[1]
|
Caton, J.G., Armitage, G., Berglundh, T., Chapple, I.L.C., Jepsen, S., Kornman, K.S., et al. (2018) A New Classification Scheme for Periodontal and Peri-Implant Diseases and Conditions—Introduction and Key Changes from the 1999 Classification. Journal of Clinical Periodontology, 45, S1-S8. https://doi.org/10.1111/jcpe.12935
|
[2]
|
Genco, R.J. and Sanz, M. (2020) Clinical and Public Health Implications of Periodontal and Systemic Diseases: An Overview. Periodontology 2000, 83, 7-13. https://doi.org/10.1111/prd.12344
|
[3]
|
Mizraji, G., Davidzohn, A., Gursoy, M., Gursoy, U.K., Shapira, L. and Wilensky, A. (2023) Membrane Barriers for Guided Bone Regeneration: An Overview of Available Biomaterials. Periodontology 2000, 93, 56-76. https://doi.org/10.1111/prd.12502
|
[4]
|
Yilmaz, C., Ersanli, S., Karabagli, M., Olgac, V. and Bolukbasi Balcioglu, N. (2021) May Autogenous Grafts Increase the Effectiveness of Hyalonect Membranes in Intraosseous Defects: An Experimental in Vivo Study. Medicina, 57, Article 430. https://doi.org/10.3390/medicina57050430
|
[5]
|
Rezvani Ghomi, E., Nourbakhsh, N., Akbari Kenari, M., Zare, M. and Ramakrishna, S. (2021) Collagen-Based Biomaterials for Biomedical Applications. Journal of Biomedical Materials Research Part B: Applied Biomaterials, 109, 1986-1999. https://doi.org/10.1002/jbm.b.34881
|
[6]
|
Kasaj, A., Reichert, C., Götz, H., Röhrig, B., Smeets, R. and Willershausen, B. (2008) In Vitro Evaluation of Various Bioabsorbable and Non-Resorbable Barrier Membranes for Guided Tissue Regeneration. Head & Face Medicine, 4, Article No. 22. https://doi.org/10.1186/1746-160x-4-22
|
[7]
|
Ghanaati, S. (2012) Non-Cross-Linked Porcine-Based Collagen I-III Membranes Do Not Require High Vascularization Rates for Their Integration within the Implantation Bed: A Paradigm Shift. Acta Biomaterialia, 8, 3061-3072. https://doi.org/10.1016/j.actbio.2012.04.041
|
[8]
|
Peng, F., Zhang, X., Wang, Y., Zhao, R., Cao, Z., Chen, S., et al. (2023) Guided Bone Regeneration in Long-Bone Defect with a Bilayer Mineralized Collagen Membrane. Collagen and Leather, 5, Article No. 36. https://doi.org/10.1186/s42825-023-00144-4
|
[9]
|
Rossato, A., Mathias-Santamaria, I., Ferraz, L., Bautista, C., Miguel, M. and Santamaria, M. (2022) Xenogeneic Acellular Dermal Matrix for the Treatment of Multiple Gingival Recessions Associated with Partially Restored Noncarious Cervical Lesions. The International Journal of Periodontics & Restorative Dentistry, 42, 817-824. https://doi.org/10.11607/prd.5260
|
[10]
|
Elango, J., Bu, Y., Bin, B., Geevaretnam, J., Robinson, J.S. and Wu, W. (2017) Effect of Chemical and Biological Cross-Linkers on Mechanical and Functional Properties of Shark Catfish Skin Collagen Films. Food Bioscience, 17, 42-51. https://doi.org/10.1016/j.fbio.2016.12.002
|
[11]
|
Sanz, M., Dahlin, C., Apatzidou, D., Artzi, Z., Bozic, D., Calciolari, E., et al. (2019) Biomaterials and Regenerative Technologies Used in Bone Regeneration in the Craniomaxillofacial Region: Consensus Report of Group 2 of the 15th European Workshop on Periodontology on Bone Regeneration. Journal of Clinical Periodontology, 46, 82-91. https://doi.org/10.1111/jcpe.13123
|
[12]
|
Li, T., Long, H., Niu, W. and Feng, B. (2023) The Repair and Regeneration Mechanism of Platelet-Rich Fibrin-Promoting Tissue after Alveolar Bone Defect through the Notch Pathway. Cellular and Molecular Biology, 69, 85-90. https://doi.org/10.14715/cmb/2023.69.7.14
|
[13]
|
何杨, 肖帅, 李逦, 等. 富血小板纤维蛋白对人牙周膜细胞成骨能力、炎症因子表达和Wnt/β-catenin信号通路的影响[J]. 现代生物医学进展, 2022, 22(6): 1180-1185+1097.
