高糖饮食重塑肠道菌群加重博来霉素诱导的肺纤维化
A High-Glucose Diet Aggravates Bleomycin-Induced Pulmonary Fibrosis by Reshaping the Gut Microbiota
DOI: 10.12677/acm.2025.152427, PDF, HTML, XML,   
作者: 朱梦婷, 李永怀:安徽医科大学第一附属医院呼吸内科,安徽 合肥
关键词: 肺纤维化高糖饮食肠道菌群博来霉素Pulmonary Fibrosis High-Glucose Diet Gut Microbiota Bleomycin
摘要: 目的:肺纤维化的确切病因尚不清楚,但它是一种慢性进行性疾病,可导致呼吸衰竭和肺组织破坏。高糖饮食被认为是促进肺纤维化的一个可能的危险因素,但高糖饮食影响肺纤维化的具体机制尚不清楚。在这项研究中,我们对高糖饮食对肺纤维化影响机制进行进一步探索。方法:C57BL/6小鼠给予博来霉素(BLM)建立了有效的肺纤维化动物模型。我们给予BLM引起肺纤维化的小鼠给予20%葡萄糖水或常规饮用水。通过苏木精–伊红染色法(HE),马松染色(Masson)评估肺纤维化的严重程度。采用16s rRNA检测小鼠肠道菌群的改变。结果:高糖喂养的小鼠的血糖明显高于正常喂养的小鼠血糖(P < 0.05)。但是高糖喂养的小鼠的体重只是略微比正常喂养的小鼠体重升高(P > 0.05)。高糖喂养的小鼠的肺指数即肺脏体重/小鼠体重明显高于正常喂养的小鼠血糖(P < 0.01)。高糖喂养的小鼠的肺脏的肺纤维化评分(Score of Aschcroft)明显高于正常喂养的小鼠血糖(P < 0.01)。16s rRNA显示糖喂养的小鼠的α多样性和β多样性相比于正常喂养的小鼠具有显著差异(P < 0.05)。结论:高糖饮食可能通过重塑肠道菌群从而加重肺组织纤维化。我们的研究可能为临床肺纤维化的管理和预防提供新的视角和可能的治疗途径。
Abstract: Purpose: The exact etiology of pulmonary fibrosis is unknown, but it is a chronic, progressive illness that can cause respiratory failure and the destruction of lung tissues. High-glucose diets are considered a possible risk factor for promoting pulmonary fibrosis, but the specific mechanisms by which high-glucose diets affect pulmonary fibrosis are not clear. In this study, we investigated the mechanisms underlying lung fibrosis and the means by which a high-glucose diet affects them. Methods: BLM administration in mice establishes an effective animal model of pulmonary fibrosis. Mice with BLM-induced pulmonary fibrosis were given either 20% glucose water or regular drinking water. Hematoxylin-eosin staining (HE) and Masson staining were used to evaluate the severity of pulmonary fibrosis. The changes of intestinal flora in mice were detected by 16s rRNA. Results: The blood glucose levels in mice subjected to a high-glucose diet were significantly elevated compared to those in mice on a standard diet (P < 0.05). Conversely, the body weight of mice on the high-sugar diet was only marginally higher than that of the control group (P > 0.05). The lung index, calculated as the ratio of lung weight to body weight, was significantly increased in the high-sugar diet group compared to the control group (P < 0.01). Additionally, the pulmonary fibrosis score, as assessed by the Ashcroft scale, was significantly higher in the high-glucose fed mice than in the normally fed mice (P < 0.01). Analysis of 16S rRNA revealed that both α diversity and β diversity in the gut microbiota of sugar-fed mice differed significantly from those in the control group (P < 0.05). Conclusion: High-glucose diet may aggravate pulmonary fibrosis by remodeling gut microbiota. Our study may provide new perspectives and possible therapeutic pathways for the management and prevention of clinical pulmonary fibrosis.
文章引用:朱梦婷, 李永怀. 高糖饮食重塑肠道菌群加重博来霉素诱导的肺纤维化[J]. 临床医学进展, 2025, 15(2): 923-931. https://doi.org/10.12677/acm.2025.152427

