脓毒症性凝血病发病机制的研究进展
Research Progress on the Pathogenesis of Sepsis-Induced Coagulopathy
DOI: 10.12677/acm.2025.152454, PDF, HTML, XML,   
作者: 柯书豪*:承德医学院研究生学院,河北 承德;刘秀娟#:秦皇岛市第一医院重症医学科,河北 秦皇岛
关键词: 脓毒症凝血病发病机制Sepsis Coagulopathy Pathogenesis
摘要: 脓毒症(sepsis)是危重症患者常见的死亡原因。在脓毒症中,促凝血途径和抗凝途径之间的平衡被打破,导致全身凝血酶生成、抗凝活性受损和纤维蛋白溶解抑制,称为脓毒症性凝血病(sepsis-induced coagulopathy, SIC)。SIC是脓毒症的一种常见的并发症,见于24%的脓毒症患者和66%的脓毒性休克患者,并且通常与不良临床结局和高死亡率有关。SIC发病机制复杂,目前尚未完全阐明,最近的临床研究对SIC的分子发病机制产生了新的见解,本文就脓毒症性凝血病的发病机制进行综述。
Abstract: Sepsis is a common cause of death in critically ill patients. In sepsis, the balance between procoagulant and anticoagulant pathways is disrupted, leading to systemic thrombin generation, impaired anticoagulant activity, and inhibition of fibrinolysis, a condition known as sepsis-induced coagulopathy (SIC). SIC is a common complication of sepsis, affecting 24% of sepsis patients and 66% of those with septic shock, and is usually associated with poor clinical outcomes and high mortality rates. The pathogenesis of SIC is complex and not yet fully understood. Recent clinical studies have provided new insights into the molecular mechanisms of SIC. This review aims to summarize the pathogenesis of sepsis-induced coagulopathy.
文章引用:柯书豪, 刘秀娟. 脓毒症性凝血病发病机制的研究进展[J]. 临床医学进展, 2025, 15(2): 1138-1143. https://doi.org/10.12677/acm.2025.152454

1. 引言

脓毒症是人体对感染反应失调而引起生理学和器官功能损害的临床综合征[1]。随着对脓毒症研究的深入,脓毒症的临床管理和实践指南的制定取得了很大进展,但脓毒症仍然是一个重要的全球健康问题。2020年Fleischmann-Struzek [2]等的一项荟萃分析显示,全球脓毒症的院内发病率为189/10万人年,病死率约为26.7%,已成为全球死亡的主要原因。随着老龄化的进展,脓毒症发病率和死亡率仍逐年增加[3]。脓毒症性凝血病(SIC)是脓毒症的主要并发症。24%的脓毒症患者存在SIC,死亡率增加2倍[4] [5]。SIC的特征是全身炎症和凝血激活导致微血管血栓、器官灌注受损和随后的器官功能障碍。SIC通常与弥散性血管内凝血(DIC)同义,但在DIC中,存在明显或严重的消耗性血管内凝血病,这意味着血小板、纤维蛋白原和凝血因子显着减少,并伴有血栓形成和/或出血倾向的临床证据。相比之下,SIC是一种非显性DIC,也表现为全身性血管内凝血,但未消耗血小板、纤维蛋白原和凝血因子。SIC是一种由先天免疫和凝血系统之间的病理相互作用引发的复杂疾病。因此,详细了解这些系统及其组成部分的正常和失调相互作用,对提高诊断准确性和开发靶向疗法,早期发现并干预SIC,降低病死率、改善预后十分重要。本文旨在对SIC发病机制的研究进展进行综述。

2. 脓毒症性凝血病的病理生理机制

脓毒症时期,感染触发全身炎症反应,,促炎细胞因子、趋化因子和介质如肿瘤坏死因子-α (TNF-α)、白细胞介素-1β (IL-1β)、IL-6、IL-8和蛋白水解酶被释放进入机体[6],凝血系统被激活后,产生大量凝血酶,导致血液处于高凝状态。随之而来的是凝血物质的大量消耗,从而引发继发性的纤溶功能亢进,表现为凝血反应的显著增强和抗凝机制受到明显抑制。在此过程中,病原体和炎症介质通过促进促凝物质的合成、减少抗凝物的生成、以及抑制纤维蛋白的降解等机制,推动血栓的形成,最终引发弥漫性血管内凝血(DIC) [7] (见图1)。

