[1]
|
Sultan, N. and Jayash, S.N. (2023) Evaluation of Osteogenic Potential of Demineralized Dentin Matrix Hydrogel for Bone Formation. BMC Oral Health, 23, Article No. 247. https://doi.org/10.1186/s12903-023-02928-w
|
[2]
|
Kim, Y., Kim, S., Oh, J., Jin, S., Son, J., Kim, S., et al. (2011) Analysis of the Inorganic Component of Autogenous Tooth Bone Graft Material. Journal of Nanoscience and Nanotechnology, 11, 7442-7445. https://doi.org/10.1166/jnn.2011.4857
|
[3]
|
Avery, S., Sadaghiani, L., Sloan, A. and Waddington, R. (2017) Analysing the Bioactive Makeup of Demineralised Dentine Matrix on Bone Marrow Mesenchymal Stem Cells for Enhanced Bone Repair. European Cells and Materials, 34, 1-14. https://doi.org/10.22203/ecm.v034a01
|
[4]
|
He, Y., Tian, M., Li, X., Hou, J., Chen, S., Yang, G., et al. (2021) A Hierarchical‐Structured Mineralized Nanofiber Scaffold with Osteoimmunomodulatory and Osteoinductive Functions for Enhanced Alveolar Bone Regeneration. Advanced Healthcare Materials, 11, Article ID: 2102236. https://doi.org/10.1002/adhm.202102236
|
[5]
|
Wu, X., Peng, W., Liu, G., Wang, S., Duan, B., Yu, J., et al. (2023) Extrafibrillarly Demineralized Dentin Matrix for Bone Regeneration. Advanced Healthcare Materials, 12, Article ID: 2202611. https://doi.org/10.1002/adhm.202202611
|
[6]
|
Um, I., Kim, Y. and Mitsugi, M. (2017) Demineralized Dentin Matrix Scaffolds for Alveolar Bone Engineering. The Journal of Indian Prosthodontic Society, 17, 120-127. https://doi.org/10.4103/jips.jips_62_17
|
[7]
|
Bertassoni, L.E. (2017) Dentin on the Nanoscale: Hierarchical Organization, Mechanical Behavior and Bioinspired Engineering. Dental Materials, 33, 637-649. https://doi.org/10.1016/j.dental.2017.03.008
|
[8]
|
Guo, W., He, Y., Zhang, X., Lu, W., Wang, C., Yu, H., et al. (2009) The Use of Dentin Matrix Scaffold and Dental Follicle Cells for Dentin Regeneration. Biomaterials, 30, 6708-6723. https://doi.org/10.1016/j.biomaterials.2009.08.034
|
[9]
|
Yang, B., Chen, G., Li, J., Zou, Q., Xie, D., Chen, Y., et al. (2012) Tooth Root Regeneration Using Dental Follicle Cell Sheets in Combination with a Dentin Matrix-Based Scaffold. Biomaterials, 33, 2449-2461. https://doi.org/10.1016/j.biomaterials.2011.11.074
|
[10]
|
Andersson, L., Ramzi, A. and Joseph, B. (2009) Studies on Dentin Grafts to Bone Defects in Rabbit Tibia and Mandible; Development of an Experimental Model. Dental Traumatology, 25, 78-83. https://doi.org/10.1111/j.1600-9657.2008.00703.x
|
[11]
|
Mordenfeld, A., Hallman, M. and Lindskog, S. (2011) Tissue Reactions to Subperiosteal Onlays of Demineralized Xenogenous Dentin Blocks in Rats. Dental Traumatology, 27, 446-451. https://doi.org/10.1111/j.1600-9657.2011.01026.x
|
[12]
|
Zhang, J., Hu, Z.Q., Turner, N.J., Teng, S.F., Cheng, W.Y., Zhou, H.Y., et al. (2016) Perfusion-Decellularized Skeletal Muscle as a Three-Dimensional Scaffold with a Vascular Network Template. Biomaterials, 89, 114-126. https://doi.org/10.1016/j.biomaterials.2016.02.040
|
[13]
|
