异价Cu取代对Zn掺杂Mg3Sb2基材料热电性能的影响
Effects of Aliovalent Cu Substitution on Thermoelectric Properties in Zn-Doping Mg3Sb2-Based Materials
DOI: 10.12677/ms.2025.152037, PDF, HTML, XML,    科研立项经费支持
作者: 董天豪, 韦良换, 朱胜杰, 崔永鹏, 邵耀铭, 郑萍萍, 斯剑霄*:浙江师范大学,物理与电子信息工程学院,浙江 金华
关键词: p型Mg3Sb2Zn空位Cu取代热电性能p-Type Mg3Sb2 Zn Vacancy Cu Substitution Thermoelectric Performance
摘要: Zn空位对Zn-Sb Zintl相热电材料的热输运和电输运有重要影响。本文采用快速感应熔炼和真空热压法制备了p型Mg1.77CuxZn1.20.5xAg0.03Sb2 (x = 0, 0.02, 0.05, 0.08, 0.1)样品,研究了Zn空位上的异价铜取代对样品热电性能的影响。实验结果表明,在低掺杂浓度下(x < 0.05),Cu原子优先占据Zn空位,降低载流子浓度,在x ˃ 0.05的样品中生成第二相MgCuSb,抑制了双极效应,同时调制掺杂提高了功率因子。此外,异价Cu取代和MgCuSb相的存在导致晶格无序,增强了声子散射,降低了晶格热导率。因此,Mg1.77Cu0.05Zn1.175Ag0.03Sb2样品在673 K时得到了最大zT值为0.60,相比于未掺杂Cu样品的zT值提升了33%。我们的研究表明,用异价Cu调控Zn空位是提高p型Mg3Sb2基材料热电性能的有效策略。
Abstract: Zn vacancies have been proposed to have significant impacts on thermal and electronic transport for Zn-Sb Zintl phase materials. In this work, we investigated the effect of aliovalent Cu substitution at Zn vacancies on thermoelectric performance in p-type Mg1.77CuxZn1.20.5xAg0.03Sb2 (x = 0, 0.02, 0.05, 0.08, 0.1) samples prepared by rapid induction melting and hot pressing. Experimental results revealed that Cu atoms preferentially occupy the Zn vacancies to decrease the carrier concentration at low concentrations of doping (x < 0.05) and generate second phase of MgCuSb in x ˃ 0.05 samples, which enhances the power factor due to the suppression of the bipolar effect and modulation doping. Moreover, the lattice disorder caused by the aliovalent Cu substitution and the presence of MgCuSb phase strengthens phonon scattering and reduces the lattice thermal conductivity. Therefore, a maximum zT value of 0.60 is discovered at 673 K for the Mg1.77Cu0.05Zn1.175Ag0.03Sb2 sample, which is 33% higher than that of the undoped Cu sample. Our research indicates that manipulating Zn vacancies with aliovalent Cu is a useful tactic for enhancing the thermoelectric performance of p-type Mg3Sb2-based materials.
文章引用:董天豪, 韦良换, 朱胜杰, 崔永鹏, 邵耀铭, 郑萍萍, 斯剑霄. 异价Cu取代对Zn掺杂Mg3Sb2基材料热电性能的影响[J]. 材料科学, 2025, 15(2): 317-325. https://doi.org/10.12677/ms.2025.152037

1. 引言

热电材料能够将热能直接转化为电能,在解决能源短缺和环境污染问题方面具有很大的应用前景[1] [2]。热电材料的能量转换效率取决于无量纲优值zT,其表达式为zT = S2 σ/κ,其中SσκT分别表示Seebeck系数、电导率、热导率和绝对温度。从表达式可以看出,要提高材料的热电性能,必须同时提高功率因子(PF = S2 σ)和降低热导率。然而考虑到Sσκ三者之间存在相互耦合关系,解耦电学性能和热学性能是提高热电材料zT值的关键[3] [4]

