[1]
|
Nagata, K., Saga, S. and Yamada, K.M. (1986) A Major Collagen-Binding Protein of Chick Embryo Fibroblasts Is a Novel Heat Shock Protein. The Journal of Cell Biology, 103, 223-229. https://doi.org/10.1083/jcb.103.1.223
|
[2]
|
Hirayoshi, K., Kudo, H., Takechi, H., et al. (1991) HSP47: A Tissue-Specific, Transformation-Sensitive, Collagen-Binding Heat Shock Protein of Chicken Embryo Fibroblasts. Molecular and Cellular Biology, 11, 4036-4044.
|
[3]
|
Pearson, D.S., Kulyk, W.M., Kelly, G.M. and Krone, P.H. (1996) Cloning and Characterization of a cDNA Encoding the Collagen-Binding Stress Protein Hsp47 in Zebrafish. DNA and Cell Biology, 15, 263-272. https://doi.org/10.1089/dna.1996.15.263
|
[4]
|
Satoh, M., Hirayoshi, K., Yokota, S., Hosokawa, N. and Nagata, K. (1996) Intracellular Interaction of Collagen-Specific Stress Protein HSP47 with Newly Synthesized Procollagen. The Journal of Cell Biology, 133, 469-483. https://doi.org/10.1083/jcb.133.2.469
|
[5]
|
Niwa, T., Kanamori, T., Ueda, T. and Taguchi, H. (2012) Global Analysis of Chaperone Effects Using a Reconstituted Cell-Free Translation System. Proceedings of the National Academy of Sciences, 109, 8937-8942. https://doi.org/10.1073/pnas.1201380109
|
[6]
|
Nagai, N., Hosokawa, M., Itohara, S., Adachi, E., Matsushita, T., Hosokawa, N., et al. (2000) Embryonic Lethality of Molecular Chaperone Hsp47 Knockout Mice Is Associated with Defects in Collagen Biosynthesis. The Journal of Cell Biology, 150, 1499-1506. https://doi.org/10.1083/jcb.150.6.1499
|
[7]
|
Masago, Y., Hosoya, A., Kawasaki, K., Kawano, S., Nasu, A., Toguchida, J., et al. (2012) The Molecular Chaperone Hsp47 Is Essential for Cartilage and Endochondral Bone Formation. Journal of Cell Science, 125, 1118-1128. https://doi.org/10.1242/jcs.089748
|
[8]
|
Söderhäll, C., Marenholz, I., Kerscher, T., Rüschendorf, F., Esparza-Gordillo, J., Worm, M., et al. (2007) Variants in a Novel Epidermal Collagen Gene (COL29A1) Are Associated with Atopic Dermatitis. PLOS Biology, 5, e242. https://doi.org/10.1371/journal.pbio.0050242
|
[9]
|
Bourhis, J., Mariano, N., Zhao, Y., Harlos, K., Exposito, J., Jones, E.Y., et al. (2012) Structural Basis of Fibrillar Collagen Trimerization and Related Genetic Disorders. Nature Structural & Molecular Biology, 19, 1031-1036. https://doi.org/10.1038/nsmb.2389
|
[10]
|
Engel, J. (1991) The Zipper-Like Folding of Collagen Triple Helices and the Effects of Mutations That Disrupt the Zipper. Annual Review of Biophysics and Biophysical Chemistry, 20, 137-152.
