[1]
|
Jin, Z., Yang, L., Shi, S., Wang, T., Duan, G., Liu, X., et al. (2021) Flexible Polydopamine Bioelectronics. Advanced Functional Materials, 31, Article ID: 2103391. https://doi.org/10.1002/adfm.202103391
|
[2]
|
Shin, M.K., Spinks, G.M., Shin, S.R., Kim, S.I. and Kim, S.J. (2009) Nanocomposite Hydrogel with High Toughness for Bioactuators. Advanced Materials, 21, 1712-1715. https://doi.org/10.1002/adma.200802205
|
[3]
|
Wei, J., Li, R., Li, L., Wang, W. and Chen, T. (2022) Touch-Responsive Hydrogel for Biomimetic Flytrap-Like Soft Actuator. Nano-Micro Letters, 14, Article No. 182. https://doi.org/10.1007/s40820-022-00931-4
|
[4]
|
Park, C.S., Kang, Y., Na, H. and Sun, J. (2024) Hydrogels for Bioinspired Soft Robots. Progress in Polymer Science, 150, Article ID: 101791. https://doi.org/10.1016/j.progpolymsci.2024.101791
|
[5]
|
Dethe, M.R., A, P., Ahmed, H., Agrawal, M., Roy, U. and Alexander, A. (2022) PCL-PEG Copolymer Based Injectable Thermosensitive Hydrogels. Journal of Controlled Release, 343, 217-236. https://doi.org/10.1016/j.jconrel.2022.01.035
|
[6]
|
Pei, W., Xie, Z., Pei, X. and Wang, J. (2024) Intelligent Solar-Driven “Switch” Photothermal Hydrogel for Clean Water Harvesting. Chemical Engineering Journal, 495, Article ID: 153420. https://doi.org/10.1016/j.cej.2024.153420
|
[7]
|
Wei, X., Wu, Q., Chen, L., Sun, Y., Chen, L., Zhang, C., et al. (2023) Remotely Controlled Light/Electric/Magnetic Multiresponsive Hydrogel for Fast Actuations. ACS Applied Materials & Interfaces, 15, 10030-10043. https://doi.org/10.1021/acsami.2c22831
|
[8]
|
Li, Z., Li, Y., Chen, C. and Cheng, Y. (2021) Magnetic-Responsive Hydrogels: From Strategic Design to Biomedical Applications. Journal of Controlled Release, 335, 541-556. https://doi.org/10.1016/j.jconrel.2021.06.003
|
[9]
|
Lee, L., Huang, K., Lin, Y., Jeng, U., Wang, C., Tung, S., et al. (2024) A pH‐Sensitive Stretchable Zwitterionic Hydrogel with Bipolar Thermoelectricity. Small, 20, Article ID: 2311811. https://doi.org/10.1002/smll.202311811
|
[10]
|
Gao, Y., Jia, F. and Gao, G. (2022) Ultra-Thin, Transparent, Anti-Freezing Organohydrogel Film Responded to a Wide Range of Humidity and Temperature. Chemical Engineering Journal, 430, Article ID: 132919. https://doi.org/10.1016/j.cej.2021.132919
|
[11]
|
Tai, Y., Wei, C. and Ko, F. (2025) Hydrogel-Based Colorimetric Power-Saving Sensors for On-Site Detection of Chloride Ions and Glucose in Sweat. Biosensors and Bioelectronics, 271, Article ID: 117041. https://doi.org/10.1016/j.bios.2024.117041
|
[12]
|
Wong, W.S.Y., Li, M., Nisbet, D.R., Craig, V.S.J., Wang, Z. and Tricoli, A. (2016) Mimosa Origami: A Nanostructure-Enabled Directional Self-Organization Regime of Materials. Science Advances, 2, e1600417. https://doi.org/10.1126/sciadv.1600417
|
[13]
|
Zhang, Z., Chen, Z., Wang, Y., Chi, J., Wang, Y. and Zhao, Y. (2019) Bioinspired Bilayer Structural Color Hydrogel Actuator with Multienvironment Responsiveness and Survivability. Small Methods, 3, Article ID: 1900519. https://doi.org/10.1002/smtd.201900519
|
[14]
|
López‐Díaz, A., Martín‐Pacheco, A., Rodríguez, A.M., Herrero, M.A., Vázquez, A.S. and Vázquez, E. (2020) Concentration Gradient‐Based Soft Robotics: Hydrogels out of Water. Advanced Functional Materials, 30, Article ID: 2004417. https://doi.org/10.1002/adfm.202004417
|
[15]
|
Tang, Y., Wu, B., Li, J., Lu, C., Wu, J. and Xiong, R. (2024) Biomimetic Structural Hydrogels Reinforced by Gradient Twisted Plywood Architectures. Advanced Materials, 37, Article ID: 2411372. https://doi.org/10.1002/adma.202411372
|
[16]
|
