| [1] | Shi, X., Zou, J. and Chen, Z. (2020) Advanced Thermoelectric Design: From Materials and Structures to Devices. Chemical Reviews, 120, 7399-7515. https://doi.org/10.1021/acs.chemrev.0c00026
 | 
                     
                                
                                    
                                        | [2] | Mukherjee, M., Srivastava, A. and Singh, A.K. (2022) Recent Advances in Designing Thermoelectric Materials. Journal of Materials Chemistry C, 10, 12524-12555. https://doi.org/10.1039/d2tc02448a
 | 
                     
                                
                                    
                                        | [3] | Jia, N., Cao, J., Tan, X.Y., Dong, J., Liu, H., Tan, C.K.I., et al. (2021) Thermoelectric Materials and Transport Physics. Materials Today Physics, 21, Article 100519. https://doi.org/10.1016/j.mtphys.2021.100519
 | 
                     
                                
                                    
                                        | [4] | Zhou, Z., Han, G., Lu, X., Wang, G. and Zhou, X. (2022) High-Performance Magnesium-Based Thermoelectric Materials: Progress and Challenges. Journal of Magnesium and Alloys, 10, 1719-1736. https://doi.org/10.1016/j.jma.2022.05.021
 | 
                     
                                
                                    
                                        | [5] | Yan, Q. and Kanatzidis, M.G. (2021) High-Performance Thermoelectrics and Challenges for Practical Devices. Nature Materials, 21, 503-513. https://doi.org/10.1038/s41563-021-01109-w
 | 
                     
                                
                                    
                                        | [6] | Jiang, M., Fu, Y., Zhang, Q., Hu, Z., Huang, A., Wang, S., et al. (2023) High-Efficiency and Reliable Same-Parent Thermoelectric Modules Using Mg3Sb2-Based Compounds. National Science Review, 10, nwad095. https://doi.org/10.1093/nsr/nwad095
 | 
                     
                                
                                    
                                        | [7] | Shuai, J., Wang, Y., Kim, H.S., Liu, Z., Sun, J., Chen, S., et al. (2015) Thermoelectric Properties of Na-Doped Zintl Compound: Mg3-xNaxSb2. Acta Materialia, 93, 187-193. https://doi.org/10.1016/j.actamat.2015.04.023
 | 
                     
                                
                                    
                                        | [8] | Fu, Y., Zhang, X., Liu, H., Tian, J. and Zhang, J. (2018) Thermoelectric Properties of Ag-Doped Compound: Mg3-xAgxSb2. Journal of Materiomics, 4, 75-79. https://doi.org/10.1016/j.jmat.2017.12.002
 | 
                     
                                
                                    
                                        | [9] | Tang, X., Zhang, B., Zhang, X., Wang, S., Lu, X., Han, G., et al. (2020) Enhancing the Thermoelectric Performance of P-Type Mg3Sb2 via Codoping of Li and Cd. ACS Applied Materials & Interfaces, 12, 8359-8365. https://doi.org/10.1021/acsami.9b23059
 | 
                     
                                
                                    
                                        | [10] | Wu, L., Zhou, Z., Han, G., Zhang, B., Yu, J., Wang, H., et al. (2023) Realizing High Thermoelectric Performance in P-Type CaZn2Sb2-Alloyed Mg3Sb2-Based Materials via Band and Point Defect Engineering. Chemical Engineering Journal, 475, Article 145988. https://doi.org/10.1016/j.cej.2023.145988
 | 
                     
                                
                                    
                                        | [11] | Hu, J., Zhu, J., Guo, F., Qin, H., Liu, Y., Zhang, Q., et al. (2022) Electronic Orbital Alignment and Hierarchical Phonon Scattering Enabling High Thermoelectric Performance P-Type Mg3Sb2 Zintl Compounds. Research, 2022, Article 9842949. https://doi.org/10.34133/2022/9842949
 | 
                     
                                
                                    
                                        | [12] | Ahmadpour, F., Kolodiazhnyi, T. and Mozharivskyj, Y. (2007) Structural and Physical Properties of Mg3−xZnxSb2 (x = 0~1.34). Journal of Solid-State Chemistry, 180, 2420-2428. https://doi.org/10.1016/j.jssc.2007.06.011
 | 
                     
                                
                                    
