变只是MRSA面对严峻的生存环境下采用的暂时性躲避策略,虽然表现出毒力减低的改变,但其藏匿在患者体内,导致菌血症时间延长,从而导致了患者更差的预后。因此我们推测,在临床复杂环境中,agr阴性突变菌株通过降低其毒力以逃避宿主的免疫攻击,降低抗生素敏感性,从而达到在体内长期生存的目的;在适宜的环境中其又可以重新恢复为毒力正常的菌株,以加重疾病以及引起死亡率的增加。

5. 多种毒力调节基因与agr系统共同调节金葡菌毒力

除了agr基因外,sar家族成员sarAsarRsrrABsvrA等都可以与agr基因一起共同作用,调节金葡菌毒力[27]。这可能会在agr阴性突变的情况下对细菌毒力调节起到一定的补偿作用,从而影响感染患者的临床结局。sarA可以通过调控agr直接或间接地增强αβδ毒素的表达,还可以促进纤维连接蛋白和纤维蛋白原结合蛋白以及毒素的合成,同时抑制蛋白A和蛋白酶的表达[28]sarA是一种二聚体的翼状螺旋结构,由3个启动子P1、P2、P3共同调控[29] [30]。它可以直接与靶基因的启动子结合,也可以通过下游调控因子(agr)来调控靶基因的转录[31]sar可以与AgrA共同作用于P2P3启动子的间隔区域从而激活下游转录[27],反过来sarA作为一种DNA结合蛋白,还可以激活agr和毒力因子基因的转录[32]sarA的同系物sarUsarS也会影响agr的调控[28]sarUagr表达的激活剂,使得agr启动子可以在agr缺失突变体中被激活[28]。还有sarS可以与agr P3、hla和丝氨酸蛋白酶启动子结合,从而调控包括agr及其下游调控基因在内的细菌毒力因子表达[33] [34]。同时Kaito等人[35]发现sarZ恢复了hla表达缺陷的金黄色葡萄球菌突变体的溶血活性。表明sarZ的下游基因还可能参与了金黄色葡萄球菌溶血毒素的表达。

另外,除sar家族及agr基因外还有一种调控因子参与了金葡菌毒力的调控。一项关于CF患者痰中RNAIII表达的研究表明[36],金黄色葡萄球菌细菌密度与RNAIII的体内表达并无直接关系,发现hla的转录与RNAIII不直接相关,这表明可能有其他调节因子参与调节hla转录。另一项体内agr的研究也表明,agr对金黄色葡萄球菌毒力因子的调控似乎不是必须的,该研究观察到在具有中毒休克综合征表现的动物体内的RNAIII的表达被明显抑制,agr位点的破坏对体内毒力因子的表达几乎不受影响[37]。从而发现了另外一种独立于agrsar的调控因子sae。它能够上调hlahlb及DNA酶、凝固酶和蛋白A的转录[38] [39]。有研究证明agrsarA的缺失突变不影响hla的表达,相反体内sae缺失时hla的表达下调,提出体内hlasae调控,而不受agrsarA调控[40]。还有其他基因也影响金葡菌毒力因子调控,例如rot能够上调α-毒素表达[41]。这些调控因子既可以与agr基因协同作用,又可以独立于agr基因调控细菌毒力,细菌毒力的表达不会只被一种基因掌握全局,而是受到多种毒力调节基因共同调控,这些毒力调节基因的存在共同组成了金黄色葡萄球菌错综复杂的调控网络。这可能也是金葡菌突变株临床感染结果不如预期的原因所在。

6. 讨论

金黄色葡萄球菌agr系统在调节细菌毒力中发挥重要的作用,通过AgrBDCA四个蛋白相互协同调节的一系列反应,诱导下游基因转录,从而影响各种毒力基因的表达。agr基因高度可变区的存在,AIP多种亚型之间的竞争抑制,都表现出AgrBDCA进化过程中的相互协同关系。尽管关于AgrC与AIP结合位点的研究信息相对较少,MroQ切割形成AIP的作用机制也尚未完全了解清楚,但关于最为复杂的AgrCA双组分系统结合的作用机制的研究已经取得了相当大的进展。通常认为AgrCA双组分调节系统是Agr系统功能作用的关键所在,但有研究证明P2及P3启动子可以在非依赖AgrA的情况下转录。动物实验表明agr功能障碍会导致细菌毒力降低,但除agr系统外,还有许多毒力调节基因共同调节细菌毒力,可能会在agr阴性突变的情况下对细菌毒力调节起到一定的补偿作用。包括agr阴性突变体在临床患者体内会引起抗生素敏感性降低、持续的感染、较高的死亡率等负面影响。这些结果提醒我们尽管在动物实验中鉴定了agr系统对于细菌毒力影响的关键性作用,但临床的复杂环境及细菌本身复杂的调节网络,均可能会影响金葡菌感染的临床结局。

