[1]
|
Sung, H., Ferlay, J., Siegel, R.L., Laversanne, M., Soerjomataram, I., Jemal, A., et al. (2021) Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA: A Cancer Journal for Clinicians, 71, 209-249. https://doi.org/10.3322/caac.21660
|
[2]
|
Spigel, D.R., Faivre-Finn, C., Gray, J.E., Vicente, D., Planchard, D., Paz-Ares, L., et al. (2022) Five-Year Survival Outcomes from the PACIFIC Trial: Durvalumab after Chemoradiotherapy in Stage III Non-Small-Cell Lung Cancer. Journal of Clinical Oncology, 40, 1301-1311. https://doi.org/10.1200/jco.21.01308
|
[3]
|
Luo, X., Zang, X., Yang, L., Huang, J., Liang, F., Rodriguez-Canales, J., et al. (2017) Comprehensive Computational Pathological Image Analysis Predicts Lung Cancer Prognosis. Journal of Thoracic Oncology, 12, 501-509. https://doi.org/10.1016/j.jtho.2016.10.017
|
[4]
|
Yu, K., Zhang, C., Berry, G.J., Altman, R.B., Ré, C., Rubin, D.L., et al. (2016) Predicting Non-Small Cell Lung Cancer Prognosis by Fully Automated Microscopic Pathology Image Features. Nature Communications, 7, Article No. 12474. https://doi.org/10.1038/ncomms12474
|
[5]
|
Naik, N., Madani, A., Esteva, A., Keskar, N.S., Press, M.F., Ruderman, D., et al. (2020) Deep Learning-Enabled Breast Cancer Hormonal Receptor Status Determination from Base-Level H&E Stains. Nature Communications, 11, Article No. 5727. https://doi.org/10.1038/s41467-020-19334-3
|
[6]
|
Jin, L., Shi, F., Chun, Q., Chen, H., Ma, Y., Wu, S., et al. (2020) Artificial Intelligence Neuropathologist for Glioma Classification Using Deep Learning on Hematoxylin and Eosin Stained Slide Images and Molecular Markers. Neuro-Oncology, 23, 44-52. https://doi.org/10.1093/neuonc/noaa163
|
[7]
|
Chen, M., Zhang, B., Topatana, W., Cao, J., Zhu, H., Juengpanich, S., et al. (2020) Classification and Mutation Prediction Based on Histopathology H&E Images in Liver Cancer Using Deep Learning. NPJ Precision Oncology, 4, Article No. 14. https://doi.org/10.1038/s41698-020-0120-3
|
[8]
|
Kather, J.N., Heij, L.R., Grabsch, H.I., Loeffler, C., Echle, A., Muti, H.S., et al. (2020) Pan-Cancer Image-Based Detection of Clinically Actionable Genetic Alterations. Nature Cancer, 1, 789-799. https://doi.org/10.1038/s43018-020-0087-6
|
[9]
|
Li, F., Yang, Y., Wei, Y., He, P., Chen, J., Zheng, Z., et al. (2021) Deep Learning-Based Predictive Biomarker of Pathological Complete Response to Neoadjuvant Chemotherapy from Histological Images in Breast Cancer. Journal of Translational Medicine, 19, Article No. 348. https://doi.org/10.1186/s12967-021-03020-z
|
[10]
|
Farahmand, S., Fernandez, A.I., Ahmed, F.S., Rimm, D.L., Chuang, J.H., Reisenbichler, E., et al. (2022) Deep Learning Trained on Hematoxylin and Eosin Tumor Region of Interest Predicts HER2 Status and Trastuzumab Treatment Response in HER2+ Breast Cancer. Modern Pathology, 35, 44-51. https://doi.org/10.1038/s41379-021-00911-w
|
[11]
|
Shi, J., Wang, X., Ding, G., Dong, Z., Han, J., Guan, Z., et al. (2020) Exploring Prognostic Indicators in the Pathological Images of Hepatocellular Carcinoma Based on Deep Learning. Gut, 70, 951-961. https://doi.org/10.1136/gutjnl-2020-320930
|
[12]
|
Wang, X., Chen, Y., Gao, Y., Zhang, H., Guan, Z., Dong, Z., et al. (2021) Predicting Gastric Cancer Outcome from Resected Lymph Node Histopathology Images Using Deep Learning. Nature Communications, 12, Article No. 1637. https://doi.org/10.1038/s41467-021-21674-7
|
[13]
|
Abels, E., Pantanowitz, L., Aeffner, F., Zarella, M.D., van der Laak, J., Bui, M.M., et al. (2019) Computational Pathology Definitions, Best Practices, and Recommendations for Regulatory Guidance: A White Paper from the Digital Pathology Association. The Journal of Pathology, 249, 286-294. https://doi.org/10.1002/path.5331