                                        | [13] | Niu, Y., Yang, C., Zhou, T., Pan, Y., Song, J., Jiang, J., et al. (2020) Enhanced Average Thermoelectric Figure of Merit of P-Type Zintl Phase Mg2ZnSb2 via Zn Vacancy Tuning and Hole Doping. ACS Applied Materials & Interfaces, 12, 37330-37337. https://doi.org/10.1021/acsami.0c09391
 | 
                     
                                
                                    
                                        | [14] | Chen, C., Xue, W., Li, S., Zhang, Z., Li, X., Wang, X., et al. (2019) Zintl-Phase Eu2ZnSb2: A Promising Thermoelectric Material with Ultralow Thermal Conductivity. Proceedings of the National Academy of Sciences, 116, 2831-2836. https://doi.org/10.1073/pnas.1819157116
 | 
                     
                                
                                    
                                        | [15] | Chen, C., Li, X., Xue, W., Bai, F., Huang, Y., Yao, H., et al. (2020) Manipulating the Intrinsic Vacancies for Enhanced Thermoelectric Performance in Eu2ZnSb2 Zintl Phase. Nano Energy, 73, Article 104771. https://doi.org/10.1016/j.nanoen.2020.104771
 | 
                     
                                
                                    
                                        | [16] | Yao, H., Chen, C., Xue, W., Bai, F., Cao, F., Lan, Y., et al. (2021) Vacancy Ordering Induced Topological Electronic Transition in Bulk Eu2ZnSb2. Science Advances, 7, eabd6162. https://doi.org/10.1126/sciadv.abd6162
 | 
                     
                                
                                    
                                        | [17] | Wang, C., Wang, Q., Zhang, Q., Chen, C. and Chen, Y. (2022) Intrinsic Zn Vacancies-Induced Wavelike Tunneling of Phonons and Ultralow Lattice Thermal Conductivity in Zintl Phase Sr2ZnSb2. Chemistry of Materials, 34, 7837-7844. https://doi.org/10.1021/acs.chemmater.2c01430
 | 
                     
                                
                                    
                                        | [18] | Zhu, M., Wu, Z., Liu, Q., Zhu, T., Zhao, X., Huang, B., et al. (2018) Defect Modulation on CaZn1−xAg1−ySb (0 < x < 1; 0 < y < 1) Zintl Phases and Enhanced Thermoelectric Properties with High zT Plateaus. Journal of Materials Chemistry A, 6, 11773-11782. Https://doi.org/10.1039/c8ta04001j | 
                     
                                
                                    
                                        | [19] | Zhang, J., Liu, X., Liu, Q. and Xia, S. (2020) Structure Transition and Thermoelectric Properties Related to AZn (1 − X)/2CuxSb (A = Ca, Eu, Sr). Journal of Alloys and Compounds, 816, Article 152508. https://doi.org/10.1016/j.jallcom.2019.152508
 | 
                     
                                
                                    
                                        | [20] | Chanakian, S., Peng, W., Meschke, V., Ashiquzzaman Shawon, A.K.M., Adamczyk, J., Petkov, V., et al. (2023) Investigating the Role of Vacancies on the Thermoelectric Properties of EuCuSb-Eu2ZnSb2 Alloys. Angewandte Chemie International Edition, 62, e202301176. https://doi.org/10.1002/anie.202301176
 | 
                     
                                
                                    
                                        | [21] | Xie, L., Yin, L., Yu, Y., Peng, G., Song, S., Ying, P., et al. (2023) Screening Strategy for Developing Thermoelectric Interface Materials. Science, 382, 921-928. https://doi.org/10.1126/science.adg8392
 | 
                     
                                
                                    
                                        | [22] | Zhu, W., Fang, W., Zou, J., Zhu, S. and Si, J. (2022) Enhanced Thermoelectric Performance of Indium-Doped N-Type Mg3Sb2-Based Materials Synthesized by Rapid Induction Melting. Journal of Electronic Materials, 51, 1591-1596. https://doi.org/10.1007/s11664-021-09400-x
 | 
                     
                                
                                    
                                        | [23] | Agne, M.T., Imasato, K., Anand, S., Lee, K., Bux, S.K., Zevalkink, A., et al. (2018) Heat Capacity of Mg3Sb2, Mg3Bi2, and Their Alloys at High Temperature. Materials Today Physics, 6, 83-88. https://doi.org/10.1016/j.mtphys.2018.10.001
 | 
                     
                                
                                    
                                        | [24] | Huang, L., Liu, T., Mo, X., Yuan, G., Wang, R., Liu, H., et al. (2021) Thermoelectric Performance Improvement of P-Type Mg3Sb2-Based Materials by Zn and Ag Co-Doping. Materials Today Physics, 21, Article 100564. https://doi.org/10.1016/j.mtphys.2021.100564
 | 
                     
