[1]
|
Hutchinson, J., Fogarty, A., Hubbard, R. and McKeever, T. (2015) Global Incidence and Mortality of Idiopathic Pulmonary Fibrosis: A Systematic Review. European Respiratory Journal, 46, 795-806. https://doi.org/10.1183/09031936.00185114
|
[2]
|
Huang, Y., Oldham, J.M., Ma, S., Unterman, A., Liao, S., Barros, A.J., et al. (2021) Blood Transcriptomics Predicts Progression of Pulmonary Fibrosis and Associated Natural Killer Cells. American Journal of Respiratory and Critical Care Medicine, 204, 197-208. https://doi.org/10.1164/rccm.202008-3093oc
|
[3]
|
Serezani, A.P.M., Pascoalino, B.D., Bazzano, J.M.R., Vowell, K.N., Tanjore, H., Taylor, C.J., et al. (2022) Multiplatform Single-Cell Analysis Identifies Immune Cell Types Enhanced in Pulmonary Fibrosis. American Journal of Respiratory Cell and Molecular Biology, 67, 50-60. https://doi.org/10.1165/rcmb.2021-0418oc
|
[4]
|
François, A., Gombault, A., Villeret, B., Alsaleh, G., Fanny, M., Gasse, P., et al. (2015) B Cell Activating Factor Is Central to Bleomycin-and IL-17-Mediated Experimental Pulmonary Fibrosis. Journal of Autoimmunity, 56, 1-11. https://doi.org/10.1016/j.jaut.2014.08.003
|
[5]
|
Todd, N.W., Scheraga, R.G., Galvin, J.R., et al. (2013) Lymphocyte Aggregates Persist and Accumulate in the Lungs of Patients with Idiopathic Pulmonary Fibrosis. Journal of Inflammation Research, 6, 63-70. https://doi.org/10.2147/jir.s40673
|
[6]
|
Keir, G.J., Maher, T.M., Ming, D., Abdullah, R., de Lauretis, A., Wickremasinghe, M., et al. (2013) Rituximab in Severe, Treatment‐Refractory Interstitial Lung Disease. Respirology, 19, 353-359. https://doi.org/10.1111/resp.12214
|
[7]
|
Luo, Q., Deng, D., Li, Y., Shi, H., Zhao, J., Qian, Q., et al. (2023) TREM2 Insufficiency Protects against Pulmonary Fibrosis by Inhibiting M2 Macrophage Polarization. International Immunopharmacology, 118, Article ID: 110070. https://doi.org/10.1016/j.intimp.2023.110070
|
[8]
|
Huang, Y., Chen, Z., Chen, B., Li, J., Yuan, X., Li, J., et al. (2023) Dietary Sugar Consumption and Health: Umbrella Review. BMJ, 381, e071609. https://doi.org/10.1136/bmj-2022-071609
|
[9]
|
Gähler, A., Trufa, D.I., Chiriac, M.T., Tausche, P., Hohenberger, K., Brunst, A., et al. (2022) Glucose-Restricted Diet Regulates the Tumor Immune Microenvironment and Prevents Tumor Growth in Lung Adenocarcinoma. Frontiers in Oncology, 12, Article 873293. https://doi.org/10.3389/fonc.2022.873293
|
[10]
|
Goyal, M.S., Venkatesh, S., Milbrandt, J., Gordon, J.I. and Raichle, M.E. (2015) Feeding the Brain and Nurturing the Mind: Linking Nutrition and the Gut Microbiota to Brain Development. Proceedings of the National Academy of Sciences of the United States of America, 112, 14105-14112. https://doi.org/10.1073/pnas.1511465112
|
[11]
|
Marsland, B.J. and Salami, O. (2015) Microbiome Influences on Allergy in Mice and Humans. Current Opinion in Immunology, 36, 94-100. https://doi.org/10.1016/j.coi.2015.07.005
|
[12]
|
Peterson, L.W. and Artis, D. (2014) Intestinal Epithelial Cells: Regulators of Barrier Function and Immune Homeostasis. Nature Reviews Immunology, 14, 141-153. https://doi.org/10.1038/nri3608
|
[13]
|
Atarashi, K., Tanoue, T., Oshima, K., Suda, W., Nagano, Y., Nishikawa, H., et al. (2013) Treg Induction by a Rationally Selected Mixture of Clostridia Strains from the Human Microbiota. Nature, 500, 232-236. https://doi.org/10.1038/nature12331
|
[14]
|
Zhang, D., Liu, B., Cao, B., Wei, F., Yu, X., Li, G., et al. (2017) Synergistic Protection of Schizandrin B and Glycyrrhizic Acid against Bleomycin-Induced Pulmonary Fibrosis by Inhibiting TGF-β1/Smad2 Pathways and Overexpression of Nox4. International Immunopharmacology, 48, 67-75. https://doi.org/10.1016/j.intimp.2017.04.024
|
[15]
|
Yang, W., Pan, L., Cheng, Y., Wu, X., Tang, B., Zhu, H., et al. (2022) Nintedanib Alleviates Pulmonary Fibrosis in Vitro and in Vivo by Inhibiting the FAK/ERK/S100A4 Signalling Pathway. International Immunopharmacology, 113, Article ID: 109409. https://doi.org/10.1016/j.intimp.2022.109409
|
[16]
|
