[1]
|
Wei, P., Qi, M., Wang, Z., Ding, S., Yu, W., Liu, Q., et al. (2018) Benzoxazole-Linked Ultrastable Covalent Organic Frameworks for Photocatalysis. Journal of the American Chemical Society, 140, 4623-4631. https://doi.org/10.1021/jacs.8b00571
|
[2]
|
López-Magano, A., Jiménez-Almarza, A., Alemán, J. and Mas-Ballesté, R. (2020) Metal-Organic Frameworks (MOFs) and Covalent Organic Frameworks (COFs) Applied to Photocatalytic Organic Transformations. Catalysts, 10, Article 720. https://doi.org/10.3390/catal10070720
|
[3]
|
Zhang, P., Wang, Z., Cheng, P., Chen, Y. and Zhang, Z. (2021) Design and Application of Ionic Covalent Organic Frameworks. Coordination Chemistry Reviews, 438, Article ID: 213873. https://doi.org/10.1016/j.ccr.2021.213873
|
[4]
|
Li, J., Jin, H., Qin, T., Liu, F., Wu, S. and Feng, L. (2024) Symmetrical Localized Built-In Electric Field by Induced Polarization Effect in Ionic Covalent Organic Frameworks for Selective Imaging and Killing Bacteria. ACS Nano, 18, 4539-4550. https://doi.org/10.1021/acsnano.3c11628
|
[5]
|
Chen, S., Wu, Y., Zhang, Y., Zhang, W., Fu, Y., Huang, W., et al. (2020) Tuning Proton Dissociation Energy in Proton Carrier Doped 2D Covalent Organic Frameworks for Anhydrous Proton Conduction at Elevated Temperature. Journal of Materials Chemistry A, 8, 13702-13709. https://doi.org/10.1039/d0ta04488a
|
[6]
|
Ji, H., Qiao, D., Yan, G., Dong, B., Feng, Y., Qu, X., et al. (2023) Zwitterionic and Hydrophilic Vinylene-Linked Covalent Organic Frameworks for Efficient Photocatalytic Hydrogen Evolution. ACS Applied Materials & Interfaces, 15, 37845-37854. https://doi.org/10.1021/acsami.3c08250
|
[7]
|
Fu, Y., Li, Y., Zhang, W., Luo, C., Jiang, L. and Ma, H. (2022) Ionic Covalent Organic Framework: What Does the Unique Ionic Site Bring to US? Chemical Research in Chinese Universities, 38, 296-309. https://doi.org/10.1007/s40242-022-1448-8
|
[8]
|
Zhang, Y., Guo, J., Han, G., Bai, Y., Ge, Q., Ma, J., et al. (2021) Molecularly Soldered Covalent Organic Frameworks for Ultrafast Precision Sieving. Science Advances, 7, eabe8706. https://doi.org/10.1126/sciadv.abe8706
|
[9]
|
Wu, Q., Si, D., Wu, Q., Dong, Y., Cao, R. and Huang, Y. (2022) Boosting Electroreduction of Co2over Cationic Covalent Organic Frameworks: Hydrogen Bonding Effects of Halogen Ions. Angewandte Chemie International Edition, 62, e202215687. https://doi.org/10.1002/anie.202215687
|
[10]
|
Dong, W., Qin, Z., Wang, K., Xiao, Y., Liu, X., Ren, S., et al. (2022) Isomeric Oligo(Phenylenevinylene)‐Based Covalent Organic Frameworks with Different Orientation of Imine Bonds and Distinct Photocatalytic Activities. Angewandte Chemie International Edition, 62, e202216073. https://doi.org/10.1002/anie.202216073
|
[11]
|
Zhu, T., Kong, Y., Lyu, B., Cao, L., Shi, B., Wang, X., et al. (2023) 3D Covalent Organic Framework Membrane with Fast and Selective Ion Transport. Nature Communications, 14, Article No.5926. https://doi.org/10.1038/s41467-023-41555-5
|
[12]
|
Yang, X., An, Q., Li, X., Fu, Y., Yang, S., Liu, M., et al. (2024) Charging Modulation of the Pyridine Nitrogen of Covalent Organic Frameworks for Promoting Oxygen Reduction Reaction. Nature Communications, 15, Article No. 1889. https://doi.org/10.1038/s41467-024-46291-y
|
[13]
|
He, C., Si, D., Huang, Y. and Cao, R. (2022) A CO2‐Masked Carbene Functionalized Covalent Organic Framework for Highly Efficient Carbon Dioxide Conversion. Angewandte Chemie International Edition, 61, e202207478. https://doi.org/10.1002/anie.202207478