2.1. 凝血系统的激活

组织因子通路是脓毒症凝血活化的首要和关键触发因素[8]。组织因子(TF)在生理性止血及病理性血栓形成中都起着至关重要的作用,负责激活FVII,启动外源性及内源性凝血途径[9] [10]。病原体相关分子模式(PAMPs)在SIC中起着关键作用,PAMP是病原体破坏后释放的分子,或可由活病原体释放的分子,包括糖蛋白、膜成分和核酸的分子片段,而DAMP是在应激条件下从宿主细胞释放的内源性生物分子,两者均可触发先天免疫反应[11]。当机体发生感染时,微生物来源释放PAMP或受损宿主细胞释放DAMP,导致单核细胞、内皮细胞和中性粒细胞的TF表达。TF可结合FVII并将其转化为活化的FVII (FVIIa),然后,外源性凝血酶复合物(TF + FVIIa)激活FX和FV形成凝血酶原复合物(FXa + FVa),使凝血酶原转化为凝血酶。同时,产生的凝血酶强烈诱导血小板活化,生成更多的凝血酶。

Figure 1. Pathophysiological mechanism diagram of sepsis-induced coagulopathy

1. 脓毒症性凝血病的病理生理机制图

中性粒细胞不仅表达组织因子,还能在接收到炎症信号时激活蛋白激酶C (PKC)通路,并进一步活化Raf/MEK/ERK信号通路[12],最终形成中性粒细胞胞外陷阱(NETs)以防止感染扩散。NETs主要由DNA、组蛋白和其他中性粒细胞颗粒蛋白构成[13],通过提供聚阴离子表面[14],促进FXII自动激活和接触介导的凝血,还可以作为血小板粘附和聚集的额外框架,为促凝血活性和凝血酶生成提供更大的表面[15]。NETs不仅能够促进血栓形成,还能激活血小板,促进血小板黏附、活化和聚集,从而引发血小板血栓形成[15] [16]。此外,NETs可为血管性血友病因子(vWF)、纤维蛋白原、凝血因子XII、组织因子(TF)等促凝因子和携带TF等促凝因子的细胞外囊泡提供支架,以促进血栓形成[17]

2.2. 抗凝系统受损

在脓毒症的早期阶段,激活的凝血系统通常受到三种抗凝途径的调控,分别是抗凝血酶(AT)系统、活化蛋白C (APC)系统和组织因子途径抑制剂(TFPI) [3]。然而,在脓毒症进程中,这些机制发生功能失调,从而引发异常高凝状态。

抗凝血酶是一种丝氨酸蛋白酶抑制剂(SPI),可灭活因子VIIa、IXa、Xa、XIa和IIa,是血浆中循环最丰富的生理抗凝剂之一[18]。此外,抗凝血酶还具有抗炎作用,能够抑制内皮细胞和单核细胞中细胞因子以及组织因子的产生[19]。因此,抗凝血酶系统是一种非常重要的抗凝机制。在脓毒症进程中,抗凝血酶的合成减少、消耗增加,以及被蛋白酶和中性粒细胞弹性蛋白酶降解加剧[20],使其在机体中的水平显著降低。

APC系统在脓毒症抗凝系统中也发挥着十分重要的作用,主要由蛋白C (PC)、蛋白C抑制物、蛋白S (PS)以及血栓调节蛋白(TM)等成分组成。作为一种天然的抗凝物质,蛋白C在这一系统中发挥着重要的生理作用,其通过内皮细胞上的凝血酶–凝血调节蛋白复合物介导激活,并通过灭活Va和VIIIa因子而表现出抗凝血特性。PS是APC降解凝血因子Va和VIIIa的辅助因子,在炎症反应期,补体系统C4b结合蛋白(C4BP)增加,与PS结合导致C4BP-PS复合物形成增加,引起血浆PS水平降低[21] [22],导致脓毒症期间形成血栓的风险增加。TM是凝血酶催化激活蛋白C的辅助因子,它与凝血酶结合后促进蛋白C的活化,从而抑制凝血酶的生成发挥抗凝作用[23] [24]。脓毒症时期,内皮细胞受损导致TM产生减少,同时,由于脓毒症中循环的中性粒细胞弹性蛋白酶增加,使TM进一步降解[25] [26]

