Chemerin与多囊卵巢综合征的关系及可能作用机制
The Association of Polycystic Ovary Syndrome between Chemerin and Its Possible Mechanism
DOI: 10.12677/jcpm.2025.41084, PDF, HTML, XML,   
作者: 何咏茹, 刘东方*:重庆医科大学附属第二医院内分泌与代谢病科,重庆
关键词: 多囊卵巢综合征Chemerin脂肪因子胰岛素抵抗综述Polycystic Ovary Syndrome Chemerin Adipokine Insulin Resistance Review
摘要: 多囊卵巢综合征(PCOS)作为育龄期女性常见的内分泌疾病,其人群中脂肪因子被不断研究,如脂联素等在正常女性中的循环水平与PCOS人群具有差异性。随着PCOS的相关研究越来越深入,Chemerin作为一种脂肪因子与PCOS有复杂的联系。本文就Chemerin在PCOS中的研究进展进行综述,旨在为Chemerin在PCOS的进一步研究中提出新的见解,为了解和治疗PCOS提供新的思路。
Abstract: Polycystic ovary syndrome (PCOS) is a prevalent endocrine disorder among women of reproductive age and has been extensively studied in the context of adipokine dysregulation. Among these adipokines, lipocalin demonstrates distinct circulating levels in PCOS patients compared to non-PCOS individuals. As research on PCOS advances, Chemerin, a multifunctional adipokine, has gained increasing attention due to its potential role in the pathophysiology of PCOS. This article reviews the current research progress on Chemerin in PCOS, aiming to provide novel insights for future investigations and to explore potential therapeutic strategies for PCOS management.
文章引用:何咏茹, 刘东方. Chemerin与多囊卵巢综合征的关系及可能作用机制[J]. 临床个性化医学, 2025, 4(1): 580-585. https://doi.org/10.12677/jcpm.2025.41084

1. 引言

多囊卵巢综合征(Polycystic Ovary Syndrome, PCOS)是育龄期女性常见的内分泌疾病,具有临床异质性,主要临床特征为雄激素过多(多毛症和/或高雄激素血症)、卵巢功能障碍(少排卵/无排卵)和多囊卵巢形态学(PCOM) [1]。其中胰岛素抵抗、慢性炎症、高雄激素血症在PCOS的病理生理过程中发挥核心作用。不同脂肪因子在PCOS中的作用机制相关研究越来越多。本文将阐述Chemerin与多囊卵巢综合征人群的关系及其可能机制,为PCOS未来发病机制及治疗方法提供另一种角度。

Chemerin最初被发现为银屑病皮肤病变中的一种新型视黄酸反应基因[2],其高循环水平与体质指数(Body Mass Index, BMI)、糖化血红蛋白、总胆固醇、甘油三酯、血压升高有关[3]。研究表明血液中的Chemerin来源于肝脏,而局部的Chemerin来自脂肪组织、卵巢、胎盘等组织[4]。Chemerin参与促炎/抗炎反应、脂肪生成、能量代谢、生殖等生理过程。Chemerin是由分泌的信号肽、具有3个二硫键的核心以及N端和C端尾部构成。其前体需要在C末端由蛋白酶对各个位点进一步切割,以产生活性和失活的Chemerin形式[5]。根据分离多肽的大小,释放出的趋化因子链衍生物具有不同的生物活性,从最具活性的(Chem-157)到最不具活性的(Chem-152) [6]。迄今为止,被发现的Chemerin的受体有趋化因子样受体1 (CMKLR1)、G蛋白偶联受体1 (GPR1)和CCRL2 [7]-[9]。CMKLR1负责趋化蛋白的趋化作用,而GPR1作为趋化蛋白的部分激动剂,而CCRL2可能通过将Chemerin呈递给CMKLR1来发挥抗炎作用[10]。本文将从不同角度结合Chemerin在代谢及生殖的参与过程来阐述与多囊卵巢综合征的可能联系。