Mg3Sb2基热电材料因其原材料低成本、高丰度以及高zT值等优点而受到越来越多的关注。特别是对于n型Mg3Sb2材料,由于其导带底的高简并度,表现出优异的热电性能,并有望取代商业化使用的Bi2Te3基热电材料。然而在实际应用中,考虑到热电器件长期工作的稳定性和可靠性,通常采用同种材料的n型热电臂和p型热电连接构成热电器件,p型Mg3Sb2较差的热电性能阻碍了Mg3Sb2基热电器件的进一步发展[5] [6]。对于p型Mg3Sb2,通常采用载流子浓度优化和能带结构调节来提高热电性能。例如,在Mg位掺杂Ag、Na、Li等多种元素,可以将载流子浓度优化至1019 cm3 [7]-[9]。此外,Zn作为一种等价掺杂剂,可以通过调节化学键来提高价带简并度[10] [11]。Zn在Mg3xZnxSb2中的溶解度可高达x = 1.34,当Zn含量超过x = 1时,Zn空位形成能较低,对调节热电性能起着至关重要的作用[11]-[13]。调控Zn空位的排列顺序是提高A-Zn-Sb (A = Sr, Eu) Zintl相材料热电性能的重要策略[14]-[17]。然而,目前对p型Mg3Sb2基材料中Zn空位的调控研究依旧有限。

Zn2+和Cu1+具有相似的离子半径和质量,因此我们使用Cu原子来调节Zn空位。为了保持价电子平衡,一个Zn原子用两个Cu原子替换,这会导致Zn空位浓度的变化[15] [18]-[20]。值得注意的是,由于MgCuSb在Mg3Sb2相区具有热力学稳定性,因此可以作为Mg3Sb2基模块的热电界面材料[21]。我们进一步研究了Cu取代对p型Mg1.77CuxZn1.20.5xAg0.03Sb2 (x = 0,0.02, 0.05, 0.08, 0.1)材料热电输运性质的影响。在低掺杂浓度(x < 0.05)下,Cu优先占据Zn空位,导致载流子浓度降低。随着Cu含量的进一步增加,Cu和Zn不能完全混溶,形成半金属MgCuSb相,导致空穴浓度增加。最终,Mg1.77Cu0.05Zn1.175Ag0.03Sb2样品在673 K下得到最大zT值为0.60,比未掺杂Cu的样品高33%。

2. 实验过程

采用快速感应熔融和真空热压法制备了Mg1.77CuxZn1.20.5xAg0.03Sb2 (x = 0, 0.02, 0.05, 0.08, 0.1)样品。高纯镁条(99.9%, Alfa Aesar)、锑粉(99.5%, Alfa Aesar)、铜粉(99.9%, Alfa Aesar)、锌粉(99.99%, Alfa Aesar)、银粉(99.95%, Alfa Aesar)按化学计量比称重。将原料在手套箱中均匀混合后装入石墨坩埚,然后密封在高真空(<103 Pa)石英管中。在真空感应炉中快速加热石墨坩埚至1173 K,在此温度下保持7分钟,然后自然冷却至室温。将得到的钢锭研磨成粉末,装入石墨模具中。在轴向压力为50 MPa的条件下,在973 K的真空环境中热压30分钟。快速感应熔炼和真空热压法具有速度快,成本低等优点,可以快速得到致密均匀的样品[22]。用砂纸将热压样品抛光打磨成尺寸为10 mm × 3 mm × 3 mm的长方体用于电学性能测试和尺寸为Ø 10 mm × 0.8 mm的圆片用于热学性能测试。

采用x射线衍射仪(XRD, Bruker D8, Cu-Kα)分析了粉末样品和热压样品的相结构。扫描步长为0.02˚,扫描速率为10˚ min1,在10˚~80˚范围内采集了衍射图。采用场发射电子扫描显微镜(FESEM, Hitachi, S-4800)分析了样品的形貌特征和元素分布。采用热电测试装置(Cryoall, CTA-3)在氦气气氛下测试323~743 K温度范围内的电导率和Seebeck系数。在0.57 T的可逆磁场下,用HMS-3000系统测量了所有样品在室温下的霍尔系数。热导率可由关系式κtot = DCpρ计算,其中D为热扩散系数,采用激光导热分析仪(LFA467, Linseis)测量,比热容Cp参考文献公式计算[23]ρ为样品密度,采用阿基米德排水法测量。Seebeck系数、电导率、热导率的不确定度约为5%。