TFPI是一种与脂蛋白结合的生理性丝氨酸蛋白酶抑制剂,是存在于血液中的天然抗凝蛋白,可抑制TF诱导的凝血酶生成起始阶段。TFPI通过与FXa结合抑制了启动凝血的TF-FVIIa复合物合成,从而阻断了TF诱导的凝血[27]。生理情况下,血液中存在的TFPI较少,在发生脓毒症时被进一步消耗和降解,使TFPI明显缺乏。

2.3. 纤溶系统受抑制

在脓毒症期,血管内皮细胞的功能发生显著变化,导致凝血与纤溶系统的动态平衡遭到破坏。正常情况下,血管内皮细胞通过分泌组织型纤溶酶原激活剂(tPA)和尿激酶型纤溶酶原激活剂(uPA)来激活纤溶酶原,促使其转变为纤溶酶,从而促进纤维蛋白的溶解;同时通过合成纤溶酶原激活抑制剂(PAI-1)来限制纤维蛋白溶解,从而维持纤溶系统的动态平衡[28]。脓毒症时期,血管内皮细胞分泌tPA、uPA增多,导致纤溶活性增强;但炎症反应使IL-1、IL-6、TNF-α释放增加,导致PAI-1合成增多,PAI-1与纤溶酶原激活物结合形成复合物,使纤溶酶原激活物失活从而阻断纤溶,进而导致纤维蛋白降解减少[27]。脓毒症进程中,凝血酶的大量释放不仅直接抑制纤维蛋白溶解,还激活凝血酶激活纤溶抑制剂(TAFI),激活后的TAFI能够将纤维蛋白羧基末端赖氨酸和精氨酸残基去除,使tPA依赖性纤溶酶原的活化程度降低,减少纤溶酶的生成并抑制纤维蛋白的降解[29]

3. 总结和展望

脓毒症引发的全身炎症反应会导致内皮细胞损伤和微循环血栓的形成,进而激活凝血系统。在此过程中,凝血因子如凝血酶和组织因子等发挥了重要作用。与此同时,抗凝系统的功能受到抑制,尤其是天然抗凝因子如蛋白C和蛋白S的活性降低,使得凝血状态进一步加剧。此外,脓毒症还可诱导纤溶抑制的增加,导致纤维蛋白降解不足,微血栓的清除不完全,从而加重了血栓形成的局面。SIC的临床研究近年来尽管有所进展,但其发病机制仍不完全清楚,仍需进一步深入探索。对脓毒症性凝血病的发病机制进行深入研究,可以为脓毒症患者凝血功能的管理提供更加具有针对性的指导,减少DIC等严重并发症的发生。近年来根据SIC发病机制研发的药物及其相关临床试验已逐步展开,未来可能用于临床并有效改善脓毒症患者预后。