1. 引言

特发性肺纤维化(IPF)是一种病因不明、预后不良的慢性疾病。虽然IPF的发病率持续增加,但其潜在机制仍不清楚[1]。先前的研究表明,遗传因素、环境影响和衰老共同促进IPF的发生和发展[2]。在IPF的情况下,干扰素-γ (IFN-γ)信号增加,肺适应性免疫活性增加[3]。除了T细胞和浆细胞在IPF发病过程中发挥关键作用外,在IPF患者的BAL细胞中检测到TREM2 mRNA表达升高,其中TREM2主要在巨噬细胞上表达[4]-[6]。TREM2功能障碍可抑制STAT6的激活和纤维化因子的表达,从而抑制bleomycin (BLM)诱导的肺纤维化和M2巨噬细胞极化[7]

高糖饮食可导致高血压、中风、冠心病和脂质异常,从而增加死亡风险。膳食葡萄糖摄入与内分泌代谢、心血管、癌症和其他结局(神经、精神、牙齿、肝脏、骨骼和过敏)显著相关[8]。此外,高糖饮食可以通过免疫反应调节肿瘤微环境中的肺免疫,从而影响肺肿瘤的生长[9]。虽然有证据表明高糖饮食具有促炎作用,但它是否是呼吸系统疾病发生发展的重要因素,包括其对IPF发生和进展的影响,仍未得到证实。

肠道菌群不仅促进营养物质的分解和吸收,而且还提供防御外部致病微生物的入侵。大多数器官的生理功能可能受到肠道菌群的影响[10] [11]。肠道内的微生物群落没有被宿主生物根除,依赖于肠上皮细胞的屏障功能,从而导致肠黏膜中的免疫细胞无法识别微生物群落[12]。肠道菌群产生的代谢物,如短链脂肪酸,除了作为能量来源外,还通过影响TGF-β信号通路调节肠上皮细胞和免疫细胞的活性。调节TGF-β反应可激活Treg细胞[13]。因此,我们推测肠道菌群的调节可能会影响IPF的发展。在这里,我们发现高糖饮食会加剧IPF。此外,高糖饮食可以改变肠道微生物群的丰富度和多样性。因此,这些实验结果可能为临床IPF患者提供新的预防和治疗策略。

2. 材料与方法

2.1. 动物

6周龄雄性C57BL/6小鼠,体重23 ± 1 g,每组5只小鼠。小鼠饲养于安徽医科大学无特异性病原体(SPF)实验动物中心。所有动物实验均经安徽医科大学动物伦理委员会批准(Quick-PJ2024-05-49)。

2.2. BLM小鼠模型

美国国立卫生研究院(NIH)为这些动物实验建立了动物处理规范和程序。通过气管内给药5 mg/kg的BLM (碧云天生物技术)建立小鼠IPF模型[14] [15]。第28天对小鼠实施安乐死,取肺组织用于实验。

2.3. 血糖,体重和肺指数

高糖组小鼠于造模后7、14、21、28天经尾静脉采血测血糖,记录C57BL/6小鼠体重。用肺指数反映小鼠肺组织炎症和纤维化程度。在试验期间测量血糖水平、体重和肺指数(左肺重量(mg)与体重(g)之比)。

2.4. 组织病理学染色

右肺组织石蜡包埋,4%中性福尔马林缓冲保存。按标准程序制备厚度为4 μm的石蜡包埋肺组织切片[16]进行组织病理学处理。石蜡切片采用苏木精–伊红(H&E)染色、马松三色染色、天狼星红染色和免疫荧光染色。每组由5只小鼠的组织组成,由两名对实验组不记名的病理学家使用Ashcroft评分系统[17]进行评分。

