[1]
|
Stoumpos, S., Jardine, A.G. and Mark, P.B. (2024) Cardiovascular Morbidity and Mortality after Kidney Transplantation. Transplant International, 28, 10-21. https://pubmed.ncbi.nlm.nih.gov/25081992/
|
[2]
|
Fellström, B., Holdaas, H. and Jardine, A. (2004) Cardiovascular Disease in Renal Transplantation: Management by Statins. Transplantation Reviews, 18, 122-128. https://doi.org/10.1016/j.trre.2004.03.001
|
[3]
|
Gaston, R.S., Kasiske, B.L., Fieberg, A.M., Leduc, R., Cosio, F.C., Gourishankar, S., et al. (2009) Use of Cardioprotective Medications in Kidney Transplant Recipients. American Journal of Transplantation, 9, 1811-1815. https://doi.org/10.1111/j.1600-6143.2009.02696.x
|
[4]
|
Habbig, S., Volland, R., Krupka, K., Querfeld, U., Dello Strologo, L., Noyan, A., et al. (2017) Dyslipidemia after Pediatric Renal Transplantation—The Impact of Immunosuppressive Regimens. Pediatric Transplantation, 21, e12914. https://doi.org/10.1111/petr.12914
|
[5]
|
Li, S., Zhou, H., Liu, J., Yang, J., Jiang, L., Yuan, H., et al. (2024) Restoration of HMGCS2-Mediated Ketogenesis Alleviates Tacrolimus-Induced Hepatic Lipid Metabolism Disorder. Acta Pharmacologica Sinica, 45, 1898-1911. https://doi.org/10.1038/s41401-024-01300-0
|
[6]
|
Houde, V.P., Brûlé, S., Festuccia, W.T., Blanchard, P., Bellmann, K., Deshaies, Y., et al. (2010) Chronic Rapamycin Treatment Causes Glucose Intolerance and Hyperlipidemia by Upregulating Hepatic Gluconeogenesis and Impairing Lipid Deposition in Adipose Tissue. Diabetes, 59, 1338-1348. https://doi.org/10.2337/db09-1324
|
[7]
|
Kurdi, A., Martinet, W. and De Meyer, G.R.Y. (2018) mTOR Inhibition and Cardiovascular Diseases: Dyslipidemia and Atherosclerosis. Transplantation, 102, S44-S46. https://doi.org/10.1097/tp.0000000000001693
|
[8]
|
Ponticelli, C., Arnaboldi, L., Moroni, G. and Corsini, A. (2020) Treatment of Dyslipidemia in Kidney Transplantation. Expert Opinion on Drug Safety, 19, 257-267. https://doi.org/10.1080/14740338.2020.1732921
|
[9]
|
Skulratanasak, P. and Larpparisuth, N. (2023) Lipid Management to Mitigate Poorer Postkidney Transplant Outcomes. Current Opinion in Nephrology and Hypertension, 32, 27-34. https://pubmed.ncbi.nlm.nih.gov/36250471/
|
[10]
|
Mach, F., Baigent, C., Catapano, A.L., Koskinas, K.C., Casula, M., Badimon, L., et al. (2020) 2019 ESC/EAS Guidelines for the Management of Dyslipidaemias: Lipid Modification to Reduce Cardiovascular Risk. European Heart Journal, 41, 111-188.
