[1]
|
Singer, M., Deutschman, C.S., Seymour, C.W., Shankar-Hari, M., Annane, D., Bauer, M., et al. (2016) The Third International Consensus Definitions for Sepsis and Septic Shock (Sepsis-3). JAMA, 315, 801-810. https://doi.org/10.1001/jama.2016.0287
|
[2]
|
Fleischmann-Struzek, C., Mellhammar, L., Rose, N., Cassini, A., Rudd, K.E., Schlattmann, P., et al. (2020) Incidence and Mortality of Hospital-and ICU-Treated Sepsis: Results from an Updated and Expanded Systematic Review and Meta-Analysis. Intensive Care Medicine, 46, 1552-1562. https://doi.org/10.1007/s00134-020-06151-x
|
[3]
|
Giustozzi, M., Ehrlinder, H., Bongiovanni, D., Borovac, J.A., Guerreiro, R.A., Gąsecka, A., et al. (2021) Coagulopathy and Sepsis: Pathophysiology, Clinical Manifestations and Treatment. Blood Reviews, 50, Article 100864. https://doi.org/10.1016/j.blre.2021.100864
|
[4]
|
Schmoch, T., Möhnle, P., Weigand, M.A., Briegel, J., Bauer, M., Bloos, F., et al. (2023) The Prevalence of Sepsis-Induced Coagulopathy in Patients with Sepsis—A Secondary Analysis of Two German Multicenter Randomized Controlled Trials. Annals of Intensive Care, 13, Article No. 3. https://doi.org/10.1186/s13613-022-01093-7
|
[5]
|
Tanaka, C., Tagami, T., Kudo, S., Takehara, A., Fukuda, R., Nakayama, F., et al. (2021) Validation of Sepsis-Induced Coagulopathy Score in Critically Ill Patients with Septic Shock: Post Hoc Analysis of a Nationwide Multicenter Observational Study in Japan. International Journal of Hematology, 114, 164-171. https://doi.org/10.1007/s12185-021-03152-4
|
[6]
|
Iba, T., Helms, J. and Levy, J.H. (2024) Sepsis-Induced Coagulopathy (SIC) in the Management of Sepsis. Annals of Intensive Care, 14, Article No. 148. https://doi.org/10.1186/s13613-024-01380-5
|
[7]
|
Williams, B., Zou, L., Pittet, J. and Chao, W. (2024) Sepsis-Induced Coagulopathy: A Comprehensive Narrative Review of Pathophysiology, Clinical Presentation, Diagnosis, and Management Strategies. Anesthesia & Analgesia, 138, 696-711. https://doi.org/10.1213/ane.0000000000006888
|
[8]
|
Østerud, B. and Bjørklid, E. (2001) The Tissue Factor Pathway in Disseminated Intravascular Coagulation. Seminars in Thrombosis and Hemostasis, 27, 605-618. https://doi.org/10.1055/s-2001-18866
|
[9]
|
Rosen, E.D., Chan, J.C.Y., Idusogie, E., Clotman, F., Vlasuk, G., Luther, T., et al. (1997) Mice Lacking Factor VII Develop Normally but Suffer Fatal Perinatal Bleeding. Nature, 390, 290-294. https://doi.org/10.1038/36862
|
[10]
|
Bugge, T.H., Xiao, Q., Kombrinck, K.W., Flick, M.J., Holmbäck, K., Danton, M.J., et al. (1996) Fatal Embryonic Bleeding Events in Mice Lacking Tissue Factor, the Cell-Associated Initiator of Blood Coagulation. Proceedings of the National Academy of Sciences, 93, 6258-6263. https://doi.org/10.1073/pnas.93.13.6258
|
[11]
|
Chen, F., Zou, L., Williams, B. and Chao, W. (2021) Targeting Toll-Like Receptors in Sepsis: From Bench to Clinical Trials. Antioxidants & Redox Signaling, 35, 1324-1339. https://doi.org/10.1089/ars.2021.0005
|
[12]
|
Hakkim, A., Fuchs, T.A., Martinez, N.E., Hess, S., Prinz, H., Zychlinsky, A., et al. (2010) Activation of the Raf-MEK-ERK Pathway Is Required for Neutrophil Extracellular Trap Formation. Nature Chemical Biology, 7, 75-77. https://doi.org/10.1038/nchembio.496
|
[13]
|
Delabranche, X., Helms, J. and Meziani, F. (2017) Immunohaemostasis: A New View on Haemostasis during Sepsis. Annals of Intensive Care, 7, Article No. 117. https://doi.org/10.1186/s13613-017-0339-5
|
[14]
|
Nickel, K.F. and Renné, T. (2012) Crosstalk of the Plasma Contact System with Bacteria. Thrombosis Research, 130, S78-S83. https://doi.org/10.1016/j.thromres.2012.08.284