|
[11]
|
Saga, S., Nagata, K., Chen, W.T. and Yamada, K.M. (1987) Ph-Dependent Function, Purification, and Intracellular Location of a Major Collagen-Binding Glycoprotein. The Journal of Cell Biology, 105, 517-527. https://doi.org/10.1083/jcb.105.1.517
|
[12]
|
Nakai, A., Satoh, M., Hirayoshi, K. and Nagata, K. (1992) Involvement of the Stress Protein HSP47 in Procollagen Processing in the Endoplasmic Reticulum. The Journal of Cell Biology, 117, 903-914. https://doi.org/10.1083/jcb.117.4.903
|
[13]
|
Makareeva, E. and Leikin, S. (2007) Procollagen Triple Helix Assembly: An Unconventional Chaperone-Assisted Folding Paradigm. PLOS ONE, 2, e1029. https://doi.org/10.1371/journal.pone.0001029
|
[14]
|
Thomson, C.A. and Ananthanarayanan, V.S. (2000) Structure-Function Studies on Hsp47: Ph-Dependent Inhibition of Collagen Fibril Formation in Vitro. Biochemical Journal, 349, 877-883. https://doi.org/10.1042/bj3490877
|
[15]
|
Friedman, S.L. (2000) Molecular Regulation of Hepatic Fibrosis, an Integrated Cellular Response to Tissue Injury. Journal of Biological Chemistry, 275, 2247-2250. https://doi.org/10.1074/jbc.275.4.2247
|
[16]
|
Sato, Y., Murase, K., Kato, J., Kobune, M., Sato, T., Kawano, Y., et al. (2008) Resolution of Liver Cirrhosis Using Vitamin A-Coupled Liposomes to Deliver siRNA against a Collagen-Specific Chaperone. Nature Biotechnology, 26, 431-442. https://doi.org/10.1038/nbt1396
|
[17]
|
Kisseleva, T., Cong, M., Paik, Y., Scholten, D., Jiang, C., Benner, C., et al. (2012) Myofibroblasts Revert to an Inactive Phenotype during Regression of Liver Fibrosis. Proceedings of the National Academy of Sciences, 109, 9448-9453. https://doi.org/10.1073/pnas.1201840109
|
[18]
|
Kawasaki, K., Ushioda, R., Ito, S., Ikeda, K., Masago, Y. and Nagata, K. (2015) Deletion of the Collagen-Specific Molecular Chaperone Hsp47 Causes Endoplasmic Reticulum Stress-Mediated Apoptosis of Hepatic Stellate Cells. Journal of Biological Chemistry, 290, 3639-3646. https://doi.org/10.1074/jbc.m114.592139
|
[19]
|
Dijk, F.S.V. and Sillence, D.O. (2014) Osteogenesis Imperfecta: Clinical Diagnosis, Nomenclature and Severity Assessment. American Journal of Medical Genetics Part A, 164, 1470-1481.
|
[20]
|
Jovanovic, M., Guterman-Ram, G. and Marini, J.C. (2021) Osteogenesis Imperfecta: Mechanisms and Signaling Pathways Connecting Classical and Rare OI Types. Endocrine Reviews, 43, 61-90. https://doi.org/10.1210/endrev/bnab017
|
[21]
|
Forlino, A. and Marini, J.C. (2016) Osteogenesis Imperfecta. The Lancet, 387, 1657-1671. https://doi.org/10.1016/s0140-6736(15)00728-x
|
[22]
|
Sillence, D.O., Senn, A. and Danks, D.M. (1979) Genetic Heterogeneity in Osteogenesis Imperfecta. Journal of Medical Genetics, 16, 101-116. https://doi.org/10.1136/jmg.16.2.101
|
[23]
|
Christiansen, H.E., Schwarze, U., Pyott, S.M., AlSwaid, A., Al Balwi, M., Alrasheed, S., et al. (2010) Homozygosity for a Missense Mutation in SERPINH1, Which Encodes the Collagen Chaperone Protein HSP47, Results in Severe Recessive Osteogenesis Imperfecta. The American Journal of Human Genetics, 86, 389-398. https://doi.org/10.1016/j.ajhg.2010.01.034
|
[24]
|
Ito, S. and Nagata, K. (2016) Mutants of Collagen-Specific Molecular Chaperone Hsp47 Causing Osteogenesis Imperfecta Are Structurally Unstable with Weak Binding Affinity to Collagen. Biochemical and Biophysical Research Communications, 469, 437-442. https://doi.org/10.1016/j.bbrc.2015.12.028
|
[25]
|
Lindert, U., Weis, M.A., Rai, J., Seeliger, F., Hausser, I., Leeb, T., et al. (2015) Molecular Consequences of the SERPINH1/HSP47 Mutation in the Dachshund Natural Model of Osteogenesis Imperfecta. Journal of Biological Chemistry, 290, 17679-17689. https://doi.org/10.1074/jbc.m115.661025
|
[26]
|
Burrows, J.A.J., Willis, L.K. and Perlmutter, D.H. (2000) Chemical Chaperones Mediate Increased Secretion of Mutant alpha1-Antitrypsin (alpha1-AT) Z: A Potential Pharmacological Strategy for Prevention of Liver Injury and Emphysema in alpha1-AT Deficiency. Proceedings of the National Academy of Sciences of the United States of America, 97, 1796-1801.