2. PCOS患者胰岛素抵抗与Chemerin

据报道,循环Chemerin水平与胰岛素、胰岛素抵抗指数(HOMA-IR)之间呈显著正相关。PCOS女性通常表现为基础和葡萄糖刺激的高胰岛素血症和胰岛素抵抗(IR)。研究发现Chemerin和胰岛素代谢的相互作用是一种恶性循环。一方面胰岛素可显著加强脂肪组织中Chemerin的分泌[11],另一方面Chemerin在体外和动物研究中已被证明可调节胰岛素信号传导和葡萄糖处理,从而在脂肪细胞和骨骼肌中诱导胰岛素抵抗状态[12]。在一项对PCOS女性长期胰岛素–葡萄糖输注的研究中,血清Chemerin水平在输注的26小时显著增加,以上现象证明血清中过量的胰岛素可促进Chemerin的产生,并且只有在高浓度胰岛素的条件下才发现脂肪组织的胰岛素对Chemerin的诱导[11]。在Daniel H. Kort [13]的临床研究中,体重相匹配的PCOS中Chemerin水平较对照组高。此外,胰岛素增加Chemerin的合成和产生,而二甲双胍与之相反;这也表明Chemerin可能是高胰岛素血症和PCOS之间的联系,但是两者之间的作用机制尚不清楚。

当使用改善胰岛素抵抗的药物时,Chemerin的水平也会下降。Kabiri等人[14]用二甲双胍和吡格列酮(胰岛素增敏药物)治疗PCOS大鼠,21天后发现卵巢Chemerin mRNA和蛋白质丰度降低的同时PCOS动物的胰岛素抵抗随之改善,而这些药物对健康动物卵巢Chemerin mRNA和蛋白质的基础水平没有影响。在Bose等人[15]的研究中也证明了Chemerin可以作为PCOS的胰岛素抵抗的标志物。此外,Chemerin及其受体CMKLR1也在胰腺的β细胞中表达,从机制上来讲是小鼠中Chemerin的缺乏下调转录因子MAFA (一种碱性亮氨酸拉链转录因子)及其下游靶基因GLUT2的表达,其作为胰腺β细胞中葡萄糖的传感器和转运蛋白,从而促进胰岛素分泌[16]

以上研究表示Chemerin/CMKLR1轴在PCOS胰岛素抵抗中有一定意义,干预Chemerin/CMKLR1轴能否成为潜在治疗靶点值得进一步关注。

3. PCOS患者炎症状态、代谢与Chemerin水平

PCOS是一种慢性炎症状态,尽管没有针对Chemerin与PCOS慢性炎症状态的关系的直接研究,但Chemerin已经被证明当与其三种受体结合时,尤其是在各种细胞(如树突状细胞、巨噬细胞和自然杀伤细胞)上CMKLR1表达的结合,调节对炎症部位的趋化性和活化状态来介导促炎和抗炎过程。Chemerin将循环树突状细胞募集到内脏脂肪组织中,脂肪细胞衍生的HMGB1蛋白激活树突状细胞中的TLR9并诱导I型干扰素的分泌,随后干扰素激活巨噬细胞极化为促炎表型来介导炎症反应[17]。据报道,血清Chemerin水平与促炎细胞因子肿瘤坏死因子(TNF-α)、白细胞介素(IL-6)和C反应蛋白(CRP)水平相关[18]。以上从不同角度证明Chemerin作为一种促炎脂肪因子可能在PCOS女性中发挥促炎作用。

4. PCOS患者高雄激素血症与Chemerin水平

超过80%的PCOS患者受到高雄激素血症的影响。Lima等人[19]用DHT使大鼠处于慢性雄激素化状态来模拟PCOS患者高雄激素血症表型,发现在高雄激素状态下卵巢Chemerin水平升高,因此炎症性单核细胞来源的表达CMKLR1的巨噬细胞被吸引到富含Chemerin的卵巢卵泡并诱导颗粒细胞凋亡,从而参与PCOS生殖障碍的过程。同时,以上过程是在正常体重DHT处理的大鼠中观察到,而不是在血清中,这表明雄激素可能在卵巢水平独立调节Chemerin表达。

在另一项研究中,利用慢性雄激素化大鼠模型研究了Chemerin的作用以及参与雄激素诱导的窦卵泡生长停滞的细胞机制。一方面发现Chemerin在体外抑制GDF9 (生长分化因子9)表达和GDF9诱导的卵泡生长,而卵母细胞衍生因子GDF9促进颗粒细胞增殖和窦前/窦早期卵泡生长[20] [21]。另一方面,Chemerin的XIAP (X连锁凋亡抑制蛋白)下调可能是诱导颗粒细胞凋亡和卵泡生长停滞的原因[22]

此外,Wang等人[23]对中国典型高雄激素性PCOS患者的研究中,血清Chemerin水平较正常雄激素PCOS患者高,ROC曲线评价当血清Chemerin浓度为200.94 ng/mL时,对高雄激素型PCOS的诊断敏感性为80%,特异性为47.6%。这为Chemerin作为PCOS的诊断预测因子提供了依据。