|
[14]
|
Tavelli, L., McGuire, M.K., Zucchelli, G., Rasperini, G., Feinberg, S.E., Wang, H., et al. (2019) Extracellular Matrix-Based Scaffolding Technologies for Periodontal and Peri-Implant Soft Tissue Regeneration. Journal of Periodontology, 91, 17-25. https://doi.org/10.1002/jper.19-0351
|
[15]
|
Fujioka-Kobayashi, M., Miron, R.J., Hernandez, M., Kandalam, U., Zhang, Y. and Choukroun, J. (2017) Optimized Platelet-Rich Fibrin with the Low-Speed Concept: Growth Factor Release, Biocompatibility, and Cellular Response. Journal of Periodontology, 88, 112-121. https://doi.org/10.1902/jop.2016.160443
|
[16]
|
Di Martino, A., Sittinger, M. and Risbud, M.V. (2005) Chitosan: A Versatile Biopolymer for Orthopaedic Tissue-Engineering. Biomaterials, 26, 5983-5990. https://doi.org/10.1016/j.biomaterials.2005.03.016
|
[17]
|
Phuangkaew, T., Booranabunyat, N., Kiatkamjornwong, S., Thanyasrisung, P. and Hoven, V.P. (2022) Amphiphilic Quaternized Chitosan: Synthesis, Characterization, and Anti-Cariogenic Biofilm Property. Carbohydrate Polymers, 277, Article 118882. https://doi.org/10.1016/j.carbpol.2021.118882
|
[18]
|
Niu, X., Wang, L., Xu, M., Qin, M., Zhao, L., Wei, Y., et al. (2021) Electrospun Polyamide-6/Chitosan Nanofibers Reinforced Nano-Hydroxyapatite/Polyamide-6 Composite Bilayered Membranes for Guided Bone Regeneration. Carbohydrate Polymers, 260, Article 117769. https://doi.org/10.1016/j.carbpol.2021.117769
|
[19]
|
He, Y., Jin, Y., Wang, X., Yao, S., Li, Y., Wu, Q., et al. (2018) An Antimicrobial Peptide-Loaded Gelatin/Chitosan Nanofibrous Membrane Fabricated by Sequential Layer-by-Layer Electrospinning and Electrospraying Techniques. Nanomaterials, 8, Article 327. https://doi.org/10.3390/nano8050327
|
[20]
|
Lasprilla, A.J.R., Martinez, G.A.R., Lunelli, B.H., Jardini, A.L. and Filho, R.M. (2012) Poly-Lactic Acid Synthesis for Application in Biomedical Devices—A Review. Biotechnology Advances, 30, 321-328. https://doi.org/10.1016/j.biotechadv.2011.06.019
|
[21]
|
Lu, J., Sun, C., Yang, K., Wang, K., Jiang, Y., Tusiime, R., et al. (2019) Properties of Polylactic Acid Reinforced by Hydroxyapatite Modified Nanocellulose. Polymers, 11, Article 1009. https://doi.org/10.3390/polym11061009
|
[22]
|
Sharif, F., Tabassum, S., Mustafa, W., Asif, A., Zarif, F., Tariq, M., et al. (2018) Bioresorbable Antibacterial PCL-PLA-nHA Composite Membranes for Oral and Maxillofacial Defects. Polymer Composites, 40, 1564-1575. https://doi.org/10.1002/pc.24899
|
[23]
|
da Silva, D., Kaduri, M., Poley, M., Adir, O., Krinsky, N., Shainsky-Roitman, J., et al. (2018) Biocompatibility, Biodegradation and Excretion of Polylactic Acid (PLA) in Medical Implants and Theranostic Systems. Chemical Engineering Journal, 340, 9-14. https://doi.org/10.1016/j.cej.2018.01.010
|
[24]
|
Chen, S., Hao, Y., Cui, W., Chang, J. and Zhou, Y. (2013) Biodegradable Electrospun PLLA/Chitosan Membrane as Guided Tissue Regeneration Membrane for Treating Periodontitis. Journal of Materials Science, 48, 6567-6577. https://doi.org/10.1007/s10853-013-7453-z