3. 结果与讨论

粉末Mg1.77CuxZn1.20.5xAg0.03Sb2 (x = 0, 0.02, 0.05, 0.08, 0.1)样品的XRD图谱如图1(a)所示。各样品的衍射峰都可以很好地匹配到Mg1.86Zn1.14Sb2结构(PDF#89-4269),该结构与Mg3Sb2相同,只是Zn原子取代了Mg原子。由于Mg和Zn的挥发,在所有样品中都发现了一种以Sb为主的二次相。然而在经过热压处理后,所有样品中的Sb相都消失了,如图1(b)所示。这是由于在热压过程中,过量的Sb会与Mg3Sb2形成液相共晶混合物从而被挤出模具[11]。当Cu含量增加到x = 0.08和0.1时,在2θ = 41.5˚处出现了MgCuSb相的衍射峰。这表明Cu在Mg3Sb2中的溶解度远低于Zn。图1(c)显示了角度为33.4˚~34.8˚范围内的衍射峰放大图,由于Cu+半径(0.77 Å)大于Zn2+半径(0.74 Å),掺Cu样品的衍射峰明显向低角度偏移。

图2(a)为Mg1.77Cu0.05Zn1.175Ag0.03Sb2样品的断口SEM图像,从图中可以看出样品表现为层状结构,样品致密,表面没有明显的裂纹和孔洞。Mg1.77Cu0.05Zn1.175Ag0.03Sb2样品的能谱图如图2(b)~(f)所示,Mg、Zn、Cu、Ag、Sb等组成元素在微尺度下分布均匀,没有明显的元素聚集现象。

图3(a)为Mg1.77CuxZn1.20.5xAg0.03Sb2 (x = 0, 0.02, 0.05, 0.08, 0.1)样品电导率随温度的变化曲线。在323~743 K温度范围内,所有样品均表现为简并半导体特征。由于引入了更多的Zn空位,未掺Cu样品表现出7.4 × 104 S·m1的高电导率[11] [13]。Cu掺杂后,电导率呈现出先下降后上升的规律。加入少量Cu x = 0.02,电导率基本保持不变。在x = 0.05样品中,随着Cu含量的进一步升高,电导率急剧下降至4.89 × 104 S·m1。在x ˃ 0.05范围内,样品的电导率再次增加。为了更好地了解电导率变化的原因,我们测量了样品载流子浓度和迁移率随Cu掺杂含量的变化关系,如图表1。在x = 0的样品中,样品的载流子浓度为1.64 × 1020 cm3,比已有报道的Zn和Ag共掺杂Mg3Sb2样品高出一个数量级[24]。当x = 0.02时,空穴浓度下降至1.41 × 1020 cm3,当x = 0.05时,空穴浓度进一步下降至1.17 × 1020 cm3,说明此时更多的Cu原子填充了Zn空位。随着Cu掺杂量超过x = 0.05,载流子浓度呈增加趋势。根据XRD分析可知,当Cu含量高于x = 0.05时,样品中产生了具有1021 cm3固有高载流子浓度的半金属MgCuSb相。通过适当的能带对齐,空穴从MgCuSb相转移到Mg1.77CuxZn1.20.5xAg0.03Sb2,如图3(b)所示。MgCuSb相在基体中起到了调制掺杂的作用,提高了样品的载流子浓度,同时保持了30 cm2·V1·s1的迁移率[25]

Figure 1. XRD patterns for Mg1.77CuxZn1.20.5xAg0.03Sb2 (x = 0, 0.02, 0.05, 0.08, and 0.1). (a) Powder samples; (b) Hot-pressed samples; (c) Enlarged XRD patterns between 33.4˚ and 34.8˚

1. Mg1.77CuxZn1.20.5xAg0.03Sb2 (x = 0, 0.02, 0.05, 0.08, and 0.1)的XRD图谱。(a) 粉末样品;(b) 热压样品;(c) 33.4˚~34.8˚之间的XRD图谱放大图

Figure 2. (a) SEM images of fresh fractured surface; (b)~(f) EDS mapping images of Mg1.77Cu0.05Zn1.175Ag0.03Sb2 sample