Ma, Y., Ma, S., Yang, W., Yu, B., Pei, X., Zhou, F., et al. (2018) Sundew‐Inspired Simultaneous Actuation and Adhesion/Friction Control for Reversibly Capturing Objects Underwater. Advanced Materials Technologies, 4, Article ID: 1800467. https://doi.org/10.1002/admt.201800467
|
[17]
|
Li, J., Zhang, G., Cui, Z., Bao, L., Xia, Z., Liu, Z., et al. (2023) High Performance and Multifunction Moisture‐Driven Yin-Yang-Interface Actuators Derived from Polyacrylamide Hydrogel. Small, 19, Article ID: 2303228. https://doi.org/10.1002/smll.202303228
|
[18]
|
Liu, X., Zhao, L., Liu, F., Astruc, D. and Gu, H. (2020) Supramolecular Redox-Responsive Ferrocene Hydrogels and Microgels. Coordination Chemistry Reviews, 419, Article ID: 213406. https://doi.org/10.1016/j.ccr.2020.213406
|
[19]
|
Graham, S., Marina, P.F. and Blencowe, A. (2019) Thermoresponsive Polysaccharides and Their Thermoreversible Physical Hydrogel Networks. Carbohydrate Polymers, 207, 143-159. https://doi.org/10.1016/j.carbpol.2018.11.053
|
[20]
|
Tang, L., Wang, L., Yang, X., Feng, Y., Li, Y. and Feng, W. (2021) Poly(n-isopropylacrylamide)-Based Smart Hydrogels: Design, Properties and Applications. Progress in Materials Science, 115, Article ID: 100702. https://doi.org/10.1016/j.pmatsci.2020.100702
|
[21]
|
He, X., Aizenberg, M., Kuksenok, O., Zarzar, L.D., Shastri, A., Balazs, A.C., et al. (2012) Synthetic Homeostatic Materials with Chemo-Mechano-Chemical Self-Regulation. Nature, 487, 214-218. https://doi.org/10.1038/nature11223
|
[22]
|
Zhao, C., Ma, Z. and Zhu, X.X. (2019) Rational Design of Thermoresponsive Polymers in Aqueous Solutions: A Thermodynamics Map. Progress in Polymer Science, 90, 269-291. https://doi.org/10.1016/j.progpolymsci.2019.01.001
|
[23]
|
Hua, L., Xie, M., Jian, Y., Wu, B., Chen, C. and Zhao, C. (2019) Multiple-Responsive and Amphibious Hydrogel Actuator Based on Asymmetric UCST-Type Volume Phase Transition. ACS Applied Materials & Interfaces, 11, 43641-43648. https://doi.org/10.1021/acsami.9b17159
|
[24]
|
Peng, X. and Wang, H. (2018) Shape Changing Hydrogels and Their Applications as Soft Actuators. Journal of Polymer Science Part B: Polymer Physics, 56, 1314-1324. https://doi.org/10.1002/polb.24724
|
[25]
|
Li, C., Iscen, A., Palmer, L.C., Schatz, G.C. and Stupp, S.I. (2020) Light-Driven Expansion of Spiropyran Hydrogels. Journal of the American Chemical Society, 142, 8447-8453. https://doi.org/10.1021/jacs.0c02201
|
[26]
|
Li, M., Zhu, F., Ge, Y., Zhou, J., Chen, X., Chen, W., et al. (2023) Vulcanized Layered Double Hydroxide Nanosheet Composite Hydrogels as Efficient Near-Infrared Light-Fueled Soft Actuators. ACS Materials Letters, 5, 1841-1850. https://doi.org/10.1021/acsmaterialslett.3c00435
|
[27]
|
Shankar, A., Safronov, A.P., Mikhnevich, E.A. and Beketov, I.V. (2017) Multidomain Iron Nanoparticles for the Preparation of Polyacrylamide Ferrogels. Journal of Magnetism and Magnetic Materials, 431, 134-137. https://doi.org/10.1016/j.jmmm.2016.08.075
|
[28]
|
Wang, H., Zhu, Z., Jin, H., Wei, R., Bi, L. and Zhang, W. (2022) Magnetic Soft Robots: Design, Actuation, and Function. Journal of Alloys and Compounds, 922, Article ID: 166219. https://doi.org/10.1016/j.jallcom.2022.166219
|
[29]
|
Li, H., Go, G., Ko, S.Y., Park, J. and Park, S. (2016) Magnetic Actuated pH-Responsive Hydrogel-Based Soft Micro-Robot for Targeted Drug Delivery. Smart Materials and Structures, 25, Article ID: 027001. https://doi.org/10.1088/0964-1726/25/2/027001
|
[30]
|
Messing, R. and Schmidt, A.M. (2011) Perspectives for the Mechanical Manipulation of Hybrid Hydrogels. Polym. Chem., 2, 18-32. https://doi.org/10.1039/c0py00129e
|
[31]
|
Kang, Y., Woo, J., Lee, H. and Sun, J. (2019) A Mechanically Enhanced Electroactive Hydrogel for 3D Printing Using a Multileg Long Chain Crosslinker. Smart Materials and Structures, 28, Article ID: 095016. https://doi.org/10.1088/1361-665x/ab325d