Qu, Z., Dou, W., Zhang, K., Duan, L., Zhou, D. and Yin, S. (2022) IL-22 Inhibits Bleomycin-Induced Pulmonary Fibrosis in Association with Inhibition of IL-17A in Mice. Arthritis Research & Therapy, 24, Article No. 280. https://doi.org/10.1186/s13075-022-02977-6
|
[17]
|
Rao, L., Wang, Y., Zhang, L., Wu, G., Zhang, L., Wang, F., et al. (2020) IL-24 Deficiency Protects Mice against Bleomycin-Induced Pulmonary Fibrosis by Repressing Il-4-Induced M2 Program in Macrophages. Cell Death & Differentiation, 28, 1270-1283. https://doi.org/10.1038/s41418-020-00650-6
|
[18]
|
Nossa, C.W. (2010) Design of 16S rRNA Gene Primers for 454 Pyrosequencing of the Human Foregut Microbiome. World Journal of Gastroenterology, 16, 4135-4144. https://doi.org/10.3748/wjg.v16.i33.4135
|
[19]
|
Xiong, J., Liu, Y., Lin, X., Zhang, H., Zeng, J., Hou, J., et al. (2012) Geographic Distance and Ph Drive Bacterial Distribution in Alkaline Lake Sediments across Tibetan Plateau. Environmental Microbiology, 14, 2457-2466. https://doi.org/10.1111/j.1462-2920.2012.02799.x
|
[20]
|
Zhang, D., Jin, W., Wu, R., Li, J., Park, S., Tu, E., et al. (2019) High Glucose Intake Exacerbates Autoimmunity through Reactive-Oxygen-Species-Mediated TGF-β Cytokine Activation. Immunity, 51, 671-681.e5. https://doi.org/10.1016/j.immuni.2019.08.001
|
[21]
|
Soetikno, V., Andini, P., Iskandar, M., Matheos, C.C., Herdiman, J.A., Kyle, I.K., et al. (2023) α-Mangosteen Lessens High-Fat/High-Glucose Diet and Low-Dose Streptozotocin Induced-Hepatic Manifestations in the Insulin Resistance Rat Model. Pharmaceutical Biology, 61, 241-248. https://doi.org/10.1080/13880209.2023.2166086
|
[22]
|
Ning, W., Xu, X., Zhou, S., Wu, X., Wu, H., Zhang, Y., et al. (2022) Effect of High Glucose Supplementation on Pulmonary Fibrosis Involving Reactive Oxygen Species and TGF-β. Frontiers in Nutrition, 9, Article 998662. https://doi.org/10.3389/fnut.2022.998662
|
[23]
|
Tian, J., Zhang, M., Suo, M., Liu, D., Wang, X., Liu, M., et al. (2021) Dapagliflozin Alleviates Cardiac Fibrosis through Suppressing Endmt and Fibroblast Activation via AMPKα/TGF-β/Smad Signalling in Type 2 Diabetic Rats. Journal of Cellular and Molecular Medicine, 25, 7642-7659. https://doi.org/10.1111/jcmm.16601
|
[24]
|
Park, S., Hahn, H., Oh, S. and Lee, H. (2023) Theophylline Attenuates BLM-Induced Pulmonary Fibrosis by Inhibiting Th17 Differentiation. International Journal of Molecular Sciences, 24, Article 1019. https://doi.org/10.3390/ijms24021019
|
[25]
|
Park, S., Ryu, H.W., Kim, J., Hahn, H., Jang, H., Ko, S., et al. (2023) Daphnetin Alleviates Bleomycin-Induced Pulmonary Fibrosis through Inhibition of Epithelial-To-Mesenchymal Transition and Il-17a. Cells, 12, Article 2795. https://doi.org/10.3390/cells12242795
|
[26]
|
Jia, Q., Li, Q., Wang, Y., Zhao, J., Jiang, Q., Wang, H., et al. (2022) Lung Microbiome and Transcriptome Reveal Mechanisms Underlying PM2.5 Induced Pulmonary Fibrosis. Science of the Total Environment, 831, Article ID: 154974. https://doi.org/10.1016/j.scitotenv.2022.154974
|
[27]
|
Bhattacharya, S.S., Yadav, B., Rosen, L., Nagpal, R., Yadav, H. and Yadav, J.S. (2022) Crosstalk between Gut Microbiota and Lung Inflammation in Murine Toxicity Models of Respiratory Exposure or Co-Exposure to Carbon Nanotube Particles and Cigarette Smoke Extract. Toxicology and Applied Pharmacology, 447, Article ID: 116066. https://doi.org/10.1016/j.taap.2022.116066
|
[28]
|
Gurczynski, S.J., Lipinski, J.H., Strauss, J., Alam, S., Huffnagle, G.B., Ranjan, P., et al. (2023) Horizontal Transmission of Gut Microbiota Attenuates Mortality in Lung Fibrosis. JCI Insight, 9, e164572. https://doi.org/10.1172/jci.insight.164572
|
[29]
|
Cao, G., Wang, Q., Huang, W., Tong, J., Ye, D., He, Y., et al. (2017) Long-Term Consumption of Caffeine-Free High Sucrose Cola Beverages Aggravates the Pathogenesis of EAE in Mice. Cell Discovery, 3, Article No. 17020. https://doi.org/10.1038/celldisc.2017.20
|
[30]
|
Liu, J., Zhou, H., Bai, W., Wang, J., Li, Q., Fan, L., et al. (2024) Assessment of Progression of Pulmonary Fibrosis Based on Metabonomics and Analysis of Intestinal Microbiota. Artificial Cells, Nanomedicine, and Biotechnology, 52, 201-217. https://doi.org/10.1080/21691401.2024.2326616
|