Chaussain, C., Boukpessi, T., Khaddam, M., Tjaderhane, L., George, A. and Menashi, S. (2013) Dentin Matrix Degradation by Host Matrix Metalloproteinases: Inhibition and Clinical Perspectives toward Regeneration. Frontiers in Physiology, 4, Article 308. https://doi.org/10.3389/fphys.2013.00308
|
[14]
|
Opsahl Vital, S., Gaucher, C., Bardet, C., Rowe, P.S., George, A., Linglart, A., et al. (2012) Tooth Dentin Defects Reflect Genetic Disorders Affecting Bone Mineralization. Bone, 50, 989-997. https://doi.org/10.1016/j.bone.2012.01.010
|
[15]
|
Hayano, S., Kurosaka, H., Yanagita, T., Kalus, I., Milz, F., Ishihara, Y., et al. (2012) Roles of Heparan Sulfate Sulfation in Dentinogenesis. Journal of Biological Chemistry, 287, 12217-12229. https://doi.org/10.1074/jbc.m111.332924
|
[16]
|
Orsini, G., Ruggeri, A., Mazzoni, A., Nato, F., Manzoli, L., Putignano, A., et al. (2009) A Review of the Nature, Role, and Function of Dentin Non‐Collagenous Proteins. Part 1: Proteoglycans and Glycoproteins. Endodontic Topics, 21, 1-18. https://doi.org/10.1111/j.1601-1546.2012.00270.x
|
[17]
|
Guirado, E. and George, A. (2021) Dentine Matrix Metalloproteinases as Potential Mediators of Dentine Regeneration. European Cells and Materials, 42, 392-400. https://doi.org/10.22203/ecm.v042a24
|
[18]
|
Melling, G.E., Colombo, J.S., Avery, S.J., Ayre, W.N., Evans, S.L., Waddington, R.J., et al. (2018) Liposomal Delivery of Demineralized Dentin Matrix for Dental Tissue Regeneration. Tissue Engineering Part A, 24, 1057-1065. https://doi.org/10.1089/ten.tea.2017.0419
|
[19]
|
Tabatabaei, F.S., Tatari, S., Samadi, R. and Torshabi, M. (2016) Surface Characterization and Biological Properties of Regular Dentin, Demineralized Dentin, and Deproteinized Dentin. Journal of Materials Science: Materials in Medicine, 27, Article No. 164. https://doi.org/10.1007/s10856-016-5780-8
|
[20]
|
Yuan, Z., Yuan, X., Zhao, Y., Cai, Q., Wang, Y., Luo, R., et al. (2021) Injectable GelMA Cryogel Microspheres for Modularized Cell Delivery and Potential Vascularized Bone Regeneration. Small, 17, Article ID: 2006596. https://doi.org/10.1002/smll.202006596
|
[21]
|
Smith, A.J., Scheven, B.A., Takahashi, Y., Ferracane, J.L., Shelton, R.M. and Cooper, P.R. (2012) Dentine as a Bioactive Extracellular Matrix. Archives of Oral Biology, 57, 109-121. https://doi.org/10.1016/j.archoralbio.2011.07.008
|
[22]
|
Gericke, A., Qin, C., Sun, Y., Redfern, R., Redfern, D., Fujimoto, Y., et al. (2010) Different Forms of DMP1 Play Distinct Roles in Mineralization. Journal of Dental Research, 89, 355-359. https://doi.org/10.1177/0022034510363250
|
[23]
|
Chuang, S., Chen, Y., Ma, P.X. and Ritchie, H.H. (2022) Dentin Sialoprotein/Phosphophoryn (DSP/PP) as Bio-Inductive Materials for Direct Pulp Capping. Polymers, 14, Article 3656. https://doi.org/10.3390/polym14173656
|
[24]
|
Ritchie, H. (2018) The Functional Significance of Dentin Sialoprotein-Phosphophoryn and Dentin Sialoprotein. International Journal of Oral Science, 10, Article No. 31. https://doi.org/10.1038/s41368-018-0035-9
|
[25]
|
Ferracane, J.L., Cooper, P.R. and Smith, A.J. (2013) Dentin Matrix Component Solubilization by Solutions of pH Relevant to Self-Etching Dental Adhesives. The Journal of Adhesive Dentistry, 15, 407-412.
