[1]
|
Braga, D., d’Agostino, S. and Grepioni, F. (2012) Co-Crystals and Salts Obtained from Dinitrogen Bases and 1,2,3,4-Cyclobutane Tetracarboxylic Acid and the Use of the Latter as a Template for Solid-State Photocyclization Reactions. Crystal Growth & Design, 12, 4880-4889. https://doi.org/10.1021/cg300716q
|
[2]
|
Liu, Y., Hu, C., Comotti, A. and Ward, M.D. (2011) Supramolecular Archimedean Cages Assembled with 72 Hydrogen Bonds. Science, 333, 436-440. https://doi.org/10.1126/science.1204369
|
[3]
|
Liu, Y., Xiao, W., Yi, J.J., Hu, C., Park, S. and Ward, M.D. (2015) Regulating the Architectures of Hydrogen-Bonded Frameworks through Topological Enforcement. Journal of the American Chemical Society, 137, 3386-3392. https://doi.org/10.1021/jacs.5b00534
|
[4]
|
Zaręba, J.K., Białek, M.J., Janczak, J., Zoń, J. and Dobosz, A. (2014) Extending the Family of Tetrahedral Tectons: Phenyl Embraces in Supramolecular Polymers of Tetraphenylmethane-Based Tetraphosphonic Acid Templated by Organic Bases. Crystal Growth & Design, 14, 6143-6153. https://doi.org/10.1021/cg501348g
|
[5]
|
Comotti, A., Bracco, S., Yamamoto, A., Beretta, M., Hirukawa, T., Tohnai, N., et al. (2014) Engineering Switchable Rotors in Molecular Crystals with Open Porosity. Journal of the American Chemical Society, 136, 618-621. https://doi.org/10.1021/ja411233p
|
[6]
|
Yamamoto, A., Hasegawa, T., Hamada, T., Hirukawa, T., Hisaki, I., Miyata, M., et al. (2013) Role‐Allocated Combination of Two Types of Hydrogen Bonds towards Constructing a Breathing Diamondoid Porous Organic Salt. Chemistry—A European Journal, 19, 3006-3016. https://doi.org/10.1002/chem.201202959
|
[7]
|
Hinoue, T., Miyata, M., Hisaki, I. and Tohnai, N. (2011) Guest‐Responsive Fluorescence of Inclusion Crystals with II‐Stacked Supramolecular Beads. Angewandte Chemie International Edition, 51, 155-158. https://doi.org/10.1002/anie.201106849
|
[8]
|
Yamamoto, A., Hirukawa, T., Hisaki, I., Miyata, M. and Tohnai, N. (2013) Multifunctionalized Porosity in Zeolitic Diamondoid Porous Organic Salt: Selective Adsorption and Guest-Responsive Fluorescent Properties. Tetrahedron Letters, 54, 1268-1273. https://doi.org/10.1016/j.tetlet.2012.12.086
|
[9]
|
Soegiarto, A.C., Yan, W., Kent, A.D. and Ward, M.D. (2011) Regulating Low-Dimensional Magnetic Behavior of Organic Radicals in Crystalline Hydrogen-Bonded Host Frameworks. Journal of Materials Chemistry, 21, 2204-2219. https://doi.org/10.1039/c0jm03449e
|
[10]
|
Karmakar, A., Illathvalappil, R., Anothumakkool, B., Sen, A., Samanta, P., Desai, A.V., et al. (2016) Hydrogen‐Bonded Organic Frameworks (HOFs): A New Class of Porous Crystalline Proton‐Conducting Materials. Angewandte Chemie International Edition, 55, 10667-10671. https://doi.org/10.1002/anie.201604534
|
[11]
|
Yang, G., Lee, C., Qiao, X., Babu, S.K., Martinez, U. and Spendelow, J.S. (2024) Advanced Electrode Structures for Proton Exchange Membrane Fuel Cells: Current Status and Path Forward. Electrochemical Energy Reviews, 7, Article No. 9. https://doi.org/10.1007/s41918-023-00208-3
|
[12]
|
Kraytsberg, A. and Ein-Eli, Y. (2014) Review of Advanced Materials for Proton Exchange Membrane Fuel Cells. Energy & Fuels, 28, 7303-7330. https://doi.org/10.1021/ef501977k
|
[13]
|