2.5. 羟脯氨酸测定

肺组织中羟脯氨酸(HYP)的含量反映了胶原沉积和肺损伤的程度。按照制造商的说明,使用羟脯氨酸比色测定试剂盒(伊莱瑞特生物科技)。

2.6. 16S rRNA扩增子测序实验方法

1) DNA提取和扩增

按照制造商提供的指导方针,使用Magan pure Soil DNA LQ试剂盒(Magan)从样品中提取基因组DNA。分别用NanoDrop 2000分光光度计(赛默飞)和琼脂糖凝胶电泳检测提取DNA的浓度和纯度。提取的DNA保存在−20℃以待使用。采用Takara Ex Taq高保真聚合酶和针对16S rRNA基因V3-V4 (或V4-V5)可变区的条形码引物对细菌16S rRNA基因进行PCR扩增。引物为通用引物343F (5’-tacggraggcagag -3’)和798R (5’-AGGGTATCTAATCCT-3’) [18]或515F (5’-gtgccagcmgccggg-3’)和907R (5’-CCGTCAATTCMTTTRAGTTT-3’) [19],便于细菌多样性分析。

2) 文库建设与排序

琼脂糖凝胶电泳检测PCR结果。然后使用AMPure XP珠进行纯化,为随后的PCR扩增创建模板。测序时,进行浓度调整。测序采用Illumina NovaSeq 6000平台,测序结果为250 bp对端reads。测序服务由上海欧益生物科技有限公司负责。

2.6. 实时定量聚合酶链反应

使用TRIzol试剂(赛默飞)按照制造商的说明从小鼠肺组织中提取总RNA。第一链cDNA合成使用PrimeScriptTM RT Reagent Kit with gDNA Eraser (宝日医生物技术)进行。用TB Green Premix Ex Taq II试剂盒(宝日医生物技术)进行反转录。使用ABI 7500 PCR系统对每个目标基因进行qPCR,序列5’----3’胶原蛋白Ⅰ正向CCTCAGGGTATTGCTGGACAAC,反向CAGAAGGACCTTGTTTGCCAGG;纤连蛋白正向CCCTATCTCTGATACCGTTGTCC,反向TGCCGCAACTACTGTGATTCGG。每个反应组合的终体积为20 μL。对每个样本采用2-ΔΔCt方法进行数据分析。

2.7. 统计学处理

所有结果均以均数 ± sem表示。采用SPSS 21软件进行统计分析,采用T检验评价组间差异。P值< 0.05为有统计学意义。

3. 结果

3.1. 高糖饮食对BLM小鼠血糖,体重的影响

检测高糖饮食喂养的小鼠从第0天至第21天的血糖浓度和体重的变化。结果显示,高糖喂养的BLM小鼠的血糖浓度比正常饮食的BLM小鼠较高(P < 0.05)但是高糖喂养的BLM小鼠的体重和正常饮食的BLM小鼠无统计学差异(P < 0.05),见图1,说明20%的葡萄糖水只会对BLM小鼠血糖升高,对小鼠体重不产生影响,后续高糖浓度选择20%的葡萄糖水。

Figure 1. Effects of high-glucose diet on blood glucose and body weight in BLM mice

1. 高糖饮食对BLM小鼠血糖,体重的影响

3.2. 高糖饮食喂养的小鼠肺指数发生改变

喂养21天的小鼠后,对小鼠的左肺和体重进行称重,小鼠左肺重量(mg)与体重(g)之比反映小鼠肺组织炎症和纤维化程度。结果显示,高糖喂养的BLM小鼠的肺指数比正常饮食的BLM小鼠较高(P < 0.01),见图2,说明高糖饮食的小鼠肺组织的炎症和纤维化程度可能加重。