5. Chemerin对卵巢局部的影响

Chemerin及其受体在人卵巢细胞中的表达已得到广泛证实。Li等人[24]研究中发现PCOS伴IR患者的卵泡液和人黄体颗粒细胞的Chemerin浓度均显著升高,这表明卵巢中存在Chemerin的独立调节。而增加的Chemerin水平损害胰岛素信号传导,主要通过增加胰岛素受体底物(IRS) 1的Ser 307磷酸化和减少IRS 1/2 Tyr 612磷酸化、Akt Ser 473磷酸化、GLUT 4易位、总GLUT 4表达和葡萄糖摄取来介导。总之,葡萄糖代谢过程受损和胰岛素信号传导损害都会影响卵母细胞和颗粒细胞的功能。

另外,卵巢中孕酮和雌二醇的生物合成对正常卵巢功能至关重要。一项研究在体外发现人重组Chemerin可以抑制IGF-1诱导的孕酮和雌二醇分泌和人颗粒细胞(hGCs)的细胞增殖。其原理与hGCs中p450芳香化酶水平降低、IGF-1受体β亚基酪氨酸磷酸化以及Akt和MAPK ERK 1/2磷酸化水平降低有关[7]。王琦等人报道Chemerin 抑制颗粒细胞中FSH诱导的芳香化酶和p450侧链裂解酶(p450SCC)的mRNA和蛋白表达[25],而p450SCC和芳香化酶分别是颗粒细胞中孕酮和雌二醇生物合成的关键类固醇生成酶[26]。以上从两方面证明了Chemerin是类固醇生成的负调节因子,参与了PCOS排卵障碍的病理生理过程。

一项回顾性研究证实了血清Chemerin浓度可反映卵巢多囊改变的严重程度[27],这对评估多囊卵巢综合征的分级有临床意义。据报道,多囊卵巢的发育与新血管的形成有关。Bozauglo等人[28]和Kaur等人[29]在体外诱导血管生成试验证明Chemerin剂量依赖性激活PI3K-AKT和MAPK-ERK信号通路传导,来激活关键的血管生成途径,从而促进内皮细胞的增殖、分化、毛细血管形成和迁移。但是Chemerin对PCOS人群卵巢血管的作用机制仍不清楚,需要针对性研究进一步明确。Wang等人[30]的研究也表明Chemerin可能是卵母细胞成熟和胚胎发育的危险因素,故血清或卵泡液中Chemerin的检测也为PCOS女性生殖结局的预测提供潜在依据。

6. Chemerin水平和HPG轴

下丘脑–垂体–性腺轴(HPG)是一个复杂且协调的神经内分泌轴,生殖功能大部分由该轴调控。在PCOS女性中,促性腺激素释放激素脉冲频率增加促进黄体生成素(LH)和卵泡刺激素(FSH)生成,从而刺激雄激素生成增多,表现为LH/FSH升高、高雄激素血症和无优势卵泡等一系列临床表现。尽管没有研究在PCOS女性中Chemerin及其受体在HPG轴中的作用机制和表达,但在动物试验中已经有相应研究。在猪垂体对Chemerin进行研究时发现Chemerin能够影响垂体前叶细胞的LH (促黄体生成素)和FSH (卵泡刺激素)分泌[31]。在大鼠研究中,Chemerin转录主要发生在下丘脑第三脑室和柄正中隆起(SME)区域的室管膜细胞和鞣细胞中,而CMKLR1转录定位于前额叶皮层、海马、小脑、室管膜细胞层和SME中。在大鼠室管膜细胞层和SME中也发生CCRL2转录[32] [33]。在雌性小鼠中,GPR1的缺乏导致下丘脑中促性腺激素释放激素(GnRH)的mRNA值降低,垂体中FSH的mRNA值升高[34],并与GnRH和促肾上腺皮质激素释放因子(CRF)阳性细胞共定位[35],这表明GPR1参与HPG轴的调节。另外,Chemerin在HPG轴中也调节类固醇的生成,见卵巢局部调节部分。