2. Mg1.77Cu0.05Zn1.175Ag0.03Sb2样品的(a) 新断裂表面的SEM图像;(b)~(f) EDS能谱图

图4(a)为Mg1.77CuxZn1.20.5xAg0.03Sb2 (x = 0, 0.02, 0.05, 0.08, 0.1)样品Seebeck系数随温度的变化曲线。在整个测试温度范围内,所有样品的Seebeck系数均为正,表现为p型传导。在638 K之前,样品的Seebeck系数呈上升趋势而后下降,表明638 K之后样品发生了双极扩散效应。利用公式Eg = 2e Smax × Tmax计算了样品的热激发带隙(Eg),如图表1所示。其中Smax为样品所达到的最大STmaxS达到Smax时的温度[26]。由图表可见,Cu掺杂后样品的带隙增大,表明在Zn位掺杂Cu抑制了双极效应。在673 K时,样品Mg1.77Cu0.05Zn1.175Ag0.03Sb2出现最大的Seebeck系数为178 μV·K1。根据单抛物带和声学声子散射机制模型[27],Seebeck系数增大的原因是Mg1.77Cu0.05Zn1.175Ag0.03Sb2样品中载流子浓度降低造成的。

图4(b)给出了Mg1.77CuxZn1.20.5xAg0.03Sb2 (x = 0, 0.02, 0.05, 0.08, 0.1)样品的功率因子(PF)随温度的变化关系。Mg1.77Cu0.08Zn1.16Ag0.03Sb2样品在603 K时得到了最大功率因子为8.61 μW·cm1·K2,在323~743 K范围内的平均功率因子为7.44 μW·cm1·K2。平均功率因子与其他文献报道的p型Mg3Sb2基热电材料相比具有一定的竞争力,如图4(c)所示。这表明通过抑制双极效应和调制掺杂,Cu在Zn位的掺杂改善了p型Mg3Sb2材料的热电性能。

Figure 3. (a) The law of electrical conductivity changing with temperature; (b) Sketch of hole transference from MgCuSb to Mg1.77CuxZn1.20.5xAg0.03Sb2

3. (a) 电导率随温度变化的规律;(b) MgCuSb到Mg1.77CuxZn1.20.5xAg0.03Sb2的空穴转移示意图

Figure 4. Temperature dependence of (a) Seebeck coefficient; (b) Power factor for Mg1.77CuxZn1.20.5xAg0.03Sb2 (x = 0, 0.02, 0.05, 0.08, 0.1) samples; (c) Average PF (PFavg) for Mg1.77Cu0.08Zn1.16Ag0.03Sb2 in this work together with other reported p-type Mg3Sb2-based materials [7] [9]-[11] [28]-[30]

4. Mg1.77CuxZn1.20.5xAg0.03Sb2 (x = 0, 0.02, 0.05, 0.08, 0.1)样品的(a) Seebeck系数;(b) 功率因子随温度变化关系;(c) Mg1.77Cu0.08Zn1.16Ag0.03Sb2的平均功率因子与其他已报道的p型Mg3Sb2基热电材料的比较[7] [9]-[11] [28]-[30]

Table 1. Carrier concentration, mobility, and band gap (Eg) of Mg1.77CuxZn1.20.5xAg0.03Sb2 sample at room temperature

1. 室温下Mg1.77CuxZn1.20.5xAg0.03Sb2样品的载流子浓度,迁移率和带隙

Samples

Carrier concentration/(×1020 cm3)

Mobility/(cm2·V1·s1)

Eg/(eV)