|
[14]
|
Li, X., Zhang, K., Wang, G., Yuan, Y., Zhan, G., Ghosh, T., et al. (2022) Constructing Ambivalent Imidazopyridinium-Linked Covalent Organic Frameworks. Nature Synthesis, 1, 382-392. https://doi.org/10.1038/s44160-022-00071-y
|
[15]
|
Kang, F., Wang, X., Chen, C., Lee, C., Han, Y. and Zhang, Q. (2023) Construction of Crystalline Nitrone-Linked Covalent Organic Frameworks via Kröhnke Oxidation. Journal of the American Chemical Society, 145, 15465-15472. https://doi.org/10.1021/jacs.3c03938
|
[16]
|
Tao, S., Xu, H., Xu, Q., Hijikata, Y., Jiang, Q., Irle, S., et al. (2021) Hydroxide Anion Transport in Covalent Organic Frameworks. Journal of the American Chemical Society, 143, 8970-8975. https://doi.org/10.1021/jacs.1c03268
|
[17]
|
Huang, N., Wang, P., Addicoat, M.A., Heine, T. and Jiang, D. (2017) Ionic Covalent Organic Frameworks: Design of a Charged Interface Aligned on 1D Channel Walls and Its Unusual Electrostatic Functions. Angewandte Chemie International Edition, 56, 4982-4986. https://doi.org/10.1002/anie.201611542
|
[18]
|
He, L., Chen, L., Dong, X., Zhang, S., Zhang, M., Dai, X., et al. (2021) A Nitrogen-Rich Covalent Organic Framework for Simultaneous Dynamic Capture of Iodine and Methyl Iodide. Chem, 7, 699-714. https://doi.org/10.1016/j.chempr.2020.11.024
|
[19]
|
Segura, J.L., Royuela, S. and Mar Ramos, M. (2019) Post-Synthetic Modification of Covalent Organic Frameworks. Chemical Society Reviews, 48, 3903-3945. https://doi.org/10.1039/c8cs00978c
|
[20]
|
Skorjanc, T., Shetty, D., Gándara, F., Ali, L., Raya, J., Das, G., et al. (2020) Remarkably Efficient Removal of Toxic Bromate from Drinking Water with a Porphyrin-Viologen Covalent Organic Framework. Chemical Science, 11, 845-850. https://doi.org/10.1039/c9sc04663a
|
[21]
|
Xie, Z., Wang, B., Yang, Z., Yang, X., Yu, X., Xing, G., et al. (2019) Stable 2D Heteroporous Covalent Organic Frameworks for Efficient Ionic Conduction. Angewandte Chemie International Edition, 58, 15742-15746. https://doi.org/10.1002/anie.201909554
|
[22]
|
Mi, Z., Yang, P., Wang, R., Unruangsri, J., Yang, W., Wang, C., et al. (2019) Stable Radical Cation-Containing Covalent Organic Frameworks Exhibiting Remarkable Structure-Enhanced Photothermal Conversion. Journal of the American Chemical Society, 141, 14433-14442. https://doi.org/10.1021/jacs.9b07695
|
[23]
|
Liu, M., Xu, Q. and Zeng, G. (2024) Ionic Covalent Organic Frameworks in Adsorption and Catalysis. Angewandte Chemie International Edition, 63, e202404886. https://doi.org/10.1002/anie.202404886
|
[24]
|
Qian, H., Yang, C. and Yan, X. (2016) Bottom-Up Synthesis of Chiral Covalent Organic Frameworks and Their Bound Capillaries for Chiral Separation. Nature Communications, 7, Article No. 12104. https://doi.org/10.1038/ncomms12104
|
[25]
|
Yu, F., Ciou, J., Chen, S., Poh, W.C., Chen, J., Chen, J., et al. (2022) Ionic Covalent Organic Framework Based Electrolyte for Fast-Response Ultra-Low Voltage Electrochemical Actuators. Nature Communications, 13, Article No. 390. https://doi.org/10.1038/s41467-022-28023-2
|
[26]
|
Bisbey, R.P. and Dichtel, W.R. (2017) Covalent Organic Frameworks as a Platform for Multidimensional Polymerization. ACS Central Science, 3, 533-543. https://doi.org/10.1021/acscentsci.7b00127
|
[27]
|