|
[32]
|
Albright, V., Zhuk, I., Wang, Y., Selin, V., van de Belt-Gritter, B., Busscher, H.J., et al. (2017) Self-Defensive Antibiotic-Loaded Layer-by-Layer Coatings: Imaging of Localized Bacterial Acidification and Ph-Triggering of Antibiotic Release. Acta Biomaterialia, 61, 66-74. https://doi.org/10.1016/j.actbio.2017.08.012
|
[33]
|
Yang, C., Su, F., Xu, Y., Ma, Y., Tang, L., Zhou, N., et al. (2022) pH Oscillator-Driven Jellyfish-Like Hydrogel Actuator with Dissipative Synergy between Deformation and Fluorescence Color Change. ACS Macro Letters, 11, 347-353. https://doi.org/10.1021/acsmacrolett.2c00002
|
[34]
|
Xu, Y., Bolisetty, S., Drechsler, M., Fang, B., Yuan, J., Ballauff, M., et al. (2008) pH and Salt Responsive Poly(n, n-Dimethylaminoethyl Methacrylate) Cylindrical Brushes and Their Quaternized Derivatives. Polymer, 49, 3957-3964. https://doi.org/10.1016/j.polymer.2008.06.051
|
[35]
|
Le, X., Lu, W., He, J., Serpe, M.J., Zhang, J. and Chen, T. (2018) Ionoprinting Controlled Information Storage of Fluorescent Hydrogel for Hierarchical and Multi-Dimensional Decryption. Science China Materials, 62, 831-839. https://doi.org/10.1007/s40843-018-9372-2
|
[36]
|
Nakahata, M., Takashima, Y., Hashidzume, A. and Harada, A. (2013) Redox-Generated Mechanical Motion of a Supramolecular Polymeric Actuator Based on Host-Guest Interactions. Angewandte Chemie International Edition, 52, 5731-5735. https://doi.org/10.1002/anie.201300862
|
[37]
|
Wu, S., Shi, H., Lu, W., Wei, S., Shang, H., Liu, H., et al. (2021) Aggregation‐Induced Emissive Carbon Dots Gels for Octopus‐Inspired Shape/Color Synergistically Adjustable Actuators. Angewandte Chemie International Edition, 60, 21890-21898. https://doi.org/10.1002/anie.202107281
|
[38]
|
Liu, W., Geng, L., Wu, J., Huang, A. and Peng, X. (2022) Highly Strong and Sensitive Bilayer Hydrogel Actuators Enhanced by Cross-Oriented Nanocellulose Networks. Composites Science and Technology, 225, Article ID: 109494. https://doi.org/10.1016/j.compscitech.2022.109494
|
[39]
|
Zhai, Y., Gong, C., Chen, J. and Chang, C. (2023) Magnetic-Field Induced Asymmetric Hydrogel Fibers for Tough Actuators with Programmable Deformation. Chemical Engineering Journal, 477, Article ID: 147088. https://doi.org/10.1016/j.cej.2023.147088
|
[40]
|
Wei, T., Zhao, R., Fang, L., Li, Z., Yang, M., Zhan, Z., et al. (2023) Encoded Magnetization for Programmable Soft Miniature Machines by Covalent Assembly of Modularly Coupled Microgels. Advanced Functional Materials, 34, Article ID: 2311908. https://doi.org/10.1002/adfm.202311908
|
[41]
|
Ilami, M., Bagheri, H., Ahmed, R., Skowronek, E.O. and Marvi, H. (2020) Materials, Actuators, and Sensors for Soft Bioinspired Robots. Advanced Materials, 33, Article ID: 2003139. https://doi.org/10.1002/adma.202003139
|
[42]
|
Sun, L., Zhao, Q., Che, L., Li, M., Leng, X., Long, Y., et al. (2023) Multi‐Stimuli‐Responsive Weldable Bilayer Actuator with Programmable Patterns and 3D Shapes. Advanced Functional Materials, 34, Article ID: 2311398. https://doi.org/10.1002/adfm.202311398
|
[43]
|
Zhao, Q., Chang, Y., Yu, Z., Liang, Y., Ren, L. and Ren, L. (2020) Bionic Intelligent Soft Actuators: High-Strength Gradient Intelligent Hydrogels with Diverse Controllable Deformations and Movements. Journal of Materials Chemistry B, 8, 9362-9373. https://doi.org/10.1039/d0tb01927e
|
[44]
|
Zhang, L., Yan, H., Zhou, J., Zhao, Z., Huang, J., Chen, L., et al. (2023) High‐Performance Organohydrogel Artificial Muscle with Compartmentalized Anisotropic Actuation under Microdomain Confinement. Advanced Materials, 35, Article ID: 2202193. https://doi.org/10.1002/adma.202202193
|