|
[14]
|
Beck, A.H., Sangoi, A.R., Leung, S., Marinelli, R.J., Nielsen, T.O., van de Vijver, M.J., et al. (2011) Systematic Analysis of Breast Cancer Morphology Uncovers Stromal Features Associated with Survival. Science Translational Medicine, 3, 108ra113. https://doi.org/10.1126/scitranslmed.3002564
|
[15]
|
Yuan, Y., Failmezger, H., Rueda, O.M., Ali, H.R., Gräf, S., Chin, S., et al. (2012) Quantitative Image Analysis of Cellular Heterogeneity in Breast Tumors Complements Genomic Profiling. Science Translational Medicine, 4, 157ra143. https://doi.org/10.1126/scitranslmed.3004330
|
[16]
|
Wang, S., Chen, A., Yang, L., Cai, L., Xie, Y., Fujimoto, J., et al. (2018) Comprehensive Analysis of Lung Cancer Pathology Images to Discover Tumor Shape and Boundary Features That Predict Survival Outcome. Scientific Reports, 8, Article No. 10393. https://doi.org/10.1038/s41598-018-27707-4
|
[17]
|
Alvarez-Jimenez, C., Sandino, A.A., Prasanna, P., Gupta, A., Viswanath, S.E. and Romero, E. (2020) Identifying Cross-Scale Associations between Radiomic and Pathomic Signatures of Non-Small Cell Lung Cancer Subtypes: Preliminary Results. Cancers, 12, Article 3663. https://doi.org/10.3390/cancers12123663
|
[18]
|
Pan, X., AbdulJabbar, K., Coelho-Lima, J., Grapa, A., Zhang, H., Cheung, A.H.K., et al. (2024) The Artificial Intelligence-Based Model ANORAK Improves Histopathological Grading of Lung Adenocarcinoma. Nature Cancer, 5, 347-363. https://doi.org/10.1038/s43018-023-00694-w
|
[19]
|
Pan, L., Liang, Q., Zeng, W., Peng, Y., Zhao, Z., Liang, Y., et al. (2024) Feature-Interactive Siamese Graph Encoder-Based Image Analysis to Predict STAS from Histopathology Images in Lung Cancer. NPJ Precision Oncology, 8, Article No. 285. https://doi.org/10.1038/s41698-024-00771-y
|
[20]
|
Coudray, N., Ocampo, P.S., Sakellaropoulos, T., Narula, N., Snuderl, M., Fenyö, D., et al. (2018) Classification and Mutation Prediction from Non-Small Cell Lung Cancer Histopathology Images Using Deep Learning. Nature Medicine, 24, 1559-1567. https://doi.org/10.1038/s41591-018-0177-5
|
[21]
|
Cao, R., Yang, F., Ma, S., Liu, L., Zhao, Y., Li, Y., et al. (2020) Development and Interpretation of a Pathomics-Based Model for the Prediction of Microsatellite Instability in Colorectal Cancer. Theranostics, 10, 11080-11091. https://doi.org/10.7150/thno.49864
|
[22]
|
Ninomiya, H., Hiramatsu, M., Inamura, K., Nomura, K., Okui, M., Miyoshi, T., et al. (2009) Correlation between Morphology and EGFR Mutations in Lung Adenocarcinomas. Lung Cancer, 63, 235-240. https://doi.org/10.1016/j.lungcan.2008.04.017
|
[23]
|
Nibid, L., Greco, C., Cordelli, E., Sabarese, G., Fiore, M., Liu, C.Z., et al. (2023) Deep Pathomics: A New Image-Based Tool for Predicting Response to Treatment in Stage III Non-Small Cell Lung Cancer. PLOS ONE, 18, e0294259. https://doi.org/10.1371/journal.pone.0294259
|
[24]
|
Wang, X., Janowczyk, A., Zhou, Y., Thawani, R., Fu, P., Schalper, K., et al. (2017) Prediction of Recurrence in Early Stage Non-Small Cell Lung Cancer Using Computer Extracted Nuclear Features from Digital H&E Images. Scientific Reports, 7, Article No. 13543. https://doi.org/10.1038/s41598-017-13773-7
|
[25]
|
Wang, X., Janowczyk, A., Zhou, Y., Thawani, R., Fu, P., Schalper, K., et al. (2022) Association of Machine Learning-Based Assessment of Tumor-Infiltrating Lymphocytes on Standard Histologic Images with Outcomes of Immuno-Therapy in Patients with NSCLC. JAMA Oncology, 9, 51-60.