|
[15]
|
Fuchs, T.A., Brill, A., Duerschmied, D., Schatzberg, D., Monestier, M., Myers, D.D., et al. (2010) Extracellular DNA Traps Promote Thrombosis. Proceedings of the National Academy of Sciences, 107, 15880-15885. https://doi.org/10.1073/pnas.1005743107
|
[16]
|
Laridan, E., Martinod, K. and De Meyer, S. (2019) Neutrophil Extracellular Traps in Arterial and Venous Thrombosis. Seminars in Thrombosis and Hemostasis, 45, 86-93. https://doi.org/10.1055/s-0038-1677040
|
[17]
|
Swystun, L.L. and Liaw, P.C. (2016) The Role of Leukocytes in Thrombosis. Blood, 128, 753-762. https://doi.org/10.1182/blood-2016-05-718114
|
[18]
|
Sniecinski, R.M., Welsby, I.J., Levi, M. and Levy, J.H. (2016) Antithrombin: Anti-Inflammatory Properties and Clinical Applications. Thrombosis and Haemostasis, 115, 712-728. https://doi.org/10.1160/th15-08-0687
|
[19]
|
Wiedermann, C.J. and Römisch, J. (2002) The Anti‐Inflammatory Actions of Antithrombin—A Review. Acta Medica Austriaca, 29, 89-92. https://doi.org/10.1046/j.1563-2571.2002.02012.x
|
[20]
|
Chappell, D., Brettner, F., Doerfler, N., Jacob, M., Rehm, M., Bruegger, D., et al. (2014) Protection of Glycocalyx Decreases Platelet Adhesion after Ischaemia/Reperfusion. European Journal of Anaesthesiology, 31, 474-481. https://doi.org/10.1097/eja.0000000000000085
|
[21]
|
Rezende, S.M., Simmonds, R.E. and Lane, D.A. (2004) Coagulation, Inflammation, and Apoptosis: Different Roles for Protein S and the Protein S-C4b Binding Protein Complex. Blood, 103, 1192-1201. https://doi.org/10.1182/blood-2003-05-1551
|
[22]
|
D’Angelo, A., Vigano-D’Angelo, S., Esmon, C.T. and Comp, P.C. (1988) Acquired Deficiencies of Protein S. Protein S Activity during Oral Anticoagulation, in Liver Disease, and in Disseminated Intravascular Coagulation. Journal of Clinical Investigation, 81, 1445-1454. https://doi.org/10.1172/jci113475
|
[23]
|
Esmon, N.L., Owen, W.G. and Esmon, C.T. (1982) Isolation of a Membrane-Bound Cofactor for Thrombin-Catalyzed Activation of Protein C. Journal of Biological Chemistry, 257, 859-864. https://doi.org/10.1016/s0021-9258(19)68276-1
|
[24]
|
de Wouwer, M.V., Collen, D. and Conway, E.M. (2004) Thrombomodulin-Protein C-EPCR System: Integrated to Regulate Coagulation and Inflammation. Arteriosclerosis, Thrombosis, and Vascular Biology, 24, 1374-1383. https://doi.org/10.1161/01.atv.0000134298.25489.92
|
[25]
|
Ikezoe, T. (2015) Thrombomodulin/Activated Protein C System in Septic Disseminated Intravascular Coagulation. Journal of Intensive Care, 3, Article No. 1. https://doi.org/10.1186/s40560-014-0050-7
|
[26]
|
Lin, S., Wang, Y., Lin, H., Lee, K., Huang, C., Liu, C., et al. (2008) Serum Thrombomodulin Level Relates to the Clinical Course of Disseminated Intravascular Coagulation, Multiorgan Dysfunction Syndrome, and Mortality in Patients with Sepsis. Critical Care Medicine, 36, 683-689. https://doi.org/10.1097/ccm.0b013e31816537d8
|
[27]
|
Scarlatescu, E., Tomescu, D. and Arama, S.S. (2016) Sepsis-Associated Coagulopathy. The Journal of Critical Care Medicine, 2, 156-163. https://doi.org/10.1515/jccm-2016-0024
|
[28]
|
Zeerleder, S., Schroeder, V., Hack, C.E., Kohler, H.P. and Wuillemin, W.A. (2006) TAFI and PAI-1 Levels in Human Sepsis. Thrombosis Research, 118, 205-212. https://doi.org/10.1016/j.thromres.2005.06.007
|
[29]
|
Mavrommatis, A.C., Theodoridis, T., Economou, M., Kotanidou, A., El Ali, M., Christopoulou-Kokkinou, V., et al. (2001) Activation of the Fibrinolytic System and Utilization of the Coagulation Inhibitors in Sepsis: Comparison with Severe Sepsis and Septic Shock. Intensive Care Medicine, 27, 1853-1859. https://doi.org/10.1007/s00134-001-1139-8
|