                                
                                    
                                        | [25] | Gu, Y., Ai, W., Zhao, Y., Pan, L., Lu, C., Zong, P., et al. (2021) Remarkable Thermoelectric Property Enhancement in Cu2SnS3-CuCo2S4 Nanocomposites via 3D Modulation Doping. Journal of Materials Chemistry A, 9, 16928-16935. https://doi.org/10.1039/d1ta02812j
 | 
                     
                                
                                    
                                        | [26] | Balasubramanian, P., Battabyal, M., Chandra Bose, A. and Gopalan, R. (2021) Effect of Ball-Milling on the Phase Formation and Enhanced Thermoelectric Properties in Zinc Antimonides. Materials Science and Engineering: B, 271, Article 115274. https://doi.org/10.1016/j.mseb.2021.115274
 | 
                     
                                
                                    
                                        | [27] | Snyder, G.J. and Toberer, E.S. (2008) Complex Thermoelectric Materials. Nature Materials, 7, 105-114. https://doi.org/10.1038/nmat2090
 | 
                     
                                
                                    
                                        | [28] | Bhardwaj, A., Rajput, A., Shukla, A.K., Pulikkotil, J.J., Srivastava, A.K., Dhar, A., et al. (2013) Mg3Sb2-Based Zintl Compound: A Non-Toxic, Inexpensive and Abundant Thermoelectric Material for Power Generation. RSC Advances, 3, 8504-8516. https://doi.org/10.1039/c3ra40457a
 | 
                     
                                
                                    
                                        | [29] | Chen, C., Li, X., Li, S., Wang, X., Zhang, Z., Sui, J., et al. (2018) Enhanced Thermoelectric Performance of P-Type Mg3Sb2 by Lithium Doping and Its Tunability in an Anionic Framework. Journal of Materials Science, 53, 16001-16009. https://doi.org/10.1007/s10853-018-2555-2
 | 
                     
                                
                                    
                                        | [30] | Zhang, Y., Liang, J., Liu, C., Zhou, Q., Xu, Z., Chen, H., et al. (2024) Enhancing Thermoelectric Performance in P-Type Mg3Sb2-Based Zintls through Optimization of Band Gap Structure and Nanostructuring. Journal of Materials Science & Technology, 170, 25-32. https://doi.org/10.1016/j.jmst.2023.05.068
 | 
                     
                                
                                    
                                        | [31] | Kim, H., Gibbs, Z.M., Tang, Y., Wang, H. and Snyder, G.J. (2015) Characterization of Lorenz Number with Seebeck Coefficient Measurement. APL Materials, 3, Article 041506. https://doi.org/10.1063/1.4908244
 | 
                     
                                
                                    
                                        | [32] | Huang, L., Liao, J., Yuan, G., Liu, T., Lei, X., Wang, C., et al. (2022) Tuning the Carrier Scattering Mechanism to Improve the Thermoelectric Performance of P-Type Mg3Sb1.5Bi0.5-Based Material by Ge Doping. Materials Today Energy, 25, Article 100977. https://doi.org/10.1016/j.mtener.2022.100977
 | 
                     
                                
                                    
                                        | [33] | Tiadi, M., Battabyal, M., Jain, P.K., Chauhan, A., Satapathy, D.K. and Gopalan, R. (2021) Enhancing the Thermoelectric Efficiency in P-Type Mg3Sb2 via Mg Site Co-Doping. Sustainable Energy & Fuels, 5, 4104-4114. https://doi.org/10.1039/d1se00656h
 | 
                     
                                
                                    
                                        | [34] | Xiao, S., Peng, K., Zhou, Z., Wang, H., Zheng, S., Lu, X., et al. (2023) Realizing Cd and Ag Codoping in P-Type Mg3Sb2 toward High Thermoelectric Performance. Journal of Magnesium and Alloys, 11, 2486-2494. https://doi.org/10.1016/j.jma.2021.09.012
 | 
                     
                                
                                    
                                        | [35] | Lei, J., Wuliji, H., Ren, Q., Hao, X., Dong, H., Chen, H., et al. (2024) Exceptional Thermoelectric Performance in Ab2Sb2-Type Zintl Phases through Band Shaping. Energy & Environmental Science, 17, 1416-1425. https://doi.org/10.1039/d3ee04164f
 |