|
[26]
|
Muller, M., Schouten, R.D., De Gooijer, C.J. and Baas, P. (2017) Pembrolizumab for the Treatment of Non-Small Cell Lung Cancer. Expert Review of Anticancer Therapy, 17, 399-409. https://doi.org/10.1080/14737140.2017.1311791
|
[27]
|
Saltz, J., Gupta, R., Hou, L., Kurc, T., Singh, P., Nguyen, V., et al. (2018) Spatial Organization and Molecular Correlation of Tumor-Infiltrating Lymphocytes Using Deep Learning on Pathology Images. Cell Reports, 23, 181-193.e7. https://doi.org/10.1016/j.celrep.2018.03.086
|
[28]
|
Wang, S., Wang, T., Yang, L., Yang, D.M., Fujimoto, J., Yi, F., et al. (2019) Convpath: A Software Tool for Lung Adenocarcinoma Digital Pathological Image Analysis Aided by a Convolutional Neural Network. EBioMedicine, 50, 103-110. https://doi.org/10.1016/j.ebiom.2019.10.033
|
[29]
|
Yi, F., Yang, L., Wang, S., Guo, L., Huang, C., Xie, Y., et al. (2018) Microvessel Prediction in H&E Stained Pathology Images Using Fully Convolutional Neural Networks. BMC Bioinformatics, 19, Article No. 64. https://doi.org/10.1186/s12859-018-2055-z
|
[30]
|
Wei, J.W., Tafe, L.J., Linnik, Y.A., Vaickus, L.J., Tomita, N. and Hassanpour, S. (2019) Pathologist-Level Classification of Histologic Patterns on Resected Lung Adenocarcinoma Slides with Deep Neural Networks. Scientific Reports, 9, Article No. 3358. https://doi.org/10.1038/s41598-019-40041-7
|
[31]
|
Sha, L., Osinski, B.L., Ho, I.Y., Tan, T.L., Willis, C., Weiss, H., et al. (2019) Multi-Field-of-View Deep Learning Model Predicts Nonsmall Cell Lung Cancer Programmed Death-Ligand 1 Status from Whole-Slide Hematoxylin and Eosin Images. Journal of Pathology Informatics, 10, 24. https://doi.org/10.4103/jpi.jpi_24_19
|
[32]
|
Gertych, A., Swiderska-Chadaj, Z., Ma, Z., Ing, N., Markiewicz, T., Cierniak, S., et al. (2019) Convolutional Neural Networks Can Accurately Distinguish Four Histologic Growth Patterns of Lung Adenocarcinoma in Digital Slides. Scientific Reports, 9, Article No. 148. https://doi.org/10.1038/s41598-018-37638-9
|
[33]
|
Yu, K., Wang, F., Berry, G.J., Ré, C., Altman, R.B., Snyder, M., et al. (2020) Classifying Non-Small Cell Lung Cancer Types and Transcriptomic Subtypes Using Convolutional Neural Networks. Journal of the American Medical Informatics Association, 27, 757-769. https://doi.org/10.1093/jamia/ocz230
|
[34]
|
Choi, S., Cho, S.I., Ma, M., Park, S., Pereira, S., Aum, B.J., et al. (2022) Artificial Intelligence-Powered Programmed Death Ligand 1 Analyser Reduces Interobserver Variation in Tumour Proportion Score for Non-Small Cell Lung Cancer with Better Prediction of Immunotherapy Response. European Journal of Cancer, 170, 17-26. https://doi.org/10.1016/j.ejca.2022.04.011
|
[35]
|
Wang, X., Zhao, J., Marostica, E., Yuan, W., Jin, J., Zhang, J., et al. (2024) A Pathology Foundation Model for Cancer Diagnosis and Prognosis Prediction. Nature, 634, 970-978. https://doi.org/10.1038/s41586-024-07894-z
|