基金项目

重庆市自然科学基金面上项目:CSTB2022NSCQ-MSX0822,重庆医科大学未来医学青年创新团队支持计划:W0063。

NOTES

*第一作者。

#通讯作者。

参考文献

[1] Cheung, G.Y.C., Bae, J.S. and Otto, M. (2021) Pathogenicity and Virulence of staphylococcus Aureus. Virulence, 12, 547-569.
https://doi.org/10.1080/21505594.2021.1878688
[2] Janzon, L. and Arvidson, S. (1990) The Role of the Delta-Lysin Gene (hld) in the Regulation of Virulence Genes by the Accessory Gene Regulator (agr) in Staphylococcus Aureus. The EMBO Journal, 9, 1391-1399.
https://doi.org/10.1002/j.1460-2075.1990.tb08254.x
[3] Novick, R.P. and Geisinger, E. (2008) Quorum Sensing in Staphylococci. Annual Review of Genetics, 42, 541-564.
https://doi.org/10.1146/annurev.genet.42.110807.091640
[4] Arvidson, S. and Tegmark, K. (2001) Regulation of Virulence Determinants in Staphylococcus Aureus. International Journal of Medical Microbiology, 291, 159-170.
https://doi.org/10.1078/1438-4221-00112
[5] Thoendel, M. and Horswill, A.R. (2009) Identification of Staphylococcus aureus AgrD Residues Required for Autoinducing Peptide Biosynthesis. Journal of Biological Chemistry, 284, 21828-21838.
https://doi.org/10.1074/jbc.m109.031757
[6] MDowell, P., Affas, Z., Reynolds, C., Holden, M.T.G., Wood, S.J., Saint, S., et al. (2001) Structure, Activity and Evolution of the Group I Thiolactone Peptide Quorum-Sensing System of Staphylococcus aureus. Molecular Microbiology, 41, 503-512.
https://doi.org/10.1046/j.1365-2958.2001.02539.x
[7] Ji, G., Beavis, R. and Novick, R.P. (1997) Bacterial Interference Caused by Autoinducing Peptide Variants. Science, 276, 2027-2030.
https://doi.org/10.1126/science.276.5321.2027
[8] Zhang, L. and Ji, G. (2004) Identification of a Staphylococcal AgrB Segment(s) Responsible for Group-Specific Processing of AgrD by Gene Swapping. Journal of Bacteriology, 186, 6706-6713.
https://doi.org/10.1128/jb.186.20.6706-6713.2004
[9] Dufour, P., Jarraud, S., Vandenesch, F., Greenland, T., Novick, R.P., Bes, M., et al. (2002) High Genetic Variability of the agr Locus in staphylococcus Species. Journal of Bacteriology, 184, 1180-1186.
https://doi.org/10.1128/jb.184.4.1180-1186.2002
[10] Jensen, R.O., Winzer, K., Clarke, S.R., Chan, W.C. and Williams, P. (2008) Differential Recognition of Staphylococcus aureus Quorum-Sensing Signals Depends on Both Extracellular Loops 1 and 2 of the Transmembrane Sensor AgrC. Journal of Molecular Biology, 381, 300-309.
https://doi.org/10.1016/j.jmb.2008.06.018
[11] Ji, G., Pei, W., Zhang, L., Qiu, R., Lin, J., Benito, Y., et al. (2005) staphylococcus Intermedius Produces a Functional agr Autoinducing Peptide Containing a Cyclic Lactone. Journal of Bacteriology, 187, 3139-3150.
https://doi.org/10.1128/jb.187.9.3139-3150.2005
[12] Reynolds, J. and Wigneshweraraj, S. (2011) Molecular Insights into the Control of Transcription Initiation at the Staphylococcus Aureus agr Operon. Journal of Molecular Biology, 412, 862-881.
https://doi.org/10.1016/j.jmb.2011.06.018
[13] Novick, R.P., Projan, S.J., Kornblum, J., Ross, H.F., Ji, G., Kreiswirth, B., et al. (1995) The agr P2 Operon: An Autocatalytic Sensory Transduction System in Staphylococcus aureus. Molecular and General Genetics, 248, 446-458.
https://doi.org/10.1007/bf02191645
[14] Queck, S.Y., Jameson-Lee, M., Villaruz, A.E., Bach, T.L., Khan, B.A., Sturdevant, D.E., et al. (2008) RNAIII-Independent Target Gene Control by the agr Quorum-Sensing System: Insight into the Evolution of Virulence Regulation in Staphylococcus Aureus. Molecular Cell, 32, 150-158.
https://doi.org/10.1016/j.molcel.2008.08.005
[15] Morfeldt, E., Taylor, D., von Gabain, A. and Arvidson, S. (1995) Activation of Alpha-Toxin Translation in Staphylococcus Aureus by the Trans-Encoded Antisense RNA, RNAIII. The EMBO Journal, 14, 4569-4577.