7. 总结与展望

综上所述,Chemerin从多个角度影响生殖功能,且血清中Chemerin水平和卵泡液不一样,这说明Chemerin在全身和卵巢局部各自独立调节。在表现为胰岛素抵抗、高雄激素血症、慢性炎症和多囊样卵巢的PCOS女性中,Chemerin水平比正常女性高。胰岛素和Chemerin互相作用形成恶性循环,Chemerin在脂肪细胞和骨骼肌中诱导胰岛素抵抗,而过量胰岛素促进Chemerin生成。同时Chemerin作为一种促炎脂肪因子在PCOS慢性炎症表现中发挥一定促炎作用。此外,Chemerin对在卵巢局部和HPG轴中抑制IGF-1和FSH诱导的类固醇生成过程可能参与PCOS女性生殖障碍。总而言之,Chemerin作为一种趋化蛋白在PCOS的研究仍需更进一步,Chemerin及其受体为PCOS女性的治疗提供了新的思路和潜力。

NOTES

*通讯作者。

参考文献

[1] Escobar-Morreale, H.F. (2018) Polycystic Ovary Syndrome: Definition, Aetiology, Diagnosis and Treatment. Nature Reviews Endocrinology, 14, 270-284.
https://doi.org/10.1038/nrendo.2018.24
[2] Nagpal, S., Patel, S., Jacobe, H., DiSepio, D., Ghosn, C., Malhotra, M., et al. (1997) Tazarotene-induced Gene 2 (TIG2), a Novel Retinoid-Responsive Gene in Skin. Journal of Investigative Dermatology, 109, 91-95.
https://doi.org/10.1111/1523-1747.ep12276660
[3] Chou, H., Teng, M., Hsu, L., Er, L., Wu, S. and Ko, Y. (2021) Circulating Chemerin Level Is Associated with Metabolic, Biochemical and Haematological Parameters—A Population‐Based Study. Clinical Endocrinology, 94, 927-939.
https://doi.org/10.1111/cen.14441
[4] Ferland, D.J., Seitz, B., Darios, E.S., Thompson, J.M., Yeh, S.T., Mullick, A.E., et al. (2018) Whole-Body but Not Hepatic Knockdown of Chemerin by Antisense Oligonucleotide Decreases Blood Pressure in Rats. The Journal of Pharmacology and Experimental Therapeutics, 365, 212-218.
https://doi.org/10.1124/jpet.117.245456
[5] Zhao, L., Leung, L.L. and Morser, J. (2022) Chemerin Forms: Their Generation and Activity. Biomedicines, 10, Article No. 2018.
https://doi.org/10.3390/biomedicines10082018
[6] Zabel, B.A., Allen, S.J., Kulig, P., Allen, J.A., Cichy, J., Handel, T.M., et al. (2005) Chemerin Activation by Serine Proteases of the Coagulation, Fibrinolytic, and Inflammatory Cascades. Journal of Biological Chemistry, 280, 34661-34666.
https://doi.org/10.1074/jbc.m504868200
[7] Reverchon, M., Cornuau, M., Rame, C., Guerif, F., Royere, D. and Dupont, J. (2012) Chemerin Inhibits IGF-1-Induced Progesterone and Estradiol Secretion in Human Granulosa Cells. Human Reproduction, 27, 1790-1800.
https://doi.org/10.1093/humrep/des089
[8] Li, L., Huang, C., Zhang, X., Wang, J., Ma, P., Liu, Y., et al. (2013) Chemerin‐Derived Peptide c‐20 Suppressed Gonadal Steroidogenesis. American Journal of Reproductive Immunology, 71, 265-277.
https://doi.org/10.1111/aji.12164
[9] Li, L., Ma, P., Huang, C., Liu, Y., Zhang, Y., Gao, C., et al. (2013) Expression of Chemerin and Its Receptors in Rat Testes and Its Action on Testosterone Secretion. Journal of Endocrinology, 220, 155-163.
https://doi.org/10.1530/joe-13-0275
[10] Yoshimura, T. and Oppenheim, J.J. (2011) Chemokine-Like Receptor 1 (CMKLR1) and Chemokine (C-C Motif) Receptor-Like 2 (CCRL2); Two Multifunctional Receptors with Unusual Properties. Experimental Cell Research, 317, 674-684.
https://doi.org/10.1016/j.yexcr.2010.10.023
[11] Tan, B.K., Chen, J., Farhatullah, S., Adya, R., Kaur, J., Heutling, D., et al. (2009) Insulin and Metformin Regulate Circulating and Adipose Tissue Chemerin. Diabetes, 58, 1971-1977.
https://doi.org/10.2337/db08-1528
[12] Bauer, S., Bala, M., Kopp, A., Eisinger, K., Schmid, A., Schneider, S., et al. (2012) Adipocyte Chemerin Release Is Induced by Insulin without Being Translated to Higher Levels in Vivo. European Journal of Clinical Investigation, 42, 1213-1220.