Mg1.7Zn1.2Ag0.03Sb2

1.64

28.5

0.1868

Mg1.77Cu0.02Zn1.19Ag0.03Sb2

1.41

34.0

0.1887

Mg1.77Cu0.05Zn1.175Ag0.03Sb2

1.17

30.3

0.2403

Mg1.77Cu0.08Zn1.16Ag0.03Sb2

1.38

35.7

0.2197

Mg1.77Cu0.1Zn1.15Ag0.03Sb2

1.45

29.0

0.2080

图5(a)描绘了Mg1.77CuxZn1.20.5xAg0.03Sb2 (x = 0, 0.02, 0.05, 0.08, 0.1)样品的总导热率(κtot)随温度的变化曲线。由图可见,在整个测试温度范围内,所有样品的κtot都呈现先减小后增大的趋势,在高温段κtot的增大与双极效应有关,这与Seebeck系数变化规律一致。在323 K时,κtot从x = 0时的~1.3 W m1·K1下降到x = 0.05时的~1.1 W m1·K1。电子导热率(κe)可由Wiedemann-Franz定律κe = LσT计算,其中洛伦兹系数L由测量值S通过公式L = 1.5 + exp (−|S|/116)得到[31]。用总热导率减去晶格热导率,得到晶格热导率κlat,如图5(b)所示。在323~500 K的温度范围内,κlat随温度的变化遵循T0.5规律,表明点缺陷散射是其主要的散射机制[32]。在Mg1.77Cu0.02Zn1.19Ag0.03Sb2和Mg1.77Cu0.08Zn1.16Ag0.03Sb2样品中,由于Cu掺杂引起的质量场和应变场波动以及MgCuSb相的产生,增强了声子散射,抑制了晶格热导率。最终,Mg1.77Cu0.02Zn1.19Ag0.03Sb2在743 K得到了最低晶格热导率为~ 0.56 W m1·K1,与原始样品相比降低了13%。

Figure 5. Temperature-dependent (a) total thermal conductivity; (b) lattice thermal conductivity; (c) zT for Mg1.77CuxZn1.20.5xAg0.03Sb2 (x = 0, 0.02, 0.05, 0.08, 0.1) samples

5. Mg1.77CuxZn1.20.5xAg0.03Sb2 (x = 0, 0.02, 0.05, 0.08, 0.1)样品的(a) 总热导率;(b) 晶格热导率;(c) zT值随温度的变化关系

Table 2. Comparison of fabrication method and zTavg for p-type Mg3Sb2-based materials

2. p型Mg3Sb2基材料的制备方法和平均zT值的比较

Composition

Fabrication Method

zTavg

Year

Ref.

Mg3Sb1.8Bi0.2

mechanical milling + spark plasma sintering 1073 K/50 MPa

0.16

2013

[28]

Mg2.9875Na0.0125Sb2

ball milling + hot pressing 1023 K

0.29

2015

[7]

Mg2.475Zn0.5Li0.025Sb2

ball milling + hot pressing 1023 K/50 MPa

0.35

2018

[29]

Mg2.69Li0.01Cd0.5Sb2

ball milling + hot pressing 973 K/80 MPa

0.32

2020

[9]

Mg2.94Cu0.05Ag0.01Sb2

ball milling + hot pressing

0.30

2021

[33]

Mg1.95Na0.01Zn1Sb2

ball milling + spark plasma sintering 973 K/50 MPa

0.52

2022

[11]

Mg3Sb1.5Bi0.47Ge0.03

ball milling + hot pressing 1023 K/60 MPa

0.27

2022

[32]

Mg2.22Ag0.02Ca0.3Zn0.6Sb2

ball milling + hot pressing 873 K/75 MPa

0.5

2023

[10]

Mg2.82Ag0.03Cd0.5Sb2

ball milling + hot pressing 873 K/70 MPa

0.41

2023

[34]

Mg0.8997Li0.003Zn1.4Yb0.7Sb2

ball milling + spark plasma sintering 923 K/50 MPa

0.82

2024

[35]

Mg2.94Ag0.06Sb1.9Bi0.1

ball milling + spark plasma sintering 923 K/50 MPa

0.39

2024

[30]

Mg1.77Cu0.05Zn1.175Ag0.03Sb2

rapid induction melting + hot pressing 973 K/50 MPa

0.39

This work

图5(c)为Mg1.77CuxZn1.20.5xAg0.03Sb2 (x = 0, 0.02, 0.05, 0.08, 0.1)样品zT值随温度的变化关系。由于Zn空位的调节和声子散射的增强,所有Cu掺杂样品的zT值都得到了提高。其中,Mg1.77Cu0.05Zn1.175Ag0.03Sb2样品在673 K时得到了最大zT值为~0.60,比未掺Cu样品提高了~33%。表2比较了文献报道的p型Mg3Sb2基热电材料的制备方法和平均zT值(zTavg)。在323~743 K范围内,Mg1.77Cu0.05Zn1.175Ag0.03Sb2样品的zTavg为0.39。结果表明,Cu原子在Zn位上的取代可以有效调节p型Mg3Sb2基化合物的热电性能。