Koo, B.T., Heden, R.F. and Clancy, P. (2017) Nucleation and Growth of 2D Covalent Organic Frameworks: Polymerization and Crystallization of COF Monomers. Physical Chemistry Chemical Physics, 19, 9745-9754. https://doi.org/10.1039/c6cp08449d
|
[28]
|
Du, Y., Yang, H., Whiteley, J.M., Wan, S., Jin, Y., Lee, S., et al. (2015) Ionic Covalent Organic Frameworks with Spiroborate Linkage. Angewandte Chemie International Edition, 55, 1737-1741. https://doi.org/10.1002/anie.201509014
|
[29]
|
Ma, H., Liu, B., Li, B., Zhang, L., Li, Y., Tan, H., et al. (2016) Cationic Covalent Organic Frameworks: A Simple Platform of Anionic Exchange for Porosity Tuning and Proton Conduction. Journal of the American Chemical Society, 138, 5897-5903. https://doi.org/10.1021/jacs.5b13490
|
[30]
|
Yu, S., Lyu, H., Tian, J., Wang, H., Zhang, D., Liu, Y., et al. (2016) A Polycationic Covalent Organic Framework: A Robust Adsorbent for Anionic Dye Pollutants. Polymer Chemistry, 7, 3392-3397. https://doi.org/10.1039/c6py00281a
|
[31]
|
Hao, F., Yang, C., Lv, X., Chen, F., Wang, S., Zheng, G., et al. (2023) Photo‐Driven Quasi‐Topological Transformation Exposing Highly Active Nitrogen Cation Sites for Enhanced Photocatalytic H2O2 Production. Angewandte Chemie International Edition, 62, e202315456. https://doi.org/10.1002/anie.202315456
|
[32]
|
Li, Z., Liu, Z., Mu, Z., Cao, C., Li, Z., Wang, T., et al. (2020) Cationic Covalent Organic Framework Based All-Solid-State Electrolytes. Materials Chemistry Frontiers, 4, 1164-1173. https://doi.org/10.1039/c9qm00781d
|
[33]
|
Peng, Y., Xu, G., Hu, Z., Cheng, Y., Chi, C., Yuan, D., et al. (2016) Mechanoassisted Synthesis of Sulfonated Covalent Organic Frameworks with High Intrinsic Proton Conductivity. ACS Applied Materials & Interfaces, 8, 18505-18512. https://doi.org/10.1021/acsami.6b06189
|
[34]
|
Zhang, Y., Duan, J., Ma, D., Li, P., Li, S., Li, H., et al. (2017) Three‐Dimensional Anionic Cyclodextrin‐Based Covalent Organic Frameworks. Angewandte Chemie International Edition, 56, 16313-16317. https://doi.org/10.1002/anie.201710633
|
[35]
|
Zhang, Z. and Xu, Y. (2023) Hydrothermal Synthesis of Highly Crystalline Zwitterionic Vinylene-Linked Covalent Organic Frameworks with Exceptional Photocatalytic Properties. Journal of the American Chemical Society, 145, 25222-25232. https://doi.org/10.1021/jacs.3c08220
|
[36]
|
Xie, Y., Pan, T., Lei, Q., Chen, C., Dong, X., Yuan, Y., et al. (2021) Ionic Functionalization of Multivariate Covalent Organic Frameworks to Achieve an Exceptionally High Iodine‐Capture Capacity. Angewandte Chemie International Edition, 60, 22432-22440. https://doi.org/10.1002/anie.202108522
|
[37]
|
Ding, H., Mal, A. and Wang, C. (2020) Tailored Covalent Organic Frameworks by Post-Synthetic Modification. Materials Chemistry Frontiers, 4, 113-127. https://doi.org/10.1039/c9qm00555b
|
[38]
|
Rager, S., Dogru, M., Werner, V., Gavryushin, A., Götz, M., Engelke, H., et al. (2017) Pore Wall Fluorescence Labeling of Covalent Organic Frameworks. CrystEngComm, 19, 4886-4891. https://doi.org/10.1039/c7ce00684e
|
[39]
|
Guo, H., Wang, J., Fang, Q., Zhao, Y., Gu, S., Zheng, J., et al. (2017) A Quaternary-Ammonium-Functionalized Covalent Organic Framework for Anion Conduction. CrystEngComm, 19, 4905-4910. https://doi.org/10.1039/c7ce00042a
|
[40]
|
Liu, M., Yang, S., Yang, X., Cui, C., Liu, G., Li, X., et al. (2023) Post-Synthetic Modification of Covalent Organic Frameworks for CO2 Electroreduction. Nature Communications, 14, Article No. 3800. https://doi.org/10.1038/s41467-023-39544-9