https://doi.org/10.1002/j.1460-2075.1995.tb00136.x
[16] Xiong, Y., Van Wamel, W., Nast, C.C., Yeaman, M.R., Cheung, A.L. and Bayer, A.S. (2002) Activation and Transcriptional Interaction between agr RNAII and RNAIII in Staphylococcus aureus in Vitro and in an Experimental Endocarditis Model. The Journal of Infectious Diseases, 186, 668-677.
https://doi.org/10.1086/342046
[17] Sloan, T.J., Murray, E., Yokoyama, M., Massey, R.C., Chan, W.C., Bonev, B.B., et al. (2019) Timing Is Everything: Impact of Naturally Occurring staphylococcus Aureus AgrC Cytoplasmic Domain Adaptive Mutations on Autoinduction. Journal of Bacteriology, 201, e00409-19.
https://doi.org/10.1128/jb.00409-19
[18] Young, B.C., Wu, C., Gordon, N.C., Cole, K., Price, J.R., Liu, E., et al. (2017) Severe Infections Emerge from Commensal Bacteria by Adaptive Evolution. E Life, 6, e30637.
https://doi.org/10.7554/elife.30637
[19] Yang, X., Dong, F., Qian, S., Wang, L., Liu, Y., Yao, K., et al. (2019) Accessory Gene Regulator (agr) Dysfunction Was Unusual in Staphylococcus Aureus Isolated from Chinese Children. BMC Microbiology, 19, Article No. 95.
https://doi.org/10.1186/s12866-019-1465-z
[20] Jiang, S., Chen, M., Zhang, J., Ba, X., Zhang, H., Hong, Y., et al. (2023) Profiling Daptomycin Resistance among Diverse Methicillin-Resistant Staphylococcus aureus Lineages in China. Antimicrobial Agents and Chemotherapy, 67, e0056323.
https://doi.org/10.1128/aac.00563-23
[21] Chong, Y.P., Kim, E.S., Park, S., Park, K., Kim, T., Kim, M., et al. (2013) Accessory Gene Regulator (agr) Dysfunction in Staphylococcus aureus Bloodstream Isolates from South Korean Patients. Antimicrobial Agents and Chemotherapy, 57, 1509-1512.
https://doi.org/10.1128/aac.01260-12
[22] Cameron, D.R., Howden, B.P. and Peleg, A.Y. (2011) The Interface between Antibiotic Resistance and Virulence in Staphylococcus aureus and Its Impact Upon Clinical Outcomes. Clinical Infectious Diseases, 53, 576-582.
https://doi.org/10.1093/cid/cir473
[23] Schweizer, M.L., Furuno, J.P., Sakoulas, G., Johnson, J.K., Harris, A.D., Shardell, M.D., et al. (2011) Increased Mortality with Accessory Gene Regulator (agr) Dysfunction in Staphylococcus aureus among Bacteremic Patients. Antimicrobial Agents and Chemotherapy, 55, 1082-1087.
https://doi.org/10.1128/aac.00918-10
[24] Scherr, T.D., Hanke, M.L., Huang, O., James, D.B.A., Horswill, A.R., Bayles, K.W., et al. (2015) Staphylococcus aureus Biofilms Induce Macrophage Dysfunction through Leukocidin AB and Alpha-Toxin. mBio, 6, e01021-15.
https://doi.org/10.1128/mbio.01021-15
[25] Häffner, N., Bär, J., Dengler Haunreiter, V., Mairpady Shambat, S., Seidl, K., Crosby, H.A., et al. (2020) Intracellular Environment and agr System Affect Colony Size Heterogeneity of Staphylococcus aureus. Frontiers in Microbiology, 11, Article 01415.
https://doi.org/10.3389/fmicb.2020.01415
[26] Gor, V., Takemura, A.J., Nishitani, M., Higashide, M., Medrano Romero, V., Ohniwa, R.L., et al. (2019) Finding of agr Phase Variants in Staphylococcus aureus. mBio, 10, e00796-19.
https://doi.org/10.1128/mbio.00796-19
[27] Morfeldt, E., Tegmark, K. and Arvidson, S. (1996) Transcriptional Control of the agr-Dependent Virulence Gene Regulator, RNAIII, in Staphylococcus aureus. Molecular Microbiology, 21, 1227-1237.
https://doi.org/10.1046/j.1365-2958.1996.751447.x
[28] Cheung, A.L., Bayer, A.S., Zhang, G., Gresham, H. and Xiong, Y. (2004) Regulation of Virulence Determinants in Vitro and in Vivo in Staphylococcus aureus. FEMS Immunology & Medical Microbiology, 40, 1-9.
https://doi.org/10.1016/s0928-8244(03)00309-2