Figure 2. The high-glucose fed mice had changes in lung index

2. 高糖饮食喂养的小鼠肺指数发生改变

3.3. 高糖饮食对BLM小鼠的羟脯氨酸的影响

使用羟脯氨酸试剂盒检测小鼠肺脏的羟脯氨酸含量进一步判断小鼠的肺纤维化的程度。结果显示高糖喂养的BLM小鼠的羟脯氨酸含量升高(P < 0.01),见图3,说明高糖饮食会影响BLM小鼠的羟脯氨酸的代谢,进一步加重小鼠的肺纤维化。

Figure 3. Effect of high-glucose diet on hydroxyproline in BLM mice

3. 高糖饮食对BLM小鼠的羟脯氨酸的影响

3.4. 高糖喂养的BLM小鼠的HE,马松染色和天狼猩红显示小鼠肺组织炎症和纤维化加重

为了进一步判断小鼠肺脏的组织炎症和纤维化的具体情况,我们对高糖喂养的BLM小鼠进行了HE,马松染色和天狼猩红染色。结果显示高糖喂养的BLM小鼠的胶原纤维和肌纤维比例升高(P < 0.01),见图4,说明高糖饮食会加重BLM小鼠的胶原纤维,肌纤维和胶原纤维网络的形成,进一步加重小鼠的肺纤维化。

3.5. 高糖饮食对BLM小鼠胶原蛋白Ⅰ和纤连蛋白的影响

进一步判断高糖饮食是否会引起小鼠肺组织的胶原蛋白Ⅰ和纤连蛋白的变化。我们检测高糖喂养的BLM小鼠和正常饮食小鼠的胶原蛋白Ⅰ和纤连蛋白mRNA表达。结果显示高糖喂养的BLM小鼠的胶原蛋白Ⅰ和纤连蛋白mRNA表达升高(P < 0.01),见图5,说明高糖饮食会加重BLM小鼠的胶原蛋白Ⅰ和纤连蛋白的mRNA的合成。

Figure 4. HE, Masson staining, and Sirius scarlet in high-sugar fed BLM mice showed increased inflammation and fibrosis in the lung tissue of the mice

4. 高糖喂养的BLM小鼠的HE,马松染色和天狼猩红显示小鼠肺组织炎症和纤维化加重

Figure 5. Effects of high-glucose diet on collagen I and fibronectin in BLM mice

5. 高糖饮食对BLM小鼠胶原蛋白I和纤连蛋白的影响

3.6. 高糖饮食对BLM小鼠肠道菌群的影响

我们收集小鼠的粪便,对菌群的种水平进行检测。结果显示高糖喂养的BLM小鼠的肠道菌群和正常组小鼠具有明显的变化,其中BLM组的Odoribacter,Muribaculum表达明显升高。见图6,说明高糖饮食会重塑肠道菌群加重小鼠的肺组织的纤维化。

Figure 6. Effect of high-glucose diet on intestinal flora of BLM mice

6. 高糖饮食对BLM小鼠肠道菌群的影响

4. 讨论

越来越多的证据表明,高葡萄糖摄入会加剧炎症和纤维化进展[20]-[23]。Ning等研究表明,高血糖可引起体外A549细胞ROS的形成,激活TGF-β1信号,促进细胞纤维化[22]。这些发现为高葡萄糖饮食摄入导致肺纤维化的未知风险和原因提供了初步见解。我们的研究证实,高葡萄糖摄入加剧了博莱霉素诱导的小鼠肺纤维化。此外,我们的研究揭示了高糖饮食能够重塑小鼠的肠道菌群的构成。既往研究表明,药物抑制Th17细胞可改善小鼠的PF,抑制IL-17A可有效缓解博莱霉素诱导的肺纤维化[16] [24] [25]。在空气细颗粒物(PM2.5)诱导的肺纤维化中,肺微生物群的改变和差异表达的mirna在IL-17信号通路和Th17细胞分化通路中富集[26]。这些实验研究结果表明炎症在肺纤维化发病机制中的重要作用。同样,我们的实验表明,在喂食高糖饮食的小鼠中,加剧了博莱霉素诱导的肺纤维化。