|
[27]
|
Schwab, M. (1998) Amplification of Oncogenes in Human Cancer Cells. BioEssays, 20, 473-479. https://doi.org/10.1002/(sici)1521-1878(199806)20:6<473::aid-bies5>3.0.co;2-n
|
[28]
|
Mori, K., Toiyama, Y., Okugawa, Y., Ichikawa, T., Nagano, Y., Oki, S., et al. (2020) Preoperative Heat Shock Protein 47 levels Identify Colorectal Cancer Patients with Lymph Node Metastasis and Poor Prognosis. Oncology Letters, 20, Article No. 333. https://doi.org/10.3892/ol.2020.12196
|
[29]
|
Wu, W., Hu, Z., Xiong, L. and Zou, J. (2021) Heat Shock Protein 47 Promotes Cell Migration and Invasion through AKT Signal in Non-Small Cell Lung Cancer. Anti-Cancer Drugs, 33, 268-277. https://doi.org/10.1097/cad.0000000000001262
|
[30]
|
Chern, Y., Zhang, P., Ju, H. and T. Tai, I. (2020) Heat Shock Protein 47 Promotes Tumor Survival and Therapy Resistance by Modulating AKT Signaling via PHLPP1 in Colorectal Cancer. Cancer Biology and Medicine, 17, 343-356. https://doi.org/10.20892/j.issn.2095-3941.2019.0261
|
[31]
|
Tian, S., Peng, P., Li, J., Deng, H., Zhan, N., Zeng, Z., et al. (2020) SERPINH1 Regulates EMT and Gastric Cancer Metastasis via the Wnt/β-Catenin Signaling Pathway. Aging, 12, 3574-3593. https://doi.org/10.18632/aging.102831
|
[32]
|
Chen, J., Wang, S., Zhang, Z., Richards, C.I. and Xu, R. (2019) Heat Shock Protein 47 (HSP47) Binds to Discoidin Domain-Containing Receptor 2 (DDR2) and Regulates Its Protein Stability. Journal of Biological Chemistry, 294, 16846-16854. https://doi.org/10.1074/jbc.ra119.009312
|
[33]
|
Song, X., Liao, Z., Zhou, C., Lin, R., Lu, J., Cai, L., et al. (2017) HSP47 Is Associated with the Prognosis of Laryngeal Squamous Cell Carcinoma by Inhibiting Cell Viability and Invasion and Promoting Apoptosis. Oncology Reports, 38, 2444-2452. https://doi.org/10.3892/or.2017.5893
|
[34]
|
Yamamoto, N., Kinoshita, T., Nohata, N., Mitsuhashi, A., Usui, H., Yoshino, H., et al. (2014) Abstract 4350: Tumor-Suppressive Microrna-29a Inhibits Cancer Cell Migration and Invasion via Targeting HSP47 in Cervical Squamous Cell Carcinoma. Cancer Research, 74, 4350-4350. https://doi.org/10.1158/1538-7445.am2014-4350
|
[35]
|
Araki, K., Mikami, T., Yoshida, T., Kikuchi, M., Sato, Y., Oh-ishi, M., et al. (2009) High Expression of HSP47 in Ulcerative Colitis-Associated Carcinomas: Proteomic Approach. British Journal of Cancer, 101, 492-497. https://doi.org/10.1038/sj.bjc.6605163
|
[36]
|
Shackley, D.C., Haylett, A., Whitehurst, C., Betts, C.D., O'Flynn, K., Clarke, N.W., et al. (2002) Comparison of the Cellular Molecular Stress Responses after Treatments Used in Bladder Cancer. BJU International, 90, 924-932. https://doi.org/10.1046/j.1464-410x.2002.03024.x
|
[37]
|
