[1]
|
Johnson, J.B., Mani, J.S., Broszczak, D., Prasad, S.S., Ekanayake, C.P., Strappe, P., et al. (2021) Hitting the Sweet Spot: A Systematic Review of the Bioactivity and Health Benefits of Phenolic Glycosides from Medicinally Used Plants. Phytotherapy Research, 35, 3484-3508. https://doi.org/10.1002/ptr.7042
|
[2]
|
刘桢, 吕玉秀, 张璟雯, 等. 雀嘴茶中三大酚类成分的抗氧化活性和酪氨酸酶抑制活性分析[J]. 食品工业科技, 2023, 44(8): 405-411.
|
[3]
|
Kosakowska, O., Bączek, K., Przybył, J.L., Pióro-Jabrucka, E., Czupa, W., Synowiec, A., et al. (2018) Antioxidant and Antibacterial Activity of Roseroot (Rhodiola rosea L.) Dry Extracts. Molecules, 23, Article 1767. https://doi.org/10.3390/molecules23071767
|
[4]
|
Xing, S., Yang, X., Li, W., Bian, F., Wu, D., Chi, J., et al. (2014) Salidroside Stimulates Mitochondrial Biogenesis and Protects against H2O2-Induced Endothelial Dysfunction. Oxidative Medicine and Cellular Longevity, 2014, Article ID: 904834. https://doi.org/10.1155/2014/904834
|
[5]
|
Lai, X., Zhang, Y., Wu, J., Shen, M., Yin, S. and Yan, J. (2023) Rutin Attenuates Oxidative Stress via PHB2-Mediated Mitophagy in MPP+-Induced SH-SY5Y Cells. Neurotoxicity Research, 41, 242-255. https://doi.org/10.1007/s12640-023-00636-5
|
[6]
|
Sukprasansap, M., Chanvorachote, P. and Tencomnao, T. (2020) Retracted Article: Cyanidin-3-Glucoside Activates Nrf2-Antioxidant Response Element and Protects against Glutamate-Induced Oxidative and Endoplasmic Reticulum Stress in HT22 Hippocampal Neuronal Cells. BMC Complementary Medicine and Therapies, 20, Article No. 46. https://doi.org/10.1186/s12906-020-2819-7
|
[7]
|
Zhai, K., Duan, H., Khan, G.J., Xu, H., Han, F., Cao, W., et al. (2018) Salicin from Alangium chinense Ameliorates Rheumatoid Arthritis by Modulating the Nrf2-HO-1-Ros Pathways. Journal of Agricultural and Food Chemistry, 66, 6073-6082. https://doi.org/10.1021/acs.jafc.8b02241
|
[8]
|
Verma, N., Verma, R., Kumari, R., Ranjha, R. and Paul, J. (2013) Effect of Salicin on Gut Inflammation and on Selected Groups of Gut Microbiota in Dextran Sodium Sulfate Induced Mouse Model of Colitis. Inflammation Research, 63, 161-169. https://doi.org/10.1007/s00011-013-0685-1
|
[9]
|
Zhang, Z., Zhou, Z., Liu, J., Zheng, L., Peng, X., Zhao, L., et al. (2024) Salicin Alleviates Periodontitis via Tas2r143/gustducin Signaling in Fibroblasts. Frontiers in Immunology, 15, Article 1374900. https://doi.org/10.3389/fimmu.2024.1374900
|
[10]
|
Song, Y., Tian, X., Wang, X. and Feng, H. (2019) Vascular Protection of Salicin on Il-1β-Induced Endothelial Inflammatory Response and Damages in Retinal Endothelial Cells. Artificial Cells, Nanomedicine, and Biotechnology, 47, 1995-2002. https://doi.org/10.1080/21691401.2019.1608220
|
[11]
|
Yao, Y., Zhang, X., Xu, Y., Zhao, Y., Song, F., Tian, Z., et al. (2022) Cyanidin-3-O-β-Glucoside Attenuates Platelet Chemokines and Their Receptors in Atherosclerotic Inflammation of Apoe–/– Mice. Journal of Agricultural and Food Chemistry, 70, 8254-8263. https://doi.org/10.1021/acs.jafc.2c01844
|
[12]
|