肠道微生物群在IPF中的可能功能已被广泛研究,并已被证明与炎症密切相关[27] [28]。然而,高糖饮食引起的肠道微生物群的具体变化仍在研究中。我们观察到,高糖饮食不仅会影响肺功能,还会改变肠道微生物群的结构。通过16S rRNA测序分析,我们确定了高糖摄入对BLM小鼠肠道菌群结构和组成的影响。我们的研究结果显示,喂食高糖饮食的小鼠和喂食正常饮食的小鼠肠道微生物群种水平在显著差异。先前的研究表明,小鼠肠道菌群的改变可以影响代谢物丰度并引起Th17细胞的变化[29] [30]。我们推测肠道菌群代谢物丰度可能发生变化,并且影响小鼠的代谢从而影响BLM引起的小鼠的肺脏纤维化。

总之我们的研究结果表明高糖饮食可能通过重塑肠道菌群从而加重肺组织纤维化。我们的研究可能为临床肺纤维化的管理和预防提供新的视角和可能的治疗途径。

参考文献

[1] Hutchinson, J., Fogarty, A., Hubbard, R. and McKeever, T. (2015) Global Incidence and Mortality of Idiopathic Pulmonary Fibrosis: A Systematic Review. European Respiratory Journal, 46, 795-806.
https://doi.org/10.1183/09031936.00185114
[2] Huang, Y., Oldham, J.M., Ma, S., Unterman, A., Liao, S., Barros, A.J., et al. (2021) Blood Transcriptomics Predicts Progression of Pulmonary Fibrosis and Associated Natural Killer Cells. American Journal of Respiratory and Critical Care Medicine, 204, 197-208.
https://doi.org/10.1164/rccm.202008-3093oc
[3] Serezani, A.P.M., Pascoalino, B.D., Bazzano, J.M.R., Vowell, K.N., Tanjore, H., Taylor, C.J., et al. (2022) Multiplatform Single-Cell Analysis Identifies Immune Cell Types Enhanced in Pulmonary Fibrosis. American Journal of Respiratory Cell and Molecular Biology, 67, 50-60.
https://doi.org/10.1165/rcmb.2021-0418oc
[4] François, A., Gombault, A., Villeret, B., Alsaleh, G., Fanny, M., Gasse, P., et al. (2015) B Cell Activating Factor Is Central to Bleomycin-and IL-17-Mediated Experimental Pulmonary Fibrosis. Journal of Autoimmunity, 56, 1-11.
https://doi.org/10.1016/j.jaut.2014.08.003
[5] Todd, N.W., Scheraga, R.G., Galvin, J.R., et al. (2013) Lymphocyte Aggregates Persist and Accumulate in the Lungs of Patients with Idiopathic Pulmonary Fibrosis. Journal of Inflammation Research, 6, 63-70.
https://doi.org/10.2147/jir.s40673
[6] Keir, G.J., Maher, T.M., Ming, D., Abdullah, R., de Lauretis, A., Wickremasinghe, M., et al. (2013) Rituximab in Severe, Treatment‐Refractory Interstitial Lung Disease. Respirology, 19, 353-359.
https://doi.org/10.1111/resp.12214
[7] Luo, Q., Deng, D., Li, Y., Shi, H., Zhao, J., Qian, Q., et al. (2023) TREM2 Insufficiency Protects against Pulmonary Fibrosis by Inhibiting M2 Macrophage Polarization. International Immunopharmacology, 118, Article ID: 110070.
https://doi.org/10.1016/j.intimp.2023.110070
[8] Huang, Y., Chen, Z., Chen, B., Li, J., Yuan, X., Li, J., et al. (2023) Dietary Sugar Consumption and Health: Umbrella Review. BMJ, 381, e071609.
https://doi.org/10.1136/bmj-2022-071609
[9] Gähler, A., Trufa, D.I., Chiriac, M.T., Tausche, P., Hohenberger, K., Brunst, A., et al. (2022) Glucose-Restricted Diet Regulates the Tumor Immune Microenvironment and Prevents Tumor Growth in Lung Adenocarcinoma. Frontiers in Oncology, 12, Article 873293.
https://doi.org/10.3389/fonc.2022.873293
