[1]
|
赵东来, 胡春雨, 柏德胜, 等. 我国建筑节能技术现状与发展趋势[J]. 建筑节能, 2015, 43(3): 116-121.
|
[2]
|
郭娟利. 严寒地区保障房建筑工业化围护部品集成性能研究[D]: [博士学位论文]. 天津: 天津大学, 2014.
|
[3]
|
范丽龙. 基于高性能泡沫混凝土的复合自保温砌块的实验研究[D]: [硕士学位论文]. 杭州: 浙江工业大学, 2012.
|
[4]
|
Tawil, H., Tan, C.G., Sulong, N.H.R., Nazri, F.M., Sherif, M.M. and El-Shafie, A. (2022) Mechanical and Thermal Properties of Composite Precast Concrete Sandwich Panels: A Review. Buildings, 12, Article No. 1429. https://doi.org/10.3390/buildings12091429
|
[5]
|
熊峰, 边钰, 刘烨, 等. 预制混凝土夹心保温墙板结构性能研究综述[J]. 建筑结构, 2022, 52(23): 26-34, 125.
|
[6]
|
刘若南. 基于强度的预制混凝土夹芯保温墙板连接件设计研究[D]: [博士学位论文]. 武汉: 武汉理工大学, 2014.
|
[7]
|
杨佳林, 薛伟辰. 预制夹芯保温墙体FRP连接件应用进展[J]. 低温建筑技术, 2012, 34(8): 139-142.
|
[8]
|
白正仙, 高佳伟, 刘学春, 等. 夹芯墙体玻璃钢连接件连接性能研究[J]. 工业建筑, 2020, 50(2): 169-176, 183.
|
[9]
|
Liew, J.Y.R. and Sohel, K.M.A. (2010) Structural Performance of Steel-Concrete-Steel Sandwich Composite Structures. Advances in Structural Engineering, 13, 453-470. https://doi.org/10.1260/1369-4332.13.3.453
|
[10]
|
McCall, C.W. (1985) Thermal Properties of Sandwich Panels. International Concrete Abstracts Portal, 7, 35-41.
|
[11]
|
Mosallam, A., Allam, K. and Salama, M. (2019) Analytical and Numerical Modeling of RC Beam-Column Joints Retrofitted with FRP Laminates and Hybrid Composite Connectors. Composite Structures, 214, 486-503. https://doi.org/10.1016/j.compstruct.2019.02.032
|
[12]
|
He, Z., Pan, P., Ren, J. and Wang, H. (2020) Experimental and Numerical Investigation of Novel I-Shaped GFRP Connectors for Insulated Precast Concrete Sandwich Wall Panels. Journal of Composites for Construction, 24, Article ID: 04020040. https://doi.org/10.1061/(asce)cc.1943-5614.0001053
|
[13]
|
Huang, J. and Dai, J. (2019) Direct Shear Tests of Glass Fiber Reinforced Polymer Connectors for Use in Precast Concrete Sandwich Panels. Composite Structures, 207, 136-147. https://doi.org/10.1016/j.compstruct.2018.09.017
|
[14]
|
Kim, J. and You, Y. (2015) Composite Behavior of a Novel Insulated Concrete Sandwich Wall Panel Reinforced with GFRP Shear Grids: Effects of Insulation Types. Materials, 8, 899-913. https://doi.org/10.3390/ma8030899
|
[15]
|
Cox, B., Syndergaard, P., Al-Rubaye, S., Pozo-Lora, F.F., Tawadrous, R. and Maguire, M. (2019) Lumped GFRP Star Connector System for Partial Composite Action in Insulated Precast Concrete Sandwich Panels. Composite Structures, 229, Article ID: 111465. https://doi.org/10.1016/j.compstruct.2019.111465
|
[16]
|
刘卉. 预制混凝土夹芯保温外挂墙板研究[D]: [硕士学位论文]. 南京: 东南大学, 2016.
|
[17]
|
Woltman, G.D., Tomlinson, D.G. and Fam, A. (2011) A Comparative Study of Various FRP Shear Connectors for Sandwich Concrete Walls. In: Ye, L.P., Feng, P. and Yue, Q.R., Eds., Advances in FRP Composites in Civil Engineering, Springer, 237-240. https://doi.org/10.1007/978-3-642-17487-2_50
|
[18]
|
Choi, K., Choi, W., Feo, L., Jang, S. and Yun, H. (2015) In-Plane Shear Behavior of Insulated Precast Concrete Sandwich Panels Reinforced with Corrugated GFRP Shear Connectors. Composites Part B: Engineering, 79, 419-429. https://doi.org/10.1016/j.compositesb.2015.04.056
|
[19]
|
Woltman, G., Tomlinson, D. and Fam, A. (2013) Investigation of Various GFRP Shear Connectors for Insulated Precast Concrete Sandwich Wall Panels. Journal of Composites for Construction, 17, 711-721. https://doi.org/10.1061/(asce)cc.1943-5614.0000373
|
[20]
|
Tomlinson, D. and Fam, A. (2014) Experimental Investigation of Precast Concrete Insulated Sandwich Panels with Glass Fiber-Reinforced Polymer Shear Connectors. ACI Structural Journal, 111, 595-605. https://doi.org/10.14359/51686621
|
[21]
|
Gong, J., Zhang, W. and Zhou, Z. (2021) Foam Concrete Pore Structure Effect on Drying Shrinkage and Frost Resistance. Journal of Testing and Evaluation, 49, 3431-3443. https://doi.org/10.1520/jte20190550
|
[22]
|
高志涵, 陈波, 陈家林, 等. 冻融环境下泡沫混凝土的孔结构与力学性能[J]. 复合材料学报, 2024, 41(2): 827-838.