Ma, B., Wu, Y., Chen, B., Yao, Y., Wang, Y., Bai, H., et al. (2019) Cyanidin-3-O-β-Glucoside Attenuates Allergic Airway Inflammation by Modulating the Il-4rα-Stat6 Signaling Pathway in a Murine Asthma Model. International Immunopharmacology, 69, 1-10. https://doi.org/10.1016/j.intimp.2019.01.008
|
[13]
|
Li, X., Sun, M. and Long, Y. (2020) Cyanidin-3-O-Glucoside Attenuates Lipopolysaccharide-Induced Inflammation in Human Corneal Epithelial Cells by Inducing Let-7b-5p-Mediated HMGA2/PI3K/Akt Pathway. Inflammation, 43, 1088-1096. https://doi.org/10.1007/s10753-020-01194-0
|
[14]
|
Gan, Y., Fu, Y., Yang, L., Chen, J., Lei, H. and Liu, Q. (2020) Cyanidin-3-O-Glucoside and Cyanidin Protect against Intestinal Barrier Damage and 2, 4, 6-Trinitrobenzenesulfonic Acid-Induced Colitis. Journal of Medicinal Food, 23, 90-99. https://doi.org/10.1089/jmf.2019.4524
|
[15]
|
Zhou, Y., Wang, S., Wan, T., Huang, Y., Pang, N., Jiang, X., et al. (2020) Cyanidin-3-O-β-Glucoside Inactivates NLRP3 Inflammasome and Alleviates Alcoholic Steatohepatitis via SirT1/NF-κB Signaling Pathway. Free Radical Biology and Medicine, 160, 334-341. https://doi.org/10.1016/j.freeradbiomed.2020.08.006
|
[16]
|
Sun, Y. and Li, L. (2018) Cyanidin‐3‐Glucoside Inhibits Inflammatory Activities in Human Fibroblast‐Like Synoviocytes and in Mice with Collagen‐Induced Arthritis. Clinical and Experimental Pharmacology and Physiology, 45, 1038-1045. https://doi.org/10.1111/1440-1681.12970
|
[17]
|
王路瑶, 胡继划, 唐焓嫣, 等. 中药抑菌作用特点及其开发优势研究[J]. 国外医药(抗生素分册), 2023, 44(2): 91-95.
|
[18]
|
Jiang, K., Zhao, G., Deng, G., Wu, H., Yin, N., Chen, X., et al. (2016) Polydatin Ameliorates Staphylococcus Aureus-Induced Mastitis in Mice via Inhibiting TLR2-Mediated Activation of the P38 MAPK/NF-κB Pathway. Acta Pharmacologica Sinica, 38, 211-222. https://doi.org/10.1038/aps.2016.123
|
[19]
|
Zhao, G., Jiang, K., Wu, H., Qiu, C., Deng, G. and Peng, X. (2017) Polydatin Reduces Staphylococcus aureus Lipoteichoic Acid‐Induced Injury by Attenuating Reactive Oxygen Species Generation and TLR2-NFκB Signalling. Journal of Cellular and Molecular Medicine, 21, 2796-2808. https://doi.org/10.1111/jcmm.13194
|
[20]
|
Zhao, D., Du, B., Xu, J., Xie, Q., Lu, Z. and Kang, Y. (2022) Baicalin Promotes Antibacterial Defenses by Modulating Mitochondrial Function. Biochemical and Biophysical Research Communications, 621, 130-136. https://doi.org/10.1016/j.bbrc.2022.06.084
|
[21]
|
Li, L., Cui, H., Zhang, Y., Xie, W., Lin, Y., Guo, Y., et al. (2023) Baicalin Ameliorates Multidrug-Resistant Pseudomonas aeruginosa Induced Pulmonary Inflammation in Rat via Arginine Biosynthesis. Biomedicine & Pharmacotherapy, 162, Article ID: 114660. https://doi.org/10.1016/j.biopha.2023.114660
|
[22]
|
Lv, C., Huang, Y., Liu, Z., Yu, D. and Bai, Z. (2016) Salidroside Reduces Renal Cell Carcinoma Proliferation by Inhibiting JAK2/STAT3 Signaling. Cancer Biomarkers, 17, 41-47. https://doi.org/10.3233/cbm-160615
|
[23]
|
Sun, K.X., Xia, H.W. and Xia, R.L. (2015) Anticancer Effect of Salidroside on Colon Cancer through Inhibiting JAK2/STAT3 Signaling Pathway. International Journal of Clinical and Experimental Pathology, 8, 615-621.