|
[11]
|
Eckardt, K., Kasiske, B.L. and Zeier, M.G. (2009) Special Issue: KDIGO Clinical Practice Guideline for the Care of Kidney Transplant Recipients. American Journal of Transplantation, 9, S1-S155. https://doi.org/10.1111/j.1600-6143.2009.02834.x
|
[12]
|
Zhang, Y., Liu, B., Meng, Q., Zhang, D., Yang, H., Li, G., et al. (2023) Targeted Changes in Blood Lipids Improves Fibrosis in Renal Allografts. Lipids in Health and Disease, 22, Article Nol. 215. https://doi.org/10.1186/s12944-023-01978-x
|
[13]
|
Wilkinson, T.J., Clarke, A.L., Nixon, D.G.D., Hull, K.L., Song, Y., Burton, J.O., et al. (2019) Prevalence and Correlates of Physical Activity across Kidney Disease Stages: An Observational Multicentre Study. Nephrology Dialysis Transplantation, 36, 641-649. https://doi.org/10.1093/ndt/gfz235
|
[14]
|
Zhang, D., Yu, L., Xia, B., Zhang, X., Liang, P. and Hu, X. (2023) Systematic Review and Meta-Analysis of the Efficacy of Exercise Intervention in Kidney Transplant Recipients. World Journal of Urology, 41, 3449-3469. https://doi.org/10.1007/s00345-023-04673-9
|
[15]
|
Woodle, E.S., First, M.R., Pirsch, J., Shihab, F., Gaber, A.O. and Van Veldhuisen, P. (2008) A Prospective, Randomized, Double-Blind, Placebo-Controlled Multicenter Trial Comparing Early (7 Day) Corticosteroid Cessation versus Long-Term, Low-Dose Corticosteroid Therapy. Annals of Surgery, 248, 564-577. https://doi.org/10.1097/sla.0b013e318187d1da
|
[16]
|
Serrano, O.K., Kandaswamy, R., Gillingham, K., Chinnakotla, S., Dunn, T.B., Finger, E., et al. (2017) Rapid Discontinuation of Prednisone in Kidney Transplant Recipients: 15-Year Outcomes from the University of Minnesota. Transplantation, 101, 2590-2598. https://doi.org/10.1097/tp.0000000000001756
|
[17]
|
Haller, M.C., Royuela, A., Nagler, E.V., Pascual, J. and Webster, A.C. (2016) Steroid Avoidance or Withdrawal for Kidney Transplant Recipients. Cochrane Database of Systematic Reviews, No. 6, CD005632. https://doi.org/10.1002/14651858.cd005632.pub3
|
[18]
|
Flechner, S.M., Glyda, M., Cockfield, S., Grinyó, J., Legendre, C., Russ, G., et al. (2011) The ORION Study: Comparison of Two Sirolimus-Based Regimens versus Tacrolimus and Mycophenolate Mofetil in Renal Allograft Recipients. American Journal of Transplantation, 11, 1633-1644. https://doi.org/10.1111/j.1600-6143.2011.03573.x
|
[19]
|
Budde, K., et al. (2011) Everolimus-Based, Calcineurin-Inhibitor-Free Regimen in Recipients of De-Novo Kidney Transplants: An Open-Label, Randomised, Controlled Trial. Lancet, 377, 837-847. https://pubmed.ncbi.nlm.nih.gov/21334736/
|
[20]
|
Bellos, I., Lagiou, P., Benetou, V. and Marinaki, S. (2024) Efficacy and Safety of Statin Therapy in Kidney Transplant Recipients: A Systematic Review and Meta-Analysis. Lipids in Health and Disease, 23, Article No. 293. https://doi.org/10.1186/s12944-024-02276-w
|
[21]
|
Yim, S.H., Kim, H.J., Ro, H., Ryu, J., Kim, M., Park, J.B., et al. (2024) Benefits of Statin Therapy within a Year after Kidney Transplantation. Scientific Reports, 14, Article No. 2002. https://doi.org/10.1038/s41598-024-52513-6
|
[22]
|
Bae, S., Ahn, J.B., Joseph, C., Whisler, R., Schnitzler, M.A., Lentine, K.L., et al. (2023) Incidence of Statin-Associated Adverse Events in Kidney Transplant Recipients. Clinical Journal of the American Society of Nephrology, 18, 626-633. https://doi.org/10.2215/cjn.0000000000000124
|
[23]
|
Sirtori, C.R. (2014) The Pharmacology of Statins. Pharmacological Research, 88, 3-11. https://doi.org/10.1016/j.phrs.2014.03.002
|
[24]
|
Kosoglou, T., Statkevich, P., Johnson-Levonas, A.O., Paolini, J.F., Bergman, A.J. and Alton, K.B. (2005) Ezetimibe: A Review of Its Metabolism, Pharmacokinetics and Drug Interactions. Clinical Pharmacokinetics, 44, 467-494. https://doi.org/10.2165/00003088-200544050-00002
|