NOTES

*第一作者。

#通讯作者。

参考文献

[1] Singer, M., Deutschman, C.S., Seymour, C.W., Shankar-Hari, M., Annane, D., Bauer, M., et al. (2016) The Third International Consensus Definitions for Sepsis and Septic Shock (Sepsis-3). JAMA, 315, 801-810.
https://doi.org/10.1001/jama.2016.0287
[2] Fleischmann-Struzek, C., Mellhammar, L., Rose, N., Cassini, A., Rudd, K.E., Schlattmann, P., et al. (2020) Incidence and Mortality of Hospital-and ICU-Treated Sepsis: Results from an Updated and Expanded Systematic Review and Meta-Analysis. Intensive Care Medicine, 46, 1552-1562.
https://doi.org/10.1007/s00134-020-06151-x
[3] Giustozzi, M., Ehrlinder, H., Bongiovanni, D., Borovac, J.A., Guerreiro, R.A., Gąsecka, A., et al. (2021) Coagulopathy and Sepsis: Pathophysiology, Clinical Manifestations and Treatment. Blood Reviews, 50, Article 100864.
https://doi.org/10.1016/j.blre.2021.100864
[4] Schmoch, T., Möhnle, P., Weigand, M.A., Briegel, J., Bauer, M., Bloos, F., et al. (2023) The Prevalence of Sepsis-Induced Coagulopathy in Patients with Sepsis—A Secondary Analysis of Two German Multicenter Randomized Controlled Trials. Annals of Intensive Care, 13, Article No. 3.
https://doi.org/10.1186/s13613-022-01093-7
[5] Tanaka, C., Tagami, T., Kudo, S., Takehara, A., Fukuda, R., Nakayama, F., et al. (2021) Validation of Sepsis-Induced Coagulopathy Score in Critically Ill Patients with Septic Shock: Post Hoc Analysis of a Nationwide Multicenter Observational Study in Japan. International Journal of Hematology, 114, 164-171.
https://doi.org/10.1007/s12185-021-03152-4
[6] Iba, T., Helms, J. and Levy, J.H. (2024) Sepsis-Induced Coagulopathy (SIC) in the Management of Sepsis. Annals of Intensive Care, 14, Article No. 148.
https://doi.org/10.1186/s13613-024-01380-5
[7] Williams, B., Zou, L., Pittet, J. and Chao, W. (2024) Sepsis-Induced Coagulopathy: A Comprehensive Narrative Review of Pathophysiology, Clinical Presentation, Diagnosis, and Management Strategies. Anesthesia & Analgesia, 138, 696-711.
https://doi.org/10.1213/ane.0000000000006888
[8] Østerud, B. and Bjørklid, E. (2001) The Tissue Factor Pathway in Disseminated Intravascular Coagulation. Seminars in Thrombosis and Hemostasis, 27, 605-618.
https://doi.org/10.1055/s-2001-18866
[9] Rosen, E.D., Chan, J.C.Y., Idusogie, E., Clotman, F., Vlasuk, G., Luther, T., et al. (1997) Mice Lacking Factor VII Develop Normally but Suffer Fatal Perinatal Bleeding. Nature, 390, 290-294.
https://doi.org/10.1038/36862
[10] Bugge, T.H., Xiao, Q., Kombrinck, K.W., Flick, M.J., Holmbäck, K., Danton, M.J., et al. (1996) Fatal Embryonic Bleeding Events in Mice Lacking Tissue Factor, the Cell-Associated Initiator of Blood Coagulation. Proceedings of the National Academy of Sciences, 93, 6258-6263.
https://doi.org/10.1073/pnas.93.13.6258
[11] Chen, F., Zou, L., Williams, B. and Chao, W. (2021) Targeting Toll-Like Receptors in Sepsis: From Bench to Clinical Trials. Antioxidants & Redox Signaling, 35, 1324-1339.
https://doi.org/10.1089/ars.2021.0005
[12] Hakkim, A., Fuchs, T.A., Martinez, N.E., Hess, S., Prinz, H., Zychlinsky, A., et al. (2010) Activation of the Raf-MEK-ERK Pathway Is Required for Neutrophil Extracellular Trap Formation. Nature Chemical Biology, 7, 75-77.
https://doi.org/10.1038/nchembio.496
[13] Delabranche, X., Helms, J. and Meziani, F. (2017) Immunohaemostasis: A New View on Haemostasis during Sepsis. Annals of Intensive Care, 7, Article No. 117.
https://doi.org/10.1186/s13613-017-0339-5
[14] Nickel, K.F. and Renné, T. (2012) Crosstalk of the Plasma Contact System with Bacteria. Thrombosis Research, 130, S78-S83.
https://doi.org/10.1016/j.thromres.2012.08.284