|
[24]
|
Zhao, G., Shi, A., Fan, Z. and Du, Y. (2015) Salidroside Inhibits the Growth of Human Breast Cancer in Vitro and in Vivo. Oncology Reports, 33, 2553-2560. https://doi.org/10.3892/or.2015.3857
|
[25]
|
Wang, L., Liu, F., Liu, Y., et al. (2019) [Cyanidin-3-O-Glucoside Inhibits Proliferation of Colorectal Cancer Cells by Targeting TOPK]. Chinese Journal of Cellular and Molecular Immunology, 35, 1101-1108.
|
[26]
|
Chen, X., Zhang, W. and Xu, X. (2021) Cyanidin-3-glucoside Suppresses the Progression of Lung Adenocarcinoma by Downregulating TP53I3 and Inhibiting PI3K/AKT/mTOR Pathway. World Journal of Surgical Oncology, 19, Article No. 232. https://doi.org/10.1186/s12957-021-02339-7
|
[27]
|
Ma, X. and Ning, S. (2018) Cyanidin‐3‐Glucoside Attenuates the Angiogenesis of Breast Cancer via Inhibiting STAT3/VEGF Pathway. Phytotherapy Research, 33, 81-89. https://doi.org/10.1002/ptr.6201
|
[28]
|
Zhang, C., Wang, N., Tan, H., Guo, W., Chen, F., Zhong, Z., et al. (2020) Direct Inhibition of the TLR4/MyD88 Pathway by Geniposide Suppresses Hif‐1α‐Independent VEGF Expression and Angiogenesis in Hepatocellular Carcinoma. British Journal of Pharmacology, 177, 3240-3257. https://doi.org/10.1111/bph.15046
|
[29]
|
García-Díaz, J.A., Navarrete-Vázquez, G., García-Jiménez, S., Hidalgo-Figueroa, S., Almanza-Pérez, J.C., Alarcón-Aguilar, F.J., et al. (2016) Antidiabetic, Antihyperlipidemic and Anti-Inflammatory Effects of Tilianin in Streptozotocin-Nicotinamide Diabetic Rats. Biomedicine & Pharmacotherapy, 83, 667-675. https://doi.org/10.1016/j.biopha.2016.07.023
|
[30]
|
Xiong, H., Wang, J., Ran, Q., Lou, G., Peng, C., Gan, Q., et al. (2019) Hesperidin: A Therapeutic Agent for Obesity. Drug Design, Development and Therapy, 13, 3855-3866. https://doi.org/10.2147/dddt.s227499
|
[31]
|
Na, L., Zhang, Q., Jiang, S., Du, S., Zhang, W., Li, Y., et al. (2015) Mangiferin Supplementation Improves Serum Lipid Profiles in Overweight Patients with Hyperlipidemia: A Double-Blind Randomized Controlled Trial. Scientific Reports, 5, Article No. 10344. https://doi.org/10.1038/srep10344
|
[32]
|
Hou, M., Man, M., Man, W., Zhu, W., Hupe, M., Park, K., et al. (2012) Topical Hesperidin Improves Epidermal Permeability Barrier Function and Epidermal Differentiation in Normal Murine Skin. Experimental Dermatology, 21, 337-340. https://doi.org/10.1111/j.1600-0625.2012.01455.x
|
[33]
|
Kim, B., Lee, J., Lee, H., Nam, K., Park, J., Lee, S.M., et al. (2013) Hesperidin Suppresses Melanosome Transport by Blocking the Interaction of Rab27A-Melanophilin. Biomolecules and Therapeutics, 21, 343-348. https://doi.org/10.4062/biomolther.2013.032
|
[34]
|
Lim, Y., Lee, E.H., Kang, T.H., Ha, S.K., Oh, M.S., Kim, S.M., et al. (2009) Inhibitory Effects of Arbutin on Melanin Biosynthesis of α-Melanocyte Stimulating Hormone-Induced Hyperpigmentation in Cultured Brownish Guinea Pig Skin Tissues. Archives of Pharmacal Research, 32, 367-373. https://doi.org/10.1007/s12272-009-1309-8
|
[35]
|
Kwon, K.J., Bae, S., Kim, K., An, I.S., Ahn, K.J., An, S., et al. (2014) Asiaticoside, a component of Centella asiatica, Inhibits Melanogenesis in B16F10 Mouse Melanoma. Molecular Medicine Reports, 10, 503-507. https://doi.org/10.3892/mmr.2014.2159
|
[36]
|
Wang, X., Xing, G., Hong, B., Li, X., Zou, Y., Zhang, X., et al. (2014) Gastrodin Prevents Motor Deficits and Oxidative Stress in the MPTP Mouse Model of Parkinson's Disease: Involvement of ERK1/2-Nrf2 Signaling Pathway. Life Sciences, 114, 77-85. https://doi.org/10.1016/j.lfs.2014.08.004
|
[37]
|
Koneru, M., Sahu, B.D., Gudem, S., Kuncha, M., Ravuri, H.G., Kumar, J.M., et al. (2017) Polydatin Alleviates Alcohol-Induced Acute Liver Injury in Mice: Relevance of Matrix Metalloproteinases (MMPs) and Hepatic Antioxidants. Phytomedicine, 27, 23-32. https://doi.org/10.1016/j.phymed.2017.01.013
|
[38]
|
Wang, Y., Wang, Y., Liu, Y., Cao, J., Yang, M., Wang, Y., et al. (2022) 6’-O-Caffeoylarbutin from Que Zui Tea Ameliorates Acetaminophen-Induced Liver Injuryviaenhancing Antioxidant Ability and Regulating the PI3K Signaling Pathway. Food & Function, 13, 5299-5316. https://doi.org/10.1039/d2fo00507g
|
[39]
|
Hu, Z.M., Liu, S.Y., Yang, H.Y., et al. (2021) [Research Progress of Liposome Drug Delivery System in Stomatology]. Chinese Journal of Stomatology, 56, 294-300.