|
[23]
|
郭雷, 关辉, 杨学春. 甲基硅烷类防水剂对泡沫混凝土抗冻性的影响[J]. 哈尔滨工程大学学报, 2018, 39(12): 2075-2079.
|
[24]
|
李崇智, 彭家蔓, 王会新, 等. 用于泡沫混凝土的磷酸镁水泥基胶凝材料研究[J]. 材料导报, 2023, 37(S2): 227-230.
|
[25]
|
Bumanis, G., Bajare, D., Korjakins, A. and Vaičiukynienė, D. (2022) Sulfate and Freeze-Thaw Resistance of Porous Geopolymer Based on Waste Clay and Aluminum Salt Slag. Minerals, 12, Article No. 1140. https://doi.org/10.3390/min12091140
|
[26]
|
Liu, Q., Chen, H., Fang, S. and Luo, J. (2024) Effect of Mineral Powders on the Properties of Foam Concrete Prepared by Cationic and Anionic Surfactants as Foaming Agents. Materials, 17, Article No. 606. https://doi.org/10.3390/ma17030606
|
[27]
|
Sun, C., Zhu, Y., Guo, J., Zhang, Y. and Sun, G. (2018) Effects of Foaming Agent Type on the Workability, Drying Shrinkage, Frost Resistance and Pore Distribution of Foamed Concrete. Construction and Building Materials, 186, 833-839. https://doi.org/10.1016/j.conbuildmat.2018.08.019
|
[28]
|
Li, S., Li, H., Yan, C., Ding, Y., Zhang, X. and Zhao, J. (2022) Investigating the Mechanical and Durability Characteristics of Fly Ash Foam Concrete. Materials, 15, Article No. 6077. https://doi.org/10.3390/ma15176077
|
[29]
|
Tebbal, N. and Rahmouni, Z.E.A. (2019) Valorization of Aluminum Waste on the Mechanical Performance of Mortar Subjected to Cycles of Freeze-Thaw. Procedia Computer Science, 158, 1114-1121. https://doi.org/10.1016/j.procs.2019.09.234
|
[30]
|
Zhang, S., Qi, X., Guo, S., Zhang, L. and Ren, J. (2022) A Systematic Research on Foamed Concrete: The Effects of Foam Content, Fly Ash, Slag, Silica Fume and Water-to-Binder Ratio. Construction and Building Materials, 339, Article ID: 127683. https://doi.org/10.1016/j.conbuildmat.2022.127683
|
[31]
|
Bayraktar, O.Y., Soylemez, H., Kaplan, G., Benli, A., Gencel, O. and Turkoglu, M. (2021) Effect of Cement Dosage and Waste Tire Rubber on the Mechanical, Transport and Abrasion Characteristics of Foam Concretes Subjected to H2SO4 and Freeze-Thaw. Construction and Building Materials, 302, Article ID: 124229. https://doi.org/10.1016/j.conbuildmat.2021.124229
|
[32]
|
Gencel, O., Benli, A., Bayraktar, O.Y., Kaplan, G., Sutcu, M. and Elabade, W.A.T. (2021) Effect of Waste Marble Powder and Rice Husk Ash on the Microstructural, Physico-Mechanical and Transport Properties of Foam Concretes Exposed to High Temperatures and Freeze-Thaw Cycles. Construction and Building Materials, 291, Article ID: 123374. https://doi.org/10.1016/j.conbuildmat.2021.123374
|
[33]
|
孙赛炜, 刘勇, 陈伟, 等. 偏高岭土对路基填料泡沫轻质土性能的影响研究[J]. 混凝土, 2020(1): 95-99.
|
[34]
|
Toubia, E.A., Emami, S. and Klosterman, D. (2017) Degradation Mechanisms of Balsa Wood and PVC Foam Sandwich Core Composites Due to Freeze/Thaw Exposure in Saline Solution. Journal of Sandwich Structures & Materials, 21, 990-1008. https://doi.org/10.1177/1099636217706895
|
[35]
|
Sfarra, S., Tejedor, B., Perilli, S., Almeida, R.M.S.F. and Barreira, E. (2020) Evaluating the Freeze-Thaw Phenomenon in Sandwich-Structured Composites via Numerical Simulations and Infrared Thermography. Journal of Thermal Analysis and Calorimetry, 145, 3105-3123. https://doi.org/10.1007/s10973-020-09985-1
|
[36]
|
Li, Y., Yin, S. and Feng, L. (2023) Experimental Investigation on Flexural Behavior of Prefabricated Sandwich Insulation Wall Panels with Textile Reinforced Engineered Cementitious Composites as the Wythes after Freeze-Thaw Cycles. Advances in Structural Engineering, 27, 415-431. https://doi.org/10.1177/13694332231222342
|
[37]
|
程龙. 装配式发泡混凝土填充墙耐久性试验研究[D]: [硕士学位论文]. 南京: 东南大学, 2019.
|
[38]
|
殷明. 冻融循环对外墙保温板与结构层粘结性能的影响[D]: [硕士学位论文]. 西安: 西安工业大学, 2017.
|