Li, P., He, B., Li, X., Lin, Y. and Tang, S. (2023) Chitosan‐Linked Dual‐Sulfonate COF Nanosheet Proton Exchange Membrane with High Robustness and Conductivity. Small, 19, Article ID: 2302060. https://doi.org/10.1002/smll.202302060
|
[14]
|
Li, P., Zhang, N., Li, X. and Tang, S. (2023) Silk Nanofibril as Nanobinder for Preparing COF Nanosheet-Based Proton Exchange Membrane. Green Energy & Environment, 8, 915-926. https://doi.org/10.1016/j.gee.2022.05.008
|
[15]
|
Sarma, B. and Nangia, A. (2007) Tetrakis(4-Sulfophenyl)Methane Dodecahydrate. Reversible and Selective Water Inclusion and Release in an Organic Host. CrystEngComm, 9, 628-631. https://doi.org/10.1039/b706194c
|
[16]
|
Taylor, J.M., Mah, R.K., Moudrakovski, I.L., Ratcliffe, C.I., Vaidhyanathan, R. and Shimizu, G.K.H. (2010) Facile Proton Conduction via Ordered Water Molecules in a Phosphonate Metal-Organic Framework. Journal of the American Chemical Society, 132, 14055-14057. https://doi.org/10.1021/ja107035w
|
[17]
|
Morikawa, S., Yamada, T. and Kitagawa, H. (2009) Crystal Structure and Proton Conductivity of a One-Dimensional Coordination Polymer, {Mn(DHBQ)(H2O)2}. Chemistry Letters, 38, 654-655. https://doi.org/10.1246/cl.2009.654
|
[18]
|
Kanda, S., Yamashita, K. and Ohkawa, K. (1979) A Proton Conductive Coordination Polymer. I. [n, n’-bis(2-Hydroxyethyl)Dithiooxamido]Copper(II). Bulletin of the Chemical Society of Japan, 52, 3296-3301. https://doi.org/10.1246/bcsj.52.3296
|
[19]
|
Umeyama, D., Horike, S., Inukai, M., Hijikata, Y. and Kitagawa, S. (2011) Confinement of Mobile Histamine in Coordination Nanochannels for Fast Proton Transfer. Angewandte Chemie International Edition, 50, 11706-11709. https://doi.org/10.1002/anie.201102997
|
[20]
|
Liu, M., Chen, L., Lewis, S., Chong, S.Y., Little, M.A., Hasell, T., et al. (2016) Three-Dimensional Protonic Conductivity in Porous Organic Cage Solids. Nature Communications, 7, Article No. 12750. https://doi.org/10.1038/ncomms12750
|
[21]
|
Taylor, J.M., Dawson, K.W. and Shimizu, G.K.H. (2013) A Water-Stable Metal-Organic Framework with Highly Acidic Pores for Proton-Conducting Applications. Journal of the American Chemical Society, 135, 1193-1196. https://doi.org/10.1021/ja310435e
|
[22]
|
Colodrero, R.M.P., Angeli, G.K., Bazaga-Garcia, M., Olivera-Pastor, P., Villemin, D., Losilla, E.R., et al. (2013) Structural Variability in Multifunctional Metal Xylenediaminetetraphosphonate Hybrids. Inorganic Chemistry, 52, 8770-8783. https://doi.org/10.1021/ic400951s
|
[23]
|
Lim, D. and Kitagawa, H. (2020) Proton Transport in Metal-Organic Frameworks. Chemical Reviews, 120, 8416-8467. https://doi.org/10.1021/acs.chemrev.9b00842
|
[24]
|
Chandra, S., Kundu, T., Kandambeth, S., BabaRao, R., Marathe, Y., Kunjir, S.M., et al. (2014) Phosphoric Acid Loaded Azo (−N=N−) Based Covalent Organic Framework for Proton Conduction. Journal of the American Chemical Society, 136, 6570-6573. https://doi.org/10.1021/ja502212v
|
[25]
|
Ramaswamy, P., Wong, N.E. and Shimizu, G.K.H. (2014) MOFs as Proton Conductors—Challenges and Opportunities. Chemical Society Reviews journal, 43, 5913-5932. https://doi.org/10.1039/c4cs00093e
|
[26]
|
Meng, X., Wang, H., Song, S. and Zhang, H. (2017) Proton-Conducting Crystalline Porous Materials. Chemical Society Reviews, 46, 464-480. https://doi.org/10.1039/c6cs00528d
|