4. 结论

通过快速感应熔炼和真空热压法制备了Mg1.77CuxZn1.20.5xAg0.03Sb2 (x = 0, 0.02, 0.05, 0.08, 0.1)样品。研究发现Cu原子优先占据Zn空位,降低了载流子浓度并抑制了双极效应。MgCuSb相的出现在基体中起调制掺杂和增强声子散射的作用。在673 K温度下,Mg1.77Cu0.05Zn1.175Ag0.03Sb2样品的最大zT值为0.60,323~743 K温度范围内的平均zT值为0.39。这项工作为其他富空位热电材料的性能优化提供了一个独特的视角。

基金项目

浙江省自然科学基金项目LY19E020009。

NOTES

*通讯作者。

参考文献

[1] Shi, X., Zou, J. and Chen, Z. (2020) Advanced Thermoelectric Design: From Materials and Structures to Devices. Chemical Reviews, 120, 7399-7515.
https://doi.org/10.1021/acs.chemrev.0c00026
[2] Mukherjee, M., Srivastava, A. and Singh, A.K. (2022) Recent Advances in Designing Thermoelectric Materials. Journal of Materials Chemistry C, 10, 12524-12555.
https://doi.org/10.1039/d2tc02448a
[3] Jia, N., Cao, J., Tan, X.Y., Dong, J., Liu, H., Tan, C.K.I., et al. (2021) Thermoelectric Materials and Transport Physics. Materials Today Physics, 21, Article 100519.
https://doi.org/10.1016/j.mtphys.2021.100519
[4] Zhou, Z., Han, G., Lu, X., Wang, G. and Zhou, X. (2022) High-Performance Magnesium-Based Thermoelectric Materials: Progress and Challenges. Journal of Magnesium and Alloys, 10, 1719-1736.
https://doi.org/10.1016/j.jma.2022.05.021
[5] Yan, Q. and Kanatzidis, M.G. (2021) High-Performance Thermoelectrics and Challenges for Practical Devices. Nature Materials, 21, 503-513.
https://doi.org/10.1038/s41563-021-01109-w
[6] Jiang, M., Fu, Y., Zhang, Q., Hu, Z., Huang, A., Wang, S., et al. (2023) High-Efficiency and Reliable Same-Parent Thermoelectric Modules Using Mg3Sb2-Based Compounds. National Science Review, 10, nwad095.
https://doi.org/10.1093/nsr/nwad095
[7] Shuai, J., Wang, Y., Kim, H.S., Liu, Z., Sun, J., Chen, S., et al. (2015) Thermoelectric Properties of Na-Doped Zintl Compound: Mg3-xNaxSb2. Acta Materialia, 93, 187-193.
https://doi.org/10.1016/j.actamat.2015.04.023
[8] Fu, Y., Zhang, X., Liu, H., Tian, J. and Zhang, J. (2018) Thermoelectric Properties of Ag-Doped Compound: Mg3-xAgxSb2. Journal of Materiomics, 4, 75-79.
https://doi.org/10.1016/j.jmat.2017.12.002
[9] Tang, X., Zhang, B., Zhang, X., Wang, S., Lu, X., Han, G., et al. (2020) Enhancing the Thermoelectric Performance of P-Type Mg3Sb2 via Codoping of Li and Cd. ACS Applied Materials & Interfaces, 12, 8359-8365.
https://doi.org/10.1021/acsami.9b23059
[10] Wu, L., Zhou, Z., Han, G., Zhang, B., Yu, J., Wang, H., et al. (2023) Realizing High Thermoelectric Performance in P-Type CaZn2Sb2-Alloyed Mg3Sb2-Based Materials via Band and Point Defect Engineering. Chemical Engineering Journal, 475, Article 145988.
https://doi.org/10.1016/j.cej.2023.145988
[11] Hu, J., Zhu, J., Guo, F., Qin, H., Liu, Y., Zhang, Q., et al. (2022) Electronic Orbital Alignment and Hierarchical Phonon Scattering Enabling High Thermoelectric Performance P-Type Mg3Sb2 Zintl Compounds. Research, 2022, Article 9842949.
https://doi.org/10.34133/2022/9842949
[12] Ahmadpour, F., Kolodiazhnyi, T. and Mozharivskyj, Y. (2007) Structural and Physical Properties of Mg3xZnxSb2 (x = 0~1.34). Journal of Solid-State Chemistry, 180, 2420-2428.