|
[40]
|
Liang, T., Guan, R., Quan, Z., Tao, Q., Liu, Z. and Hu, Q. (2019) Cyanidin-3-O-Glucoside Liposome: Preparation via a Green Method and Antioxidant Activity in GES-1 Cells. Food Research International, 125, Article ID: 108648. https://doi.org/10.1016/j.foodres.2019.108648
|
[41]
|
Zhao, L., Wei, Y., Guo, J., Zheng, X., Wu, J., Zhou, Y., et al. (2014) Preparation, Pharmacokinetics and Biodistribution of Baicalin-Loaded Liposomes. International Journal of Nanomedicine, 9, 3623-3630. https://doi.org/10.2147/ijn.s66312
|
[42]
|
Chen, M., Liu, X., Qu, X., Guo, R., Zhang, L., Kong, L., et al. (2023) ApoE-Modified Liposomes Encapsulating Resveratrol and Salidroside Alleviate Manifestations of Alzheimer’s Disease in APP/PS-1 Mice. Drug Development and Industrial Pharmacy, 49, 559-571. https://doi.org/10.1080/03639045.2023.2252062
|
[43]
|
曹丽华. 同轴电喷-去模板法制备核壳纳米颗粒及其在药物传递领域的应用[D]: [博士学位论文]. 杭州: 浙江大学, 2014.
|
[44]
|
Pandey, P., Rahman, M., Bhatt, P.C., Beg, S., Paul, B., Hafeez, A., et al. (2018) Implication of Nano-Antioxidant Therapy for Treatment of Hepatocellular Carcinoma Using PLGA Nanoparticles of Rutin. Nanomedicine, 13, 849-870. https://doi.org/10.2217/nnm-2017-0306
|
[45]
|
Palei, N.N. and Surendran, V. (2022) Formulation and Characterization of Rutin Loaded Chitosan-Alginate Nanoparticles: Antidiabetic and Cytotoxicity Studies. Current Drug Delivery, 19, 379-394. https://doi.org/10.2174/1567201818666211005090656
|
[46]
|
Jin, S.Y., Han, J., Jin, S.X., Lv, Q.Y., et al. (2014) Characterization and Evaluation in Vivo of Baicalin-Nanocrystals Prepared by an Ultrasonic-Homogenization-Fluid Bed Drying Method. Chinese Journal of Natural Medicines, 12, 71-80. https://doi.org/10.1016/s1875-5364(14)60012-1
|
[47]
|
Pleguezuelos-Villa, M., Nácher, A., Hernández, M.J., Ofelia Vila Buso, M.A., Ruiz Sauri, A. and Díez-Sales, O. (2019) Mangiferin Nanoemulsions in Treatment of Inflammatory Disorders and Skin Regeneration. International Journal of Pharmaceutics, 564, 299-307. https://doi.org/10.1016/j.ijpharm.2019.04.056
|
[48]
|
Huang, H., Belwal, T., Aalim, H., Li, L., Lin, X., Liu, S., et al. (2019) Protein-Polysaccharide Complex Coated W/O/W Emulsion as Secondary Microcapsule for Hydrophilic Arbutin and Hydrophobic Coumaric Acid. Food Chemistry, 300, Article ID: 125171. https://doi.org/10.1016/j.foodchem.2019.125171
|
[49]
|
Liang, C., Qi, D., Zhang, L., Lu, P. and Liu, Z. (2021) Preparation and Evaluation of a Water-In-Oil Nanoemulsion Drug Delivery System Loaded with Salidroside. Chinese Journal of Natural Medicines, 19, 231-240. https://doi.org/10.1016/s1875-5364(21)60025-0
|
[50]
|
Mishra, D.K., Shandilya, R. and Mishra, P.K. (2018) Lipid Based Nanocarriers: A Translational Perspective. Nanomedicine: Nanotechnology, Biology and Medicine, 14, 2023-2050. https://doi.org/10.1016/j.nano.2018.05.021
|
[51]
|
史亚军, 吴品江, 许润春, 等. 黄芩苷磷脂复合物基本性质研究[J]. 中草药, 2012, 43(1): 78-82.