[10] Goyal, M.S., Venkatesh, S., Milbrandt, J., Gordon, J.I. and Raichle, M.E. (2015) Feeding the Brain and Nurturing the Mind: Linking Nutrition and the Gut Microbiota to Brain Development. Proceedings of the National Academy of Sciences of the United States of America, 112, 14105-14112.
https://doi.org/10.1073/pnas.1511465112
[11] Marsland, B.J. and Salami, O. (2015) Microbiome Influences on Allergy in Mice and Humans. Current Opinion in Immunology, 36, 94-100.
https://doi.org/10.1016/j.coi.2015.07.005
[12] Peterson, L.W. and Artis, D. (2014) Intestinal Epithelial Cells: Regulators of Barrier Function and Immune Homeostasis. Nature Reviews Immunology, 14, 141-153.
https://doi.org/10.1038/nri3608
[13] Atarashi, K., Tanoue, T., Oshima, K., Suda, W., Nagano, Y., Nishikawa, H., et al. (2013) Treg Induction by a Rationally Selected Mixture of Clostridia Strains from the Human Microbiota. Nature, 500, 232-236.
https://doi.org/10.1038/nature12331
[14] Zhang, D., Liu, B., Cao, B., Wei, F., Yu, X., Li, G., et al. (2017) Synergistic Protection of Schizandrin B and Glycyrrhizic Acid against Bleomycin-Induced Pulmonary Fibrosis by Inhibiting TGF-β1/Smad2 Pathways and Overexpression of Nox4. International Immunopharmacology, 48, 67-75.
https://doi.org/10.1016/j.intimp.2017.04.024
[15] Yang, W., Pan, L., Cheng, Y., Wu, X., Tang, B., Zhu, H., et al. (2022) Nintedanib Alleviates Pulmonary Fibrosis in Vitro and in Vivo by Inhibiting the FAK/ERK/S100A4 Signalling Pathway. International Immunopharmacology, 113, Article ID: 109409.
https://doi.org/10.1016/j.intimp.2022.109409
[16] Qu, Z., Dou, W., Zhang, K., Duan, L., Zhou, D. and Yin, S. (2022) IL-22 Inhibits Bleomycin-Induced Pulmonary Fibrosis in Association with Inhibition of IL-17A in Mice. Arthritis Research & Therapy, 24, Article No. 280.
https://doi.org/10.1186/s13075-022-02977-6
[17] Rao, L., Wang, Y., Zhang, L., Wu, G., Zhang, L., Wang, F., et al. (2020) IL-24 Deficiency Protects Mice against Bleomycin-Induced Pulmonary Fibrosis by Repressing Il-4-Induced M2 Program in Macrophages. Cell Death & Differentiation, 28, 1270-1283.
https://doi.org/10.1038/s41418-020-00650-6
[18] Nossa, C.W. (2010) Design of 16S rRNA Gene Primers for 454 Pyrosequencing of the Human Foregut Microbiome. World Journal of Gastroenterology, 16, 4135-4144.
https://doi.org/10.3748/wjg.v16.i33.4135
[19] Xiong, J., Liu, Y., Lin, X., Zhang, H., Zeng, J., Hou, J., et al. (2012) Geographic Distance and Ph Drive Bacterial Distribution in Alkaline Lake Sediments across Tibetan Plateau. Environmental Microbiology, 14, 2457-2466.
https://doi.org/10.1111/j.1462-2920.2012.02799.x
[20] Zhang, D., Jin, W., Wu, R., Li, J., Park, S., Tu, E., et al. (2019) High Glucose Intake Exacerbates Autoimmunity through Reactive-Oxygen-Species-Mediated TGF-β Cytokine Activation. Immunity, 51, 671-681.e5.
https://doi.org/10.1016/j.immuni.2019.08.001