|
[26]
|
Jiao, L., Xie, L., Yang, B., Yu, M., Jiang, Z., Feng, L., et al. (2014) Cryopreserved Dentin Matrix as a Scaffold Material for Dentin-Pulp Tissue Regeneration. Biomaterials, 35, 4929-4939. https://doi.org/10.1016/j.biomaterials.2014.03.016
|
[27]
|
Liu, S., Sun, J., Yuan, S., Yang, Y., Gong, Y., Wang, Y., et al. (2022) Treated Dentin Matrix Induces Odontogenic Differentiation of Dental Pulp Stem Cells via Regulation of Wnt/β-Catenin Signaling. Bioactive Materials, 7, 85-97. https://doi.org/10.1016/j.bioactmat.2021.05.026
|
[28]
|
Yang, H., Li, J., Hu, Y., Sun, J., Guo, W., Li, H., et al. (2019) Treated Dentin Matrix Particles Combined with Dental Follicle Cell Sheet Stimulate Periodontal Regeneration. Dental Materials, 35, 1238-1253. https://doi.org/10.1016/j.dental.2019.05.016
|
[29]
|
Jing, X., Xie, B., Li, X., Dai, Y., Nie, L. and Li, C. (2021) Peptide Decorated Demineralized Dentin Matrix with Enhanced Bioactivity, Osteogenic Differentiation via Carboxymethyl Chitosan. Dental Materials, 37, 19-29. https://doi.org/10.1016/j.dental.2020.09.019
|
[30]
|
Elfana, A., El‐Kholy, S., Saleh, H.A. and Fawzy El‐Sayed, K. (2021) Alveolar Ridge Preservation Using Autogenous Whole‐Tooth versus Demineralized Dentin Grafts: A Randomized Controlled Clinical Trial. Clinical Oral Implants Research, 32, 539-548. https://doi.org/10.1111/clr.13722
|
[31]
|
Gao, X., Qin, W., Chen, L., Fan, W., Ma, T., Schneider, A., et al. (2020) Effects of Targeted Delivery of Metformin and Dental Pulp Stem Cells on Osteogenesis via Demineralized Dentin Matrix under High Glucose Conditions. ACS Biomaterials Science & Engineering, 6, 2346-2356. https://doi.org/10.1021/acsbiomaterials.0c00124
|
[32]
|
Um, I., Kim, Y., Park, J. and Lee, J. (2018) Clinical Application of Autogenous Demineralized Dentin Matrix Loaded with Recombinant Human Bone Morphogenetic‐2 for Socket Preservation: A Case Series. Clinical Implant Dentistry and Related Research, 21, 4-10. https://doi.org/10.1111/cid.12710
|
[33]
|
Xu, X., Sohn, D., Kim, H., Lee, S. and Moon, Y. (2018) Comparative Histomorphometric Analysis of Maxillary Sinus Augmentation with Deproteinized Bovine Bone and Demineralized Particulate Human Tooth Graft: An Experimental Study in Rabbits. Implant Dentistry, 27, 324-331. https://doi.org/10.1097/id.0000000000000755
|
[34]
|
Li, P., Zhu, H. and Huang, D. (2018) Autogenous DDM versus Bio‐Oss Granules in GBR for Immediate Implantation in Periodontal Postextraction Sites: A Prospective Clinical Study. Clinical Implant Dentistry and Related Research, 20, 923-928. https://doi.org/10.1111/cid.12667
|
[35]
|
Koga, T., Minamizato, T., Kawai, Y., Miura, K., I, T., Nakatani, Y., et al. (2016) Bone Regeneration Using Dentin Matrix Depends on the Degree of Demineralization and Particle Size. PLOS ONE, 11, e0147235. https://doi.org/10.1371/journal.pone.0147235