[25]
|
Goto, H., Iseri, K. and Hida, N. (2023) Fibrates and the Risk of Cardiovascular Outcomes in Chronic Kidney Disease Patients. Nephrology Dialysis Transplantation, 39, 1016-1022. https://doi.org/10.1093/ndt/gfad248
|
[26]
|
Hadjivasilis, A., Kouis, P., Kousios, A. and Panayiotou, A. (2022) The Effect of Fibrates on Kidney Function and Chronic Kidney Disease Progression: A Systematic Review and Meta-Analysis of Randomised Studies. Journal of Clinical Medicine, 11, Article 768. https://doi.org/10.3390/jcm11030768
|
[27]
|
Mir, O., Poinsignon, V., Arnedos, M., Delaloge, S. and Paci, A. (2015) Pharmacokinetic Interaction Involving Fenofibrate and Everolimus. Annals of Oncology, 26, 248-249. https://doi.org/10.1093/annonc/mdu492
|
[28]
|
Wang, T., Zhang, X., Zhou, N., Shen, Y., Li, B., Chen, B.E., et al. (2023) Association between ω‐3 Fatty Acid Intake and Dyslipidemia: A Continuous Dose-Response Meta‐Analysis of Randomized Controlled Trials. Journal of the American Heart Association, 12, e029512. https://doi.org/10.1161/jaha.123.029512
|
[29]
|
Chan, J., Eide, I.A., Tannæs, T.M., Waldum-Grevbo, B., Jenssen, T. and Svensson, M. (2021) Marine N-3 Polyunsaturated Fatty Acids and Cellular Senescence Markers in Incident Kidney Transplant Recipients: The ω-3 Fatty Acids in Renal Transplantation (ORENTRA) Randomized Clinical Trial. Kidney Medicine, 3, 1041-1049. https://doi.org/10.1016/j.xkme.2021.07.010
|
[30]
|
Zhang, Y., Pei, Z., Chen, B., Qu, Y., Dong, X., Yu, B., et al. (2024) Ebronucimab in Chinese Patients with Hypercholesterolemia—A Randomized Double-Blind Placebo-Controlled Phase 3 Trial to Evaluate the Efficacy and Safety of Ebronucimab. Pharmacological Research, 207, Article ID: 107340. https://doi.org/10.1016/j.phrs.2024.107340
|
[31]
|
Hummelgaard, S., Vilstrup, J.P., Gustafsen, C., Glerup, S. and Weyer, K. (2023) Targeting PCSK9 to Tackle Cardiovascular Disease. Pharmacology & Therapeutics, 249, 108480. https://doi.org/10.1016/j.pharmthera.2023.108480
|
[32]
|
Liu, H. (2024) Association between PCSK9 Inhibitors and Acute Kidney Injury: A Pharmacovigilance Study. Frontiers in Pharmacology, 15, Article 1353848. https://doi.org/10.3389/fphar.2024.1353848
|
[33]
|
Ueberdiek, L., Jehn, U., Pavenstädt, H., Gebauer, K. and Reuter, S. (2023) Novel Therapeutic Strategies for Dyslipidemia: First Report of Inclisiran Therapy in a Kidney Transplanted Patient. Transplant International, 36, Article 11104. https://doi.org/10.3389/ti.2023.11104
|
[34]
|
Alotaibi, T., Nagib, A.M., Denewar, A., Aboateya, H., Halim, M.A., Mahmoud, T., et al. (2024) Inhibition of Proprotein Convertase Subtilisin/Kexin-9 after Kidney Transplant: Single-Center Experience among Patients with High Cardiovascular Risk. Experimental and Clinical Transplantation, 22, 315-322.
|
[35]
|
Nissen, S.E., Lincoff, A.M., Brennan, D., Ray, K.K., Mason, D., Kastelein, J.J.P., et al. (2023) Bempedoic Acid and Cardiovascular Outcomes in Statin-Intolerant Patients. The New England Journal of Medicine, 388, 1353-1364.
|
[36]
|
Alunno, A., et al. (2023) Untangling the Relationship between Bempedoic Acid and Gout: Results from a Systematic Literature Review. Frontiers in Cardiovascular Medicine, 10, Article 1234601. https://pubmed.ncbi.nlm.nih.gov/37953764/
|
[37]
|
Gobeil, É., Bourgault, J., Mitchell, P.L., Houessou, U., Gagnon, E., Girard, A., et al. (2024) Genetic Inhibition of Angiopoietin-Like Protein-3, Lipids, and Cardiometabolic Risk. European Heart Journal, 45, 707-721. https://doi.org/10.1093/eurheartj/ehad845
|
[38]
|
Calcaterra, I., Lupoli, R., Di Minno, A. and Di Minno, M.N.D. (2022) Volanesorsen to Treat Severe Hypertriglyceridaemia: A Pooled Analysis of Randomized Controlled Trials. European Journal of Clinical Investigation, 52, e13841. https://doi.org/10.1111/eci.13841
|