Thomas, H., Diamond, J., Vieco, A., Chaudhuri, S., Shinnar, E., Cromer, S., et al. (2018) Global Atlas of Cardiovascular Disease 2000-2016: The Path to Prevention and Control. Global Heart, 13, Article No. 143. https://doi.org/10.1016/j.gheart.2018.09.511
|
[38]
|
Frangogiannis, N.G. (2019) Cardiac Fibrosis: Cell Biological Mechanisms, Molecular Pathways and Therapeutic Opportunities. Molecular Aspects of Medicine, 65, 70-99. https://doi.org/10.1016/j.mam.2018.07.001
|
[39]
|
Sun, H., Wu, Z., Nie, X., Wang, X. and Bian, J. (2021) An Updated Insight into Molecular Mechanism of Hydrogen Sulfide in Cardiomyopathy and Myocardial Ischemia/Reperfusion Injury under Diabetes. Frontiers in Pharmacology, 12, Article ID: 651884. https://doi.org/10.3389/fphar.2021.651884
|
[40]
|
Xie, S., Xing, Y., Shi, W., Zhang, M., Chen, M., Fang, W., et al. (2022) Cardiac Fibroblast Heat Shock Protein 47 Aggravates Cardiac Fibrosis Post Myocardial Ischemia-Reperfusion Injury by Encouraging Ubiquitin Specific Peptidase 10 Dependent Smad4 Deubiquitination. Acta Pharmaceutica Sinica B, 12, 4138-4153. https://doi.org/10.1016/j.apsb.2022.07.022
|
[41]
|
Ziaeian, B. and Fonarow, G.C. (2016) Epidemiology and Aetiology of Heart Failure. Nature Reviews Cardiology, 13, 368-378. https://doi.org/10.1038/nrcardio.2016.25
|
[42]
|
Baehr, A., Umansky, K.B., Bassat, E., Jurisch, V., Klett, K., Bozoglu, T., et al. (2020) Agrin Promotes Coordinated Therapeutic Processes Leading to Improved Cardiac Repair in Pigs. Circulation, 142, 868-881. https://doi.org/10.1161/circulationaha.119.045116
|
[43]
|
Cheng, L., Sun, X., Zhao, X., Wang, L., Yu, J., Pan, G., et al. (2016) Surface Biofunctional Drug-Loaded Electrospun Fibrous Scaffolds for Comprehensive Repairing Hypertrophic Scars. Biomaterials, 83, 169-181. https://doi.org/10.1016/j.biomaterials.2016.01.002
|
[44]
|
田倪妮, 魏玲, 李宏键, 等. 慢性心力衰竭患者心肌热休克蛋白47的表达及其与纤维化的相关性研究[J]. 中国动脉硬化杂志, 2015, 23(6): 579-583.
|
[45]
|
段卡丹, 张守彦, 李松森. 肥厚型心肌病病人血清HSP47、NT-proBNP水平与心肌纤维化影像学指标的相关性[J]. 中西医结合心脑血管病杂志, 2020, 18(20): 3412-3415.
|
[46]
|
Bellaye, P., Burgy, O., Bonniaud, P. and Kolb, M. (2021) HSP47: A Potential Target for Fibrotic Diseases and Implications for Therapy. Expert Opinion on Therapeutic Targets, 25, 49-62. https://doi.org/10.1080/14728222.2021.1861249
|
[47]
|
King, T.E., Bradford, W.Z., Castro-Bernardini, S., Fagan, E.A., Glaspole, I., Glassberg, M.K., et al. (2014) A Phase 3 Trial of Pirfenidone in Patients with Idiopathic Pulmonary Fibrosis. New England Journal of Medicine, 370, 2083-2092. https://doi.org/10.1056/nejmoa1402582
|
[48]
|
林梦娇, 田倪妮, 魏玲, 等. 慢性缺氧大鼠心肌HSP47 mRNA的表达及其与PICP和PIIINP含量的相关性研究[J]. 中华老年多器官疾病杂志, 2017, 16(4): 288-292.
|
[49]
|
沈伟伟, 于俊民. 心肌梗死后心肌纤维化分子机制研究进展[J]. 医学综述, 2017, 23(7): 1249-1253.
|