|
[52]
|
李楠, 冯玲玲, 蒋学华, 等. 黄芩苷磷脂复合物大鼠在体胃肠道吸收研究[J]. 中国药学杂志, 2016, 51(12): 994-998.
|
[53]
|
李楠, 冯玲玲, 蒋学华, 等. 黄芩苷磷脂复合物口服给药大鼠体内动力学研究[J]. 时珍国医国药, 2017, 28(11): 2568-2570.
|
[54]
|
李楠, 叶英杰, 杨明, 等. 黄芩苷磷脂复合物单侧鼻腔给药脑靶向性研究[J]. 中国药学杂志, 2012, 47(4): 283-286.
|
[55]
|
杨爱霞, 张力凡, 鲁力. 黄芩苷磷脂复合物固体分散体的药动学研究[J]. 中国药师, 2020, 23(7): 1331-1334, 1362.
|
[56]
|
刘昌顺, 龙晓英, 梁浩明, 等. 黄芩苷及其磷脂复合物与自微乳在大鼠体内的药动学比较性研究[J]. 中国新药杂志, 2015, 24(2): 195-198, 211.
|
[57]
|
Kurkov, S.V. and Loftsson, T. (2013) Cyclodextrins. International Journal of Pharmaceutics, 453, 167-180. https://doi.org/10.1016/j.ijpharm.2012.06.055
|
[58]
|
Fenyvesi, F., Nguyen, T.L.P., Haimhoffer, Á., Rusznyák, Á., Vasvári, G., Bácskay, I., et al. (2020) Cyclodextrin Complexation Improves the Solubility and Caco-2 Permeability of Chrysin. Materials, 13, Article 3618. https://doi.org/10.3390/ma13163618
|
[59]
|
Gratieri, T., Pinho, L.A.G., Oliveira, M.A., Sa-Barreto, L.L., Marreto, R.N., Silva, I.C., et al. (2020) Hydroxypropyl-β-Cyclodextrin-Complexed Naringenin by Solvent Change Precipitation for Improving Anti-Inflammatory Effect in Vivo. Carbohydrate Polymers, 231, Article ID: 115769. https://doi.org/10.1016/j.carbpol.2019.115769
|
[60]
|
Prodea, A., Mioc, A., Banciu, C., Trandafirescu, C., Milan, A., Racoviceanu, R., et al. (2022) The Role of Cyclodextrins in the Design and Development of Triterpene-Based Therapeutic Agents. International Journal of Molecular Sciences, 23, Article 736. https://doi.org/10.3390/ijms23020736
|
[61]
|
Căta, A., Ienaşcu, I.M.C., Frum, A., Ursu, D., Svera, P., Orha, C., et al. (2024) Preparation and Characterization of a Novel Salicin-Cyclodextrin Complex. Pharmaceutics, 16, Article 369. https://doi.org/10.3390/pharmaceutics16030369
|
[62]
|
Chang, C., Song, M., Ma, M., Song, J., Cao, F. and Qin, Q. (2023) Preparation, Characterization and Molecular Dynamics Simulation of Rutin-Cyclodextrin Inclusion Complexes. Molecules, 28, Article 955. https://doi.org/10.3390/molecules28030955
|
[63]
|
Başaran, E., Öztürk, A.A., Şenel, B., Demirel, M. and Sarica, Ş. (2022) Quercetin, Rutin and Quercetin-Rutin Incorporated Hydroxypropyl β-Cyclodextrin Inclusion Complexes. European Journal of Pharmaceutical Sciences, 172, Article ID: 106153. https://doi.org/10.1016/j.ejps.2022.106153
|