https://doi.org/10.1111/j.1365-2362.2012.02713.x
[13] Kort, D.H., Kostolias, A., Sullivan, C. and Lobo, R.A. (2014) Chemerin as a Marker of Body Fat and Insulin Resistance in Women with Polycystic Ovary Syndrome. Gynecological Endocrinology, 31, 152-155.
https://doi.org/10.3109/09513590.2014.968547
[14] Kabiri, N., Tabandeh, M.R. and Tabatabaie, S.R.F. (2014) Beneficial Effects of Pioglitazone and Metformin in Murine Model of Polycystic Ovaries via Improvement of Chemerin Gene Up-Regulation. DARU Journal of Pharmaceutical Sciences, 22, Article No. 39.
https://doi.org/10.1186/2008-2231-22-39
[15] Bose, C., Mukherjee, B., Mukherjee, A., Pramanik, S., Saha, C., Mondal, A., et al. (2024) Serum Chemerin Levels Correlate with Severity of Dysglycemia in Young Adult Women with Polycystic Ovary Syndrome. Journal of the Endocrine Society, 8, bvae023.
https://doi.org/10.1210/jendso/bvae023
[16] Takahashi, M., Okimura, Y., Iguchi, G., Nishizawa, H., Yamamoto, M., Suda, K., et al. (2011) Chemerin Regulates β-Cell Function in Mice. Scientific Reports, 1, Article No. 123.
https://doi.org/10.1038/srep00123
[17] Ghosh, A.R., Bhattacharya, R., Bhattacharya, S., Nargis, T., Rahaman, O., Duttagupta, P., et al. (2016) Adipose Recruitment and Activation of Plasmacytoid Dendritic Cells Fuel Metaflammation. Diabetes, 65, 3440-3452.
https://doi.org/10.2337/db16-0331
[18] Weigert, J., Neumeier, M., Wanninger, J., Filarsky, M., Bauer, S., Wiest, R., et al. (2010) Systemic Chemerin Is Related to Inflammation Rather than Obesity in Type 2 Diabetes. Clinical Endocrinology, 72, 342-348.
https://doi.org/10.1111/j.1365-2265.2009.03664.x
[19] Lima, P.D.A., Nivet, A., Wang, Q., Chen, Y., Leader, A., Cheung, A., et al. (2018) Polycystic Ovary Syndrome: Possible Involvement of Androgen-Induced, Chemerin-Mediated Ovarian Recruitment of Monocytes/Macrophages. Biology of Reproduction, 99, 838-852.
https://doi.org/10.1093/biolre/ioy096
[20] Orisaka, M., Jiang, J., Orisaka, S., Kotsuji, F. and Tsang, B.K. (2009) Growth Differentiation Factor 9 Promotes Rat Preantral Follicle Growth by Up-Regulating Follicular Androgen Biosynthesis. Endocrinology, 150, 2740-2748.
https://doi.org/10.1210/en.2008-1536
[21] Kobayashi, N., Orisaka, M., Cao, M., Kotsuji, F., Leader, A., Sakuragi, N., et al. (2009) Growth Differentiation Factor-9 Mediates Follicle-Stimulating Hormone-Thyroid Hormone Interaction in the Regulation of Rat Preantral Follicular Development. Endocrinology, 150, 5566-5574.
https://doi.org/10.1210/en.2009-0262
[22] Kim, J.Y., Xue, K., Cao, M., Wang, Q., Liu, J., Leader, A., et al. (2013) Chemerin Suppresses Ovarian Follicular Development and Its Potential Involvement in Follicular Arrest in Rats Treated Chronically with Dihydrotestosterone. Endocrinology, 154, 2912-2923.
https://doi.org/10.1210/en.2013-1001
[23] Wang, L., Zhong, Y., Ding, Y., Shi, X., Huang, J. and Zhu, F. (2014) Elevated Serum Chemerin in Chinese Women with Hyperandrogenic PCOS. Gynecological Endocrinology, 30, 746-750.
https://doi.org/10.3109/09513590.2014.928687
[24] Li, X., Zhu, Q., Wang, W., Qi, J., He, Y., Wang, Y., et al. (2019) Elevated Chemerin Induces Insulin Resistance in Human Granulosa‐lutein Cells from Polycystic Ovary Syndrome Patients. The FASEB Journal, 33, 11303-11313.