https://doi.org/10.1016/j.jssc.2007.06.011
[13] Niu, Y., Yang, C., Zhou, T., Pan, Y., Song, J., Jiang, J., et al. (2020) Enhanced Average Thermoelectric Figure of Merit of P-Type Zintl Phase Mg2ZnSb2 via Zn Vacancy Tuning and Hole Doping. ACS Applied Materials & Interfaces, 12, 37330-37337.
https://doi.org/10.1021/acsami.0c09391
[14] Chen, C., Xue, W., Li, S., Zhang, Z., Li, X., Wang, X., et al. (2019) Zintl-Phase Eu2ZnSb2: A Promising Thermoelectric Material with Ultralow Thermal Conductivity. Proceedings of the National Academy of Sciences, 116, 2831-2836.
https://doi.org/10.1073/pnas.1819157116
[15] Chen, C., Li, X., Xue, W., Bai, F., Huang, Y., Yao, H., et al. (2020) Manipulating the Intrinsic Vacancies for Enhanced Thermoelectric Performance in Eu2ZnSb2 Zintl Phase. Nano Energy, 73, Article 104771.
https://doi.org/10.1016/j.nanoen.2020.104771
[16] Yao, H., Chen, C., Xue, W., Bai, F., Cao, F., Lan, Y., et al. (2021) Vacancy Ordering Induced Topological Electronic Transition in Bulk Eu2ZnSb2. Science Advances, 7, eabd6162.
https://doi.org/10.1126/sciadv.abd6162
[17] Wang, C., Wang, Q., Zhang, Q., Chen, C. and Chen, Y. (2022) Intrinsic Zn Vacancies-Induced Wavelike Tunneling of Phonons and Ultralow Lattice Thermal Conductivity in Zintl Phase Sr2ZnSb2. Chemistry of Materials, 34, 7837-7844.
https://doi.org/10.1021/acs.chemmater.2c01430
[18] Zhu, M., Wu, Z., Liu, Q., Zhu, T., Zhao, X., Huang, B., et al. (2018) Defect Modulation on CaZn1xAg1ySb (0 < x < 1; 0 < y < 1) Zintl Phases and Enhanced Thermoelectric Properties with High zT Plateaus. Journal of Materials Chemistry A, 6, 11773-11782. Https://doi.org/10.1039/c8ta04001j
[19] Zhang, J., Liu, X., Liu, Q. and Xia, S. (2020) Structure Transition and Thermoelectric Properties Related to AZn (1 − X)/2CuxSb (A = Ca, Eu, Sr). Journal of Alloys and Compounds, 816, Article 152508.
https://doi.org/10.1016/j.jallcom.2019.152508
[20] Chanakian, S., Peng, W., Meschke, V., Ashiquzzaman Shawon, A.K.M., Adamczyk, J., Petkov, V., et al. (2023) Investigating the Role of Vacancies on the Thermoelectric Properties of EuCuSb-Eu2ZnSb2 Alloys. Angewandte Chemie International Edition, 62, e202301176.
https://doi.org/10.1002/anie.202301176
[21] Xie, L., Yin, L., Yu, Y., Peng, G., Song, S., Ying, P., et al. (2023) Screening Strategy for Developing Thermoelectric Interface Materials. Science, 382, 921-928.
https://doi.org/10.1126/science.adg8392
[22] Zhu, W., Fang, W., Zou, J., Zhu, S. and Si, J. (2022) Enhanced Thermoelectric Performance of Indium-Doped N-Type Mg3Sb2-Based Materials Synthesized by Rapid Induction Melting. Journal of Electronic Materials, 51, 1591-1596.
https://doi.org/10.1007/s11664-021-09400-x
[23] Agne, M.T., Imasato, K., Anand, S., Lee, K., Bux, S.K., Zevalkink, A., et al. (2018) Heat Capacity of Mg3Sb2, Mg3Bi2, and Their Alloys at High Temperature. Materials Today Physics, 6, 83-88.
https://doi.org/10.1016/j.mtphys.2018.10.001