|
[36]
|
Gao, X., Qin, W., Wang, P., Wang, L., Weir, M.D., Reynolds, M.A., et al. (2019) Nano-Structured Demineralized Human Dentin Matrix to Enhance Bone and Dental Repair and Regeneration. Applied Sciences, 9, Article 1013. https://doi.org/10.3390/app9051013
|
[37]
|
Park, S., Kim, D. and Pang, E. (2017) Bone Formation of Demineralized Human Dentin Block Graft with Different Demineralization Time: In vitro and in vivo Study. Journal of Cranio-Maxillofacial Surgery, 45, 903-912. https://doi.org/10.1016/j.jcms.2017.03.007
|
[38]
|
Han, J., Jeong, W., Kim, M., Nam, S., Park, E. and Kang, H. (2021) Demineralized Dentin Matrix Particle-Based Bio-Ink for Patient-Specific Shaped 3D Dental Tissue Regeneration. Polymers, 13, Article 1294. https://doi.org/10.3390/polym13081294
|
[39]
|
Bi, F., Zhang, Z. and Guo, W. (2022) Treated Dentin Matrix in Tissue Regeneration: Recent Advances. Pharmaceutics, 15, Article 91. https://doi.org/10.3390/pharmaceutics15010091
|
[40]
|
Bakhtiar, H., Mazidi, A., Mohammadi-Asl, S., Hasannia, S., Ellini, M.R., Pezeshki-Modaress, M., et al. (2020) Potential of Treated Dentin Matrix Xenograft for Dentin-Pulp Tissue Engineering. Journal of Endodontics, 46, 57-64.E1. https://doi.org/10.1016/j.joen.2019.10.005
|
[41]
|
Li, R., Guo, W., Yang, B., Guo, L., Sheng, L., Chen, G., et al. (2011) Human Treated Dentin Matrix as a Natural Scaffold for Complete Human Dentin Tissue Regeneration. Biomaterials, 32, 4525-4538. https://doi.org/10.1016/j.biomaterials.2011.03.008
|
[42]
|
Li, H., Ma, B., Yang, H., Qiao, J., Tian, W. and Yu, R. (2021) Xenogeneic Dentin Matrix as a Scaffold for Biomineralization and Induced Odontogenesis. Biomedical Materials, 16, Article 045020. https://doi.org/10.1088/1748-605x/abfbbe
|
[43]
|
Chen, J., Liao, L., Lan, T., Zhang, Z., Gai, K., Huang, Y., et al. (2020) Treated Dentin Matrix‐Based Scaffolds Carrying TGF-β1/BMP4 for Functional Bio-Root Regeneration. Applied Materials Today, 20, Article 100742. https://doi.org/10.1016/j.apmt.2020.100742
|
[44]
|
Lan, T., Chen, J., Zhang, J., Huo, F., Han, X., Zhang, Z., et al. (2021) Xenoextracellular Matrix-Rosiglitazone Complex-Mediated Immune Evasion Promotes Xenogenic Bioengineered Root Regeneration by Altering M1/M2 Macrophage Polarization. Biomaterials, 276, Article 121066. https://doi.org/10.1016/j.biomaterials.2021.121066
|
[45]
|
Zhang, J., Lan, T., Han, X., Xu, Y., Liao, L., Xie, L., et al. (2021) Improvement of ECM-Based Bioroot Regeneration via N-Acetylcysteine-Induced Antioxidative Effects. Stem Cell Research & Therapy, 12, Article No. 202. https://doi.org/10.1186/s13287-021-02237-5
|
[46]
|
Han, X., Liao, L., Zhu, T., Xu, Y., Bi, F., Xie, L., et al. (2020) Xenogeneic Native Decellularized Matrix Carrying PPARγ Activator RSG Regulating Macrophage Polarization to Promote Ligament-to-Bone Regeneration. Materials Science and Engineering: C, 116, Article 111224. https://doi.org/10.1016/j.msec.2020.111224