https://doi.org/10.1096/fj.201802829r
[25] Wang, Q., Kim, J.Y., Xue, K., Liu, J., Leader, A. and Tsang, B.K. (2012) Chemerin, a Novel Regulator of Follicular Steroidogenesis and Its Potential Involvement in Polycystic Ovarian Syndrome. Endocrinology, 153, 5600-5611.
https://doi.org/10.1210/en.2012-1424
[26] Yong, E.L., Hillier, S.G., Turner, M., Baird, D.T., Ng, S.C., Bongso, A., et al. (1994) Differential Regulation of Cholesterol Side-Chain Cleavage (p450scc) and Aromatase (p450arom) Enzyme mRNA Expression by Gonadotrophins and Cyclic AMP in Human Granulosa Cells. Journal of Molecular Endocrinology, 12, 239-249.
https://doi.org/10.1677/jme.0.0120239
[27] Huang, R., Yue, J., Sun, Y., Zheng, J., Tao, T., Li, S., et al. (2015) Increased Serum Chemerin Concentrations in Patients with Polycystic Ovary Syndrome: Relationship between Insulin Resistance and Ovarian Volume. Clinica Chimica Acta, 450, 366-369.
https://doi.org/10.1016/j.cca.2015.09.015
[28] Bozaoglu, K., Curran, J.E., Stocker, C.J., Zaibi, M.S., Segal, D., Konstantopoulos, N., et al. (2010) Chemerin, a Novel Adipokine in the Regulation of Angiogenesis. The Journal of Clinical Endocrinology & Metabolism, 95, 2476-2485.
https://doi.org/10.1210/jc.2010-0042
[29] Kaur, J., Adya, R., Tan, B.K., Chen, J. and Randeva, H.S. (2010) Identification of Chemerin Receptor (chemr23) in Human Endothelial Cells: Chemerin-Induced Endothelial Angiogenesis. Biochemical and Biophysical Research Communications, 391, 1762-1768.
https://doi.org/10.1016/j.bbrc.2009.12.150
[30] Wang, Y., Huang, R., Li, X., Zhu, Q., Liao, Y., Tao, T., et al. (2019) High Concentration of Chemerin Caused by Ovarian Hyperandrogenism May Lead to Poor IVF Outcome in Polycystic Ovary Syndrome: A Pilot Study. Gynecological Endocrinology, 35, 1072-1077.
https://doi.org/10.1080/09513590.2019.1622087
[31] Kisielewska, K., Rytelewska, E., Gudelska, M., Kiezun, M., Dobrzyn, K., Bogus-Nowakowska, K., et al. (2020) Relative Abundance of Chemerin mRNA Transcript and Protein in Pituitaries of Pigs during the Estrous Cycle and Early Pregnancy and Associations with LH and FSH Secretion during the Estrous Cycle. Animal Reproduction Science, 219, Article ID: 106532.
https://doi.org/10.1016/j.anireprosci.2020.106532
[32] Guo, X., Fu, Y., Xu, Y., Weng, S., Liu, D., Cui, D., et al. (2012) Chronic Mild Restraint Stress Rats Decreased CMKLR1 Expression in Distinct Brain Region. Neuroscience Letters, 524, 25-29.
https://doi.org/10.1016/j.neulet.2012.06.075
[33] Helfer, G., Ross, A.W., Thomson, L.M., Mayer, C.D., Stoney, P.N., McCaffery, P.J., et al. (2016) A Neuroendocrine Role for Chemerin in Hypothalamic Remodelling and Photoperiodic Control of Energy Balance. Scientific Reports, 6, Article No. 26830.
https://doi.org/10.1038/srep26830
[34] Yang, Y., Sun, L., Yu, Y., Xiao, T., Wang, B., Ren, P., et al. (2018) Deficiency of Gpr1 Improves Steroid Hormone Abnormality in Hyperandrogenized Mice. Reproductive Biology and Endocrinology, 16, Article No. 50.
https://doi.org/10.1186/s12958-018-0363-9
[35] Li, R., Ma, C., Xiong, Y., Zhao, H., Yang, Y., Xue, L., et al. (2021) An Antagonistic Peptide of Gpr1 Ameliorates LPS-Induced Depression through the Hypothalamic-Pituitary-Ovarian Axis. Biomolecules, 11, Article No. 857.
https://doi.org/10.3390/biom11060857