[24] Huang, L., Liu, T., Mo, X., Yuan, G., Wang, R., Liu, H., et al. (2021) Thermoelectric Performance Improvement of P-Type Mg3Sb2-Based Materials by Zn and Ag Co-Doping. Materials Today Physics, 21, Article 100564.
https://doi.org/10.1016/j.mtphys.2021.100564
[25] Gu, Y., Ai, W., Zhao, Y., Pan, L., Lu, C., Zong, P., et al. (2021) Remarkable Thermoelectric Property Enhancement in Cu2SnS3-CuCo2S4 Nanocomposites via 3D Modulation Doping. Journal of Materials Chemistry A, 9, 16928-16935.
https://doi.org/10.1039/d1ta02812j
[26] Balasubramanian, P., Battabyal, M., Chandra Bose, A. and Gopalan, R. (2021) Effect of Ball-Milling on the Phase Formation and Enhanced Thermoelectric Properties in Zinc Antimonides. Materials Science and Engineering: B, 271, Article 115274.
https://doi.org/10.1016/j.mseb.2021.115274
[27] Snyder, G.J. and Toberer, E.S. (2008) Complex Thermoelectric Materials. Nature Materials, 7, 105-114.
https://doi.org/10.1038/nmat2090
[28] Bhardwaj, A., Rajput, A., Shukla, A.K., Pulikkotil, J.J., Srivastava, A.K., Dhar, A., et al. (2013) Mg3Sb2-Based Zintl Compound: A Non-Toxic, Inexpensive and Abundant Thermoelectric Material for Power Generation. RSC Advances, 3, 8504-8516.
https://doi.org/10.1039/c3ra40457a
[29] Chen, C., Li, X., Li, S., Wang, X., Zhang, Z., Sui, J., et al. (2018) Enhanced Thermoelectric Performance of P-Type Mg3Sb2 by Lithium Doping and Its Tunability in an Anionic Framework. Journal of Materials Science, 53, 16001-16009.
https://doi.org/10.1007/s10853-018-2555-2
[30] Zhang, Y., Liang, J., Liu, C., Zhou, Q., Xu, Z., Chen, H., et al. (2024) Enhancing Thermoelectric Performance in P-Type Mg3Sb2-Based Zintls through Optimization of Band Gap Structure and Nanostructuring. Journal of Materials Science & Technology, 170, 25-32.
https://doi.org/10.1016/j.jmst.2023.05.068
[31] Kim, H., Gibbs, Z.M., Tang, Y., Wang, H. and Snyder, G.J. (2015) Characterization of Lorenz Number with Seebeck Coefficient Measurement. APL Materials, 3, Article 041506.
https://doi.org/10.1063/1.4908244
[32] Huang, L., Liao, J., Yuan, G., Liu, T., Lei, X., Wang, C., et al. (2022) Tuning the Carrier Scattering Mechanism to Improve the Thermoelectric Performance of P-Type Mg3Sb1.5Bi0.5-Based Material by Ge Doping. Materials Today Energy, 25, Article 100977.
https://doi.org/10.1016/j.mtener.2022.100977
[33] Tiadi, M., Battabyal, M., Jain, P.K., Chauhan, A., Satapathy, D.K. and Gopalan, R. (2021) Enhancing the Thermoelectric Efficiency in P-Type Mg3Sb2 via Mg Site Co-Doping. Sustainable Energy & Fuels, 5, 4104-4114.
https://doi.org/10.1039/d1se00656h
[34] Xiao, S., Peng, K., Zhou, Z., Wang, H., Zheng, S., Lu, X., et al. (2023) Realizing Cd and Ag Codoping in P-Type Mg3Sb2 toward High Thermoelectric Performance. Journal of Magnesium and Alloys, 11, 2486-2494.
https://doi.org/10.1016/j.jma.2021.09.012
[35] Lei, J., Wuliji, H., Ren, Q., Hao, X., Dong, H., Chen, H., et al. (2024) Exceptional Thermoelectric Performance in Ab2Sb2-Type Zintl Phases through Band Shaping. Energy & Environmental Science, 17, 1416-1425.
https://doi.org/10.1039/d3ee04164f