[15] Fuchs, T.A., Brill, A., Duerschmied, D., Schatzberg, D., Monestier, M., Myers, D.D., et al. (2010) Extracellular DNA Traps Promote Thrombosis. Proceedings of the National Academy of Sciences, 107, 15880-15885.
https://doi.org/10.1073/pnas.1005743107
[16] Laridan, E., Martinod, K. and De Meyer, S. (2019) Neutrophil Extracellular Traps in Arterial and Venous Thrombosis. Seminars in Thrombosis and Hemostasis, 45, 86-93.
https://doi.org/10.1055/s-0038-1677040
[17] Swystun, L.L. and Liaw, P.C. (2016) The Role of Leukocytes in Thrombosis. Blood, 128, 753-762.
https://doi.org/10.1182/blood-2016-05-718114
[18] Sniecinski, R.M., Welsby, I.J., Levi, M. and Levy, J.H. (2016) Antithrombin: Anti-Inflammatory Properties and Clinical Applications. Thrombosis and Haemostasis, 115, 712-728.
https://doi.org/10.1160/th15-08-0687
[19] Wiedermann, C.J. and Römisch, J. (2002) The Anti‐Inflammatory Actions of Antithrombin—A Review. Acta Medica Austriaca, 29, 89-92.
https://doi.org/10.1046/j.1563-2571.2002.02012.x
[20] Chappell, D., Brettner, F., Doerfler, N., Jacob, M., Rehm, M., Bruegger, D., et al. (2014) Protection of Glycocalyx Decreases Platelet Adhesion after Ischaemia/Reperfusion. European Journal of Anaesthesiology, 31, 474-481.
https://doi.org/10.1097/eja.0000000000000085
[21] Rezende, S.M., Simmonds, R.E. and Lane, D.A. (2004) Coagulation, Inflammation, and Apoptosis: Different Roles for Protein S and the Protein S-C4b Binding Protein Complex. Blood, 103, 1192-1201.
https://doi.org/10.1182/blood-2003-05-1551
[22] D’Angelo, A., Vigano-D’Angelo, S., Esmon, C.T. and Comp, P.C. (1988) Acquired Deficiencies of Protein S. Protein S Activity during Oral Anticoagulation, in Liver Disease, and in Disseminated Intravascular Coagulation. Journal of Clinical Investigation, 81, 1445-1454.
https://doi.org/10.1172/jci113475
[23] Esmon, N.L., Owen, W.G. and Esmon, C.T. (1982) Isolation of a Membrane-Bound Cofactor for Thrombin-Catalyzed Activation of Protein C. Journal of Biological Chemistry, 257, 859-864.
https://doi.org/10.1016/s0021-9258(19)68276-1
[24] de Wouwer, M.V., Collen, D. and Conway, E.M. (2004) Thrombomodulin-Protein C-EPCR System: Integrated to Regulate Coagulation and Inflammation. Arteriosclerosis, Thrombosis, and Vascular Biology, 24, 1374-1383.
https://doi.org/10.1161/01.atv.0000134298.25489.92
[25] Ikezoe, T. (2015) Thrombomodulin/Activated Protein C System in Septic Disseminated Intravascular Coagulation. Journal of Intensive Care, 3, Article No. 1.
https://doi.org/10.1186/s40560-014-0050-7
[26] Lin, S., Wang, Y., Lin, H., Lee, K., Huang, C., Liu, C., et al. (2008) Serum Thrombomodulin Level Relates to the Clinical Course of Disseminated Intravascular Coagulation, Multiorgan Dysfunction Syndrome, and Mortality in Patients with Sepsis. Critical Care Medicine, 36, 683-689.
https://doi.org/10.1097/ccm.0b013e31816537d8
[27] Scarlatescu, E., Tomescu, D. and Arama, S.S. (2016) Sepsis-Associated Coagulopathy. The Journal of Critical Care Medicine, 2, 156-163.
https://doi.org/10.1515/jccm-2016-0024
[28] Zeerleder, S., Schroeder, V., Hack, C.E., Kohler, H.P. and Wuillemin, W.A. (2006) TAFI and PAI-1 Levels in Human Sepsis. Thrombosis Research, 118, 205-212.
https://doi.org/10.1016/j.thromres.2005.06.007
[29] Mavrommatis, A.C., Theodoridis, T., Economou, M., Kotanidou, A., El Ali, M., Christopoulou-Kokkinou, V., et al. (2001) Activation of the Fibrinolytic System and Utilization of the Coagulation Inhibitors in Sepsis: Comparison with Severe Sepsis and Septic Shock. Intensive Care Medicine, 27, 1853-1859.
https://doi.org/10.1007/s00134-001-1139-8