|
[47]
|
Sun, J., Li, J., Li, H., Yang, H., Chen, J., Yang, B., et al. (2017) tBHQ Suppresses Osteoclastic Resorption in Xenogeneic‐Treated Dentin Matrix‐Based Scaffolds. Advanced Healthcare Materials, 6, Article ID: 1700127. https://doi.org/10.1002/adhm.201700127
|
[48]
|
Holiel, A.A., Mahmoud, E.M. and Abdel-Fattah, W.M. (2021) Tomographic Evaluation of Direct Pulp Capping Using a Novel Injectable Treated Dentin Matrix Hydrogel: A 2-Year Randomized Controlled Clinical Trial. Clinical Oral Investigations, 25, 4621-4634. https://doi.org/10.1007/s00784-021-03775-1
|
[49]
|
Xiong, Y., Shen, T. and Xie, X. (2022) Effects of Different Methods of Demineralized Dentin Matrix Preservation on the Proliferation and Differentiation of Human Periodontal Ligament Stem Cells. Journal of Dental Sciences, 17, 1135-1143. https://doi.org/10.1016/j.jds.2022.01.007
|
[50]
|
Karlsson, J.O.M. and Toner, M. (1996) Long-Term Storage of Tissues by Cryopreservation: Critical Issues. Biomaterials, 17, 243-256. https://doi.org/10.1016/0142-9612(96)85562-1
|
[51]
|
Perry, B.C., Zhou, D., Wu, X., Yang, F.-C., Byers, M.A., Chu, T.-M.G., et al. (2008) Collection, Cryopreservation, and Characterization of Human Dental Pulp-Derived Mesenchymal Stem Cells for Banking and Clinical Use. Tissue Engineering Part C: Methods, 14, 149-156. https://doi.org/10.1089/ten.tec.2008.0031
|
[52]
|
Yan, W., Tenwalde, M., Øilo, M., Zhang, H. and Arola, D. (2018) Effect of Cryopreservation of Teeth on the Structural Integrity of Dentin. Dental Materials, 34, 1828-1835. https://doi.org/10.1016/j.dental.2018.10.004
|
[53]
|
Czochrowska, E.M., Stenvik, A., Bjercke, B. and Zachrisson, B.U. (2002) Outcome of Tooth Transplantation: Survival and Success Rates 17-41 Years Posttreatment. American Journal of Orthodontics and Dentofacial Orthopedics, 121, 110-119. https://doi.org/10.1067/mod.2002.119979
|
[54]
|
Wingenfeld, C., Egli, R.J., Hempfing, A., Ganz, R. and Leunig, M. (2002) Cryopreservation of Osteochondral Allografts: Dimethyl Sulfoxide Promotes Angiogenesis and Immune Tolerance in Mice. The Journal of Bone & Joint Surgery, 84, 1420-1429. https://doi.org/10.2106/00004623-200208000-00019
|
[55]
|
Ma, L., Makino, Y., Yamaza, H., Akiyama, K., Hoshino, Y., Song, G., et al. (2012) Cryopreserved Dental Pulp Tissues of Exfoliated Deciduous Teeth Is a Feasible Stem Cell Resource for Regenerative Medicine. PLOS ONE, 7, e51777. https://doi.org/10.1371/journal.pone.0051777
|
[56]
|
Li, Z., Zheng, C., Jiang, P., Xu, X., Tang, Y. and Dou, L. (2023) Human Digested Dentin Matrix for Dentin Regeneration and the Applicative Potential in Vital Pulp Therapy. Journal of Endodontics, 49, 861-870. https://doi.org/10.1016/j.joen.2023.04.010
|
[57]