[21] Soetikno, V., Andini, P., Iskandar, M., Matheos, C.C., Herdiman, J.A., Kyle, I.K., et al. (2023) α-Mangosteen Lessens High-Fat/High-Glucose Diet and Low-Dose Streptozotocin Induced-Hepatic Manifestations in the Insulin Resistance Rat Model. Pharmaceutical Biology, 61, 241-248.
https://doi.org/10.1080/13880209.2023.2166086
[22] Ning, W., Xu, X., Zhou, S., Wu, X., Wu, H., Zhang, Y., et al. (2022) Effect of High Glucose Supplementation on Pulmonary Fibrosis Involving Reactive Oxygen Species and TGF-β. Frontiers in Nutrition, 9, Article 998662.
https://doi.org/10.3389/fnut.2022.998662
[23] Tian, J., Zhang, M., Suo, M., Liu, D., Wang, X., Liu, M., et al. (2021) Dapagliflozin Alleviates Cardiac Fibrosis through Suppressing Endmt and Fibroblast Activation via AMPKα/TGF-β/Smad Signalling in Type 2 Diabetic Rats. Journal of Cellular and Molecular Medicine, 25, 7642-7659.
https://doi.org/10.1111/jcmm.16601
[24] Park, S., Hahn, H., Oh, S. and Lee, H. (2023) Theophylline Attenuates BLM-Induced Pulmonary Fibrosis by Inhibiting Th17 Differentiation. International Journal of Molecular Sciences, 24, Article 1019.
https://doi.org/10.3390/ijms24021019
[25] Park, S., Ryu, H.W., Kim, J., Hahn, H., Jang, H., Ko, S., et al. (2023) Daphnetin Alleviates Bleomycin-Induced Pulmonary Fibrosis through Inhibition of Epithelial-To-Mesenchymal Transition and Il-17a. Cells, 12, Article 2795.
https://doi.org/10.3390/cells12242795
[26] Jia, Q., Li, Q., Wang, Y., Zhao, J., Jiang, Q., Wang, H., et al. (2022) Lung Microbiome and Transcriptome Reveal Mechanisms Underlying PM2.5 Induced Pulmonary Fibrosis. Science of the Total Environment, 831, Article ID: 154974.
https://doi.org/10.1016/j.scitotenv.2022.154974
[27] Bhattacharya, S.S., Yadav, B., Rosen, L., Nagpal, R., Yadav, H. and Yadav, J.S. (2022) Crosstalk between Gut Microbiota and Lung Inflammation in Murine Toxicity Models of Respiratory Exposure or Co-Exposure to Carbon Nanotube Particles and Cigarette Smoke Extract. Toxicology and Applied Pharmacology, 447, Article ID: 116066.
https://doi.org/10.1016/j.taap.2022.116066
[28] Gurczynski, S.J., Lipinski, J.H., Strauss, J., Alam, S., Huffnagle, G.B., Ranjan, P., et al. (2023) Horizontal Transmission of Gut Microbiota Attenuates Mortality in Lung Fibrosis. JCI Insight, 9, e164572.
https://doi.org/10.1172/jci.insight.164572
[29] Cao, G., Wang, Q., Huang, W., Tong, J., Ye, D., He, Y., et al. (2017) Long-Term Consumption of Caffeine-Free High Sucrose Cola Beverages Aggravates the Pathogenesis of EAE in Mice. Cell Discovery, 3, Article No. 17020.
https://doi.org/10.1038/celldisc.2017.20
[30] Liu, J., Zhou, H., Bai, W., Wang, J., Li, Q., Fan, L., et al. (2024) Assessment of Progression of Pulmonary Fibrosis Based on Metabonomics and Analysis of Intestinal Microbiota. Artificial Cells, Nanomedicine, and Biotechnology, 52, 201-217.
https://doi.org/10.1080/21691401.2024.2326616