|
[25]
|
Low, Y.J., Andriyana, A., Ang, B.C. and Zainal Abidin, N.I. (2020) Bioresorbable and Degradable Behaviors of PGA: Current State and Future Prospects. Polymer Engineering & Science, 60, 2657-2675. https://doi.org/10.1002/pen.25508
|
[26]
|
Lin, C. and Chiu, J. (2021) Glycerol-modified Γ-PGA and Gellan Composite Hydrogel Materials with Tunable Physicochemical and Thermal Properties for Soft Tissue Engineering Application. Polymer, 230, Article 124049. https://doi.org/10.1016/j.polymer.2021.124049
|
[27]
|
Malikmammadov, E., Tanir, T.E., Kiziltay, A., Hasirci, V. and Hasirci, N. (2017) PCL and PCL-Based Materials in Biomedical Applications. Journal of Biomaterials Science, Polymer Edition, 29, 863-893. https://doi.org/10.1080/09205063.2017.1394711
|
[28]
|
Lee, S.J., Lee, D., Yoon, T.R., Kim, H.K., Jo, H.H., Park, J.S., et al. (2016) Surface Modification of 3d-Printed Porous Scaffolds via Mussel-Inspired Polydopamine and Effective Immobilization of Rhbmp-2 to Promote Osteogenic Differentiation for Bone Tissue Engineering. Acta Biomaterialia, 40, 182-191. https://doi.org/10.1016/j.actbio.2016.02.006
|
[29]
|
Yin, S., Zhang, W., Zhang, Z. and Jiang, X. (2019) Recent Advances in Scaffold Design and Material for Vascularized Tissue-Engineered Bone Regeneration. Advanced Healthcare Materials, 8, Article 1801433. https://doi.org/10.1002/adhm.201801433
|
[30]
|
Chen, X., Lin, Z., Feng, Y., Tan, H., Xu, X., Luo, J., et al. (2019) Zwitterionic PMCP-Modified Polycaprolactone Surface for Tissue Engineering: Antifouling, Cell Adhesion Promotion, and Osteogenic Differentiation Properties. Small, 15, Article 1903784. https://doi.org/10.1002/smll.201903784
|
[31]
|
Lian, M., Sun, B., Qiao, Z., Zhao, K., Zhou, X., Zhang, Q., et al. (2019) Bi-Layered Electrospun Nanofibrous Membrane with Osteogenic and Antibacterial Properties for Guided Bone Regeneration. Colloids and Surfaces B: Biointerfaces, 176, 219-229. https://doi.org/10.1016/j.colsurfb.2018.12.071
|
[32]
|
Masoudi Rad, M., Nouri Khorasani, S., Ghasemi-Mobarakeh, L., Prabhakaran, M.P., Foroughi, M.R., Kharaziha, M., et al. (2017) Fabrication and Characterization of Two-Layered Nanofibrous Membrane for Guided Bone and Tissue Regeneration Application. Materials Science and Engineering: C, 80, 75-87. https://doi.org/10.1016/j.msec.2017.05.125
|
[33]
|
Zhang, S., Huang, L., Bian, M., Xiao, L., Zhou, D., Tao, Z., et al. (2024) Multifunctional Bone Regeneration Membrane with Flexibility, Electrical Stimulation Activity and Osteoinductive Activity. Small, 20, Article 2405311. https://doi.org/10.1002/smll.202405311
|
[34]
|
Ku, Y., Shim, I.K., Lee, J.Y., Park, Y.J., Rhee, S., Nam, S.H., et al. (2008) Chitosan/Poly(l-Lactic Acid) Multilayered Membrane for Guided Tissue Regeneration. Journal of Biomedical Materials Research Part A, 90, 766-772. https://doi.org/10.1002/jbm.a.31846
|