|
Chen, J., Cui, C., Qiao, X., Yang, B., Yu, M., Guo, W., et al. (2017) Treated Dentin Matrix Paste as a Novel Pulp Capping Agent for Dentin Regeneration. Journal of Tissue Engineering and Regenerative Medicine, 11, 3428-3436. https://doi.org/10.1002/term.2256
|
[58]
|
Kim, Y., Bang, K., Murata, M., Mitsugi, M. and Um, I. (2017) Retrospective Clinical Study of Allogenic Demineralized Dentin Matrix for Alveolar Bone Repair. Journal of Hard Tissue Biology, 26, 95-102. https://doi.org/10.2485/jhtb.26.95
|
[59]
|
Chang, C., Lin, T., Wu, S., Lin, C. and Chang, H. (2020) Regeneration of Tooth with Allogenous, Autoclaved Treated Dentin Matrix with Dental Pulpal Stem Cells: An in vivo Study. Journal of Endodontics, 46, 1256-1264. https://doi.org/10.1016/j.joen.2020.05.016
|
[60]
|
Yang, X., Ma, Y., Guo, W., Yang, B. and Tian, W. (2019) Stem Cells from Human Exfoliated Deciduous Teeth as an Alternative Cell Source in Bio-Root Regeneration. Theranostics, 9, 2694-2711. https://doi.org/10.7150/thno.31801
|
[61]
|
Ji, B., Sheng, L., Chen, G., Guo, S., Xie, L., Yang, B., et al. (2015) The Combination Use of Platelet-Rich Fibrin and Treated Dentin Matrix for Tooth Root Regeneration by Cell Homing. Tissue Engineering Part A, 21, 26-34. https://doi.org/10.1089/ten.tea.2014.0043
|
[62]
|
Li, B., Yu, F., Wu, F., Hui, T., A, P., Liao, X., et al. (2018) EZH2 Impairs Human Dental Pulp Cell Mineralization via the Wnt/β-Catenin Pathway. Journal of Dental Research, 97, 571-579. https://doi.org/10.1177/0022034517746987
|
[63]
|
Yang, X., Wang, G., Wang, Y., Zhou, J., Yuan, H., Li, X., et al. (2019) Histone Demethylase KDM7A Reciprocally Regulates Adipogenic and Osteogenic Differentiation via Regulation of C/EBPα and Canonical Wnt Signalling. Journal of Cellular and Molecular Medicine, 23, 2149-2162. https://doi.org/10.1111/jcmm.14126
|
[64]
|
Li, Y., Zhou, W., Li, P., Luo, Q., Li, A. and Zhang, X. (2022) Comparison of the Osteogenic Effectiveness of an Autogenous Demineralised Dentin Matrix and Bio-Oss® in Bone Augmentation: A Systematic Review and Meta-Analysis. British Journal of Oral and Maxillofacial Surgery, 60, 868-876. https://doi.org/10.1016/j.bjoms.2022.03.009
|
[65]
|
Reis-Filho, C.R., Silva, E.R., Martins, A.B., Pessoa, F.F., Gomes, P.V.N., de Araújo, M.S.C., et al. (2012) Demineralised Human Dentine Matrix Stimulates the Expression of VEGF and Accelerates the Bone Repair in Tooth Sockets of Rats. Archives of Oral Biology, 57, 469-476. https://doi.org/10.1016/j.archoralbio.2011.10.011
|
[66]
|
Murata, M., Kabir, M.A., Hirose, Y., Ochi, M., Okubo, N., Akazawa, T., et al. (2022) Histological Evidences of Autograft of Dentin/Cementum Granules into Unhealed Socket at 5 Months after Tooth Extraction for Implant Placement. Journal of Functional Biomaterials, 13, Article 66. https://doi.org/10.3390/jfb13020066
|