|
[41]
|
Yin, M., Wang, L. and Tang, S. (2023) Stable Dicationic Covalent Organic Frameworks Manifesting Notable Structure-Enhanced CO2 Capture and Conversion. ACS Catalysis, 13, 13021-13033. https://doi.org/10.1021/acscatal.3c02796
|
[42]
|
Diercks, C.S. and Yaghi, O.M. (2017) The Atom, the Molecule, and the Covalent Organic Framework. Science, 355, eaal1585. https://doi.org/10.1126/science.aal1585
|
[43]
|
Cooper, A.I. (2013) Covalent Organic Frameworks. CrystEngComm, 15, 1483. https://doi.org/10.1039/c2ce90122f
|
[44]
|
Pachfule, P., Acharjya, A., Roeser, J., Langenhahn, T., Schwarze, M., Schomäcker, R., et al. (2018) Diacetylene Functionalized Covalent Organic Framework (COF) for Photocatalytic Hydrogen Generation. Journal of the American Chemical Society, 140, 1423-1427. https://doi.org/10.1021/jacs.7b11255
|
[45]
|
Sick, T., Hufnagel, A.G., Kampmann, J., et al. (2018) Oriented Films of Conjugated 2D Covalent Organic Frameworks as Photocathodes for Water Splitting. Journal of the American Chemical Society, 140, 2085-2092.
|
[46]
|
Ortiz, M., Cho, S., Niklas, J., Kim, S., Poluektov, O.G., Zhang, W., et al. (2017) Through-space Ultrafast Photoinduced Electron Transfer Dynamics of a C70-Encapsulated Bisporphyrin Covalent Organic Polyhedron in a Low-Dielectric Medium. Journal of the American Chemical Society, 139, 4286-4289. https://doi.org/10.1021/jacs.7b00220
|
[47]
|
Ben, H., Yan, G., Liu, H., Ling, C., Fan, Y. and Zhang, X. (2021) Local Spatial Polarization Induced Efficient Charge Separation of Squaraine-Linked COF for Enhanced Photocatalytic Performance. Advanced Functional Materials, 32, Article ID: 2104519. https://doi.org/10.1002/adfm.202104519
|
[48]
|
Gao, Y., Nie, W., Zhu, Q., Wang, X., Wang, S., Fan, F., et al. (2020) The Polarization Effect in Surface‐Plasmon‐Induced Photocatalysis on Au/TiO2 Nanoparticles. Angewandte Chemie International Edition, 59, 18218-18223. https://doi.org/10.1002/anie.202007706
|
[49]
|
Chen, F., Huang, H., Guo, L., Zhang, Y. and Ma, T. (2019) The Role of Polarization in Photocatalysis. Angewandte Chemie International Edition, 58, 10061-10073. https://doi.org/10.1002/anie.201901361
|
[50]
|
Liu, Y., Han, W., Chi, W., Fu, J., Mao, Y., Yan, X., et al. (2023) One-dimensional Covalent Organic Frameworks with Atmospheric Water Harvesting for Photocatalytic Hydrogen Evolution from Water Vapor. Applied Catalysis B: Environmental, 338, 123074. https://doi.org/10.1016/j.apcatb.2023.123074
|
[51]
|
Wang, F., Yang, L., Wang, X., Rong, Y., Yang, L., Zhang, C., et al. (2023) Pyrazine‐Functionalized Donor-Acceptor Covalent Organic Frameworks for Enhanced Photocatalytic H2 Evolution with High Proton Transport. Small, 19, Article ID: 2207421. https://doi.org/10.1002/smll.202207421
|
[52]
|
Mi, Z., Zhou, T., Weng, W., Unruangsri, J., Hu, K., Yang, W., et al. (2021) Covalent Organic Frameworks Enabling Site Isolation of Viologen‐Derived Electron‐Transfer Mediators for Stable Photocatalytic Hydrogen Evolution. Angewandte Chemie International Edition, 60, 9642-9649. https://doi.org/10.1002/anie.202016618
|
[53]
|
Cheng, Y., Wang, R., Wang, S., Xi, X., Ma, L. and Zang, S. (2018) Encapsulating [Mo3S13]2− Clusters in Cationic Covalent Organic Frameworks: Enhancing Stability and Recyclability by Converting a Homogeneous Photocatalyst to a Heterogeneous Photocatalyst. Chemical Communications, 54, 13563-13566. https://doi.org/10.1039/c8cc07784c
|