|
[1]
|
Biessels, G.J. and Whitmer, R.A. (2019) Cognitive Dysfunction in Diabetes: How to Implement Emerging Guidelines. Diabetologia, 63, 3-9. [Google Scholar] [CrossRef] [PubMed]
|
|
[2]
|
Biessels, G.J. and Despa, F. (2018) Cognitive Decline and Dementia in Diabetes Mellitus: Mechanisms and Clinical Implications. Nature Reviews Endocrinology, 14, 591-604. [Google Scholar] [CrossRef] [PubMed]
|
|
[3]
|
IDF (2021) IDF Diabetes Atlas 2021.
|
|
[4]
|
Gregg, E.W., Li, Y., Wang, J., Rios Burrows, N., Ali, M.K., Rolka, D., et al. (2014) Changes in Diabetes-Related Complications in the United States, 1990-2010. New England Journal of Medicine, 370, 1514-1523. [Google Scholar] [CrossRef] [PubMed]
|
|
[5]
|
Gregg, E.W., Sattar, N. and Ali, M.K. (2016) The Changing Face of Diabetes Complications. The Lancet Diabetes & Endocrinology, 4, 537-547. [Google Scholar] [CrossRef] [PubMed]
|
|
[6]
|
Dolan, C., Glynn, R., Griffin, S., Conroy, C., Loftus, C., Wiehe, P.C., et al. (2018) Brain Complications of Diabetes Mellitus: A Cross‐Sectional Study of Awareness among Individuals with Diabetes and the General Population in Ireland. Diabetic Medicine, 35, 871-879. [Google Scholar] [CrossRef] [PubMed]
|
|
[7]
|
McCrimmon, R.J., Ryan, C.M. and Frier, B.M. (2012) Diabetes and Cognitive Dysfunction. The Lancet, 379, 2291-2299. [Google Scholar] [CrossRef] [PubMed]
|
|
[8]
|
Ennis, G.E., Saelzler, U., Umpierrez, G.E. and Moffat, S.D. (2020) Prediabetes and Working Memory in Older Adults. Brain and Neuroscience Advances, 4. [Google Scholar] [CrossRef] [PubMed]
|
|
[9]
|
Marseglia, A., Dahl Aslan, A.K., Fratiglioni, L., Santoni, G., Pedersen, N.L. and Xu, W. (2017) Cognitive Trajectories of Older Adults with Prediabetes and Diabetes: A Population-Based Cohort Study. The Journals of Gerontology: Series A, 73, 400-406. [Google Scholar] [CrossRef] [PubMed]
|
|
[10]
|
Shang, Y., Fratiglioni, L., Vetrano, D.L., Dove, A., Welmer, A. and Xu, W. (2021) Not Only Diabetes but Also Prediabetes Leads to Functional Decline and Disability in Older Adults. Diabetes Care, 44, 690-698. [Google Scholar] [CrossRef] [PubMed]
|
|
[11]
|
Zheng, F., Yan, L., Yang, Z., Zhong, B. and Xie, W. (2018) HbA1c, Diabetes and Cognitive Decline: The English Longitudinal Study of Ageing. Diabetologia, 61, 839-848. [Google Scholar] [CrossRef] [PubMed]
|
|
[12]
|
Yang, Y., Lu, X., Liu, N., Ma, S., Zhang, H., Zhang, Z., et al. (2024) Metformin Decelerates Aging Clock in Male Monkeys. Cell, 187, 6358-6378.E29. [Google Scholar] [CrossRef] [PubMed]
|
|
[13]
|
Campbell, J.M., Stephenson, M.D., de Courten, B., Chapman, I., Bellman, S.M. and Aromataris, E. (2018) Metformin Use Associated with Reduced Risk of Dementia in Patients with Diabetes: A Systematic Review and Meta-Analysis. Journal of Alzheimer’s Disease, 65, 1225-1236. [Google Scholar] [CrossRef] [PubMed]
|
|
[14]
|
Mohammed, I., Hollenberg, M.D., Ding, H. and Triggle, C.R. (2021) A Critical Review of the Evidence That Metformin Is a Putative Anti-Aging Drug That Enhances Healthspan and Extends Lifespan. Frontiers in Endocrinology, 12, Article 718942. [Google Scholar] [CrossRef] [PubMed]
|
|
[15]
|
Chaudhari, K., Reynolds, C.D. and Yang, S. (2020) Metformin and Cognition from the Perspectives of Sex, Age, and Disease. GeroScience, 42, 97-116. [Google Scholar] [CrossRef] [PubMed]
|
|
[16]
|
Crum, R.M. (1993) Population-based Norms for the Mini-Mental State Examination by Age and Educational Level. JAMA: The Journal of the American Medical Association, 269, 2386-2391. [Google Scholar] [CrossRef] [PubMed]
|
|
[17]
|
Livingston, G., Huntley, J., Sommerlad, A., Ames, D., Ballard, C., Banerjee, S., et al. (2020) Dementia Prevention, Intervention, and Care: 2020 Report of the Lancet Commission. The Lancet, 396, 413-446. [Google Scholar] [CrossRef] [PubMed]
|
|
[18]
|