[29] Bayer, M.G., Heinrichs, J.H. and Cheung, A.L. (1996) The Molecular Architecture of the Sar Locus in Staphylococcus aureus. Journal of Bacteriology, 178, 4563-4570.
https://doi.org/10.1128/jb.178.15.4563-4570.1996
[30] Liu, Y., Manna, A.C., Pan, C., Kriksunov, I.A., Thiel, D.J., Cheung, A.L., et al. (2006) Structural and Function Analyses of the Global Regulatory Protein Sara from Staphylococcus aureus. Proceedings of the National Academy of Sciences, 103, 2392-2397.
https://doi.org/10.1073/pnas.0510439103
[31] Roberts, C., Anderson, K.L., Murphy, E., Projan, S.J., Mounts, W., Hurlburt, B., et al. (2006) Characterizing the Effect of Thestaphylococcus Aureusvirulence Factor Regulator, Sara, on Log-Phase mRNA Half-Lives. Journal of Bacteriology, 188, 2593-2603.
https://doi.org/10.1128/jb.188.7.2593-2603.2006
[32] Chan, P.F., Foster, S.J., Ingham, E. and Clements, M.O. (1998) The Staphylococcus aureus Alternative Sigma Factor Σ b Controls the Environmental Stress Response but Not Starvation Survival or Pathogenicity in a Mouse Abscess Model. Journal of Bacteriology, 180, 6082-6089.
https://doi.org/10.1128/jb.180.23.6082-6089.1998
[33] Tegmark, K., Karlsson, A. and Arvidson, S. (2000) Identification and Characterization of Sarh1, a New Global Regulator of Virulence Gene Expression in Staphylococcus aureus. Molecular Microbiology, 37, 398-409.
https://doi.org/10.1046/j.1365-2958.2000.02003.x
[34] Cheung, A.L., Schmidt, K., Bateman, B. and Manna, A.C. (2001) Sars, a Sara Homolog Repressible by agr, Is an Activator of Protein a Synthesis in Staphylococcus aureus. Infection and Immunity, 69, 2448-2455.
https://doi.org/10.1128/iai.69.4.2448-2455.2001
[35] Kaito, C., Morishita, D., Matsumoto, Y., Kurokawa, K. and Sekimizu, K. (2006) Novel DNA Binding Protein SarZ Contributes to Virulence in Staphylococcus aureus. Molecular Microbiology, 62, 1601-1617.
https://doi.org/10.1111/j.1365-2958.2006.05480.x
[36] Goerke, C., Campana, S., Bayer, M.G., Döring, G., Botzenhart, K. and Wolz, C. (2000) Direct Quantitative Transcript Analysis of the agr Regulon of Staphylococcus aureus during Human Infection in Comparison to the Expression Profile in Vitro. Infection and Immunity, 68, 1304-1311.
https://doi.org/10.1128/iai.68.3.1304-1311.2000
[37] Yarwood, J.M., McCormick, J.K., Paustian, M.L., Kapur, V. and Schlievert, P.M. (2002) Repression of the Staphylococcus aureus Accessory Gene Regulator in Serum and in Vivo. Journal of Bacteriology, 184, 1095-1101.
https://doi.org/10.1128/jb.184.4.1095-1101.2002
[38] Giraudo, A.T., Raspanti, C.G., Calzolari, A. and Nagel, R. (1994) Characterization of a Tn551-Mutant of Staphylococcus aureus Defective in the Production of Several Exoproteins. Canadian Journal of Microbiology, 40, 677-681.
https://doi.org/10.1139/m94-107
[39] Giraudo, A.T., Cheung, A.L. and Nagel, R. (1997) The Sae Locus of Staphylococcus aureus Controls Exoprotein Synthesis at the Transcriptional Level. Archives of Microbiology, 168, 53-58.
https://doi.org/10.1007/s002030050469
[40] Goerke, C., Fluckiger, U., Steinhuber, A., Zimmerli, W. and Wolz, C. (2001) Impact of the Regulatory Loci agr, sara and sae of Staphylococcus aureus on the Induction of α-Toxin during Device-Related Infection Resolved by Direct Quantitative Transcript Analysis. Molecular Microbiology, 40, 1439-1447.
https://doi.org/10.1046/j.1365-2958.2001.02494.x
[41] McNamara, P.J., Milligan-Monroe, K.C., Khalili, S. and Proctor, R.A. (2000) Identification, Cloning, and Initial Characterization of Rot, a Locus Encoding a Regulator of Virulence Factor Expression in Staphylococcus aureus. Journal of Bacteriology, 182, 3197-3203.
https://doi.org/10.1128/jb.182.11.3197-3203.2000