Hosoki, S., Hansra, G.K., Jayasena, T., Poljak, A., Mather, K.A., Catts, V.S., et al. (2023) Molecular Biomarkers for Vascular Cognitive Impairment and Dementia. Nature Reviews Neurology, 19, 737-753. [Google Scholar] [CrossRef] [PubMed]
|
|
[19]
|
Niu, M., Yin, F., Liu, L., Fang, Y., Xuan, X. and Wu, G. (2013) Non-High-Density Lipoprotein Cholesterol and Other Risk Factors of Mild Cognitive Impairment among Chinese Type 2 Diabetic Patients. Journal of Diabetes and its Complications, 27, 443-446. [Google Scholar] [CrossRef] [PubMed]
|
|
[20]
|
Low, S., Ng, T.P., Goh, K.S., Moh, A., Khoo, J., Ang, K., et al. (2024) Reduced Skeletal Muscle Mass to Visceral Fat Area Ratio Is Independently Associated with Reduced Cognitive Function in Type 2 Diabetes Mellitus. Journal of Diabetes and Its Complications, 38, Article 108672. [Google Scholar] [CrossRef] [PubMed]
|
|
[21]
|
Feter, N., de Paula, D., dos Reis, R.C.P., Raichlen, D., Patrão, A.L., Barreto, S.M., et al. (2024) Leisure-Time Physical Activity May Attenuate the Impact of Diabetes on Cognitive Decline in Middle-Aged and Older Adults: Findings from the Elsa-Brasil Study. Diabetes Care, 47, 427-434. [Google Scholar] [CrossRef] [PubMed]
|
|
[22]
|
Hung, K., Liu, C., Wu, J., Ho, C., Lin, M., Hsing, C., et al. (2023) Association between the Neutrophil-to-Lymphocyte Ratio and Cognitive Impairment: A Meta-Analysis of Observational Studies. Frontiers in Endocrinology, 14, Article 1265637. [Google Scholar] [CrossRef] [PubMed]
|
|
[23]
|
Zhao, L., Wang, Y., Bawa, E.M., Meng, Z., Wei, J., Newman-Norlund, S., et al. (2024) Identifying a Group of Factors Predicting Cognitive Impairment among Older Adults. PLOS ONE, 19, e0301979. [Google Scholar] [CrossRef] [PubMed]
|
|
[24]
|
Brackett, C.C. (2010) Clarifying Metformin’s Role and Risks in Liver Dysfunction. Journal of the American Pharmacists Association, 50, 407-410. [Google Scholar] [CrossRef] [PubMed]
|
|
[25]
|
Wulffelé, M.G., Kooy, A., de Zeeuw, D., Stehouwer, C.D.A. and Gansevoort, R.T. (2004) The Effect of Metformin on Blood Pressure, Plasma Cholesterol and Triglycerides in Type 2 Diabetes Mellitus: A Systematic Review. Journal of Internal Medicine, 256, 1-14. [Google Scholar] [CrossRef] [PubMed]
|
|
[26]
|
Hamidi Shishavan, M., Henning, R.H., van Buiten, A., Goris, M., Deelman, L.E. and Buikema, H. (2017) Metformin Improves Endothelial Function and Reduces Blood Pressure in Diabetic Spontaneously Hypertensive Rats Independent from Glycemia Control: Comparison to Vildagliptin. Scientific Reports, 7, Article No. 10975. [Google Scholar] [CrossRef] [PubMed]
|
|
[27]
|
Rosell-Díaz, M. and Fernández-Real, J.M. (2023) Metformin, Cognitive Function, and Changes in the Gut Microbiome. Endocrine Reviews, 45, 210-226. [Google Scholar] [CrossRef] [PubMed]
|
|
[28]
|
Samaras, K., Makkar, S., Crawford, J.D., Kochan, N.A., Wen, W., Draper, B., et al. (2020) Metformin Use Is Associated with Slowed Cognitive Decline and Reduced Incident Dementia in Older Adults with Type 2 Diabetes: The Sydney Memory and Ageing Study. Diabetes Care, 43, 2691-2701. [Google Scholar] [CrossRef] [PubMed]
|
|
[29]
|
Zhang, Q., Li, W., Liu, Z., Zhang, H., Ba, Y. and Zhang, R. (2020) Metformin Therapy and Cognitive Dysfunction in Patients with Type 2 Diabetes. Medicine, 99, e19378. [Google Scholar] [CrossRef] [PubMed]
|
|
[30]
|
Dai, J., Ports, K.D., Corrada, M.M., Odegaard, A.O., O’Connell, J. and Jiang, L. (2022) Metformin and Dementia Risk: A Systematic Review with Respect to Time Related Biases. Journal of Alzheimer’s Disease Reports, 6, 443-459. [Google Scholar] [CrossRef] [PubMed]
|
|
[31]
|
Luo, A., Xie, Z., Wang, Y., Wang, X., Li, S., Yan, J., et al. (2022) Type 2 Diabetes Mellitus-Associated Cognitive Dysfunction: Advances in Potential Mechanisms and Therapies. Neuroscience & Biobehavioral Reviews, 137, Article 104642. [Google Scholar] [CrossRef] [PubMed]
|