太赫兹辐射的生物学效应研究进展
Research Progress on Biological Effects of Terahertz Radiation
摘要: 太赫兹(THz)技术是一个不断发展的科学领域,其特征是频谱为0.1到10 THz。太赫兹(THz)波具有独特的物理特性,可产生多种生物学效应,如刺激细胞增殖、触发细胞凋亡、提高DNA甲基化水平、增强细胞膜通透性、增强基因表达、增强细胞炎症反应、影响神经元调控等。本文综述了THz波与生物分子的相互作用,重点阐述了THz辐射对肿瘤细胞生长抑制、诱导凋亡、生物分子甲基化等方面的影响。着重对电磁生物学的生物学效应进行研究,为电磁生物学的研究提供帮助和启示。
Abstract: Terahertz (THz) technology is a growing scientific field characterized by a spectrum of 0.1 to 10 THz. Terahertz (THz) waves have unique physical properties and can produce a variety of biological effects, such as stimulating cell proliferation, triggering apoptosis, increasing DNA methylation level, enhancing cell membrane permeability, enhancing gene expression, and enhancing cellular inflammatory response. This paper reviews the interaction between THz waves and biomolecules, focusing on the effects of THz radiation on tumor cell growth inhibition, apoptosis induction, and methylation of biomolecules. This paper focuses on the biological effects of electromagnetic biology to provide help and enlightenment for the research of electromagnetic biology.
文章引用:陈子昂, 杨寓麟, 范国豪, 陈麟. 太赫兹辐射的生物学效应研究进展[J]. 物理化学进展, 2025, 14(1): 34-47. https://doi.org/10.12677/japc.2025.141004

1. 引言

太赫兹波,也被称为THz波,是介于微波和红外线之间的电磁波谱的一部分。它们的频率范围约为0.1到10太赫兹[1] [2],这相当于波长范围为0.03到3毫米。太赫兹波表现出独特的特性,包括能够穿透许多非极性和非金属物质,被水分子高度吸收和非电离性质。这些特性使其在生物医学成像、安全检查、无线通信和材料科学等[2]各种应用中具有很高的应用前景。因此,在这个频率范围内存在显著的吸收和共振效应[1] [3]-[6]。当以特定的频率和能量发射时,太赫兹辐射可以通过改变神经元、触发蛋白质中的非线性共振现象,从而诱导细胞的结构和功能发生改变[7]。本文综述主要以太赫兹辐射为重点,并观察辐射后生物体的效应。早在2000年,欧盟就建立了一个名为THz-bridge (THz radiation in Biological Research, Investigation on Diagnostics and study of potential Genotoxic Effect)的国际联合项目,引起了全球对THz生物效应的研究[8]

然而,太赫兹可以以其他方式与生物系统相互作用。影响细胞凋亡:太赫兹波可能直接或间接地引起DNA损伤,这种损伤可以激活DNA修复机制。如果损伤超出了细胞的修复能力,可能会导致细胞凋亡。影响基因表达:太赫兹波可能影响表观遗传修饰,如DNA甲基化和组蛋白修饰,这些修饰可以改变染色质的结构和可及性,进而影响基因的转录。促进细胞炎症因子释放:太赫兹波可能引起细胞应激反应,导致热休克蛋白(HSPs)的表达增加。这些蛋白可以作为损伤相关分子模式(DAMPs),激活免疫细胞并促进炎性因子的释放。改变细胞形态:太赫兹波可能通过影响细胞骨架蛋白的构象或相互作用来改变细胞骨架的结构,进而改变细胞形态。生物大分子的共振谱:太赫兹波具有与生物大分子中某些化学键(如碳-氢、碳-氧等)的振动频率相匹配的能量级别。当太赫兹波的频率与这些化学键的振动频率一致时,可以发生共振吸收现象。细胞膜相互作用:太赫兹辐射可与细胞膜相互作用,引起细胞膜通透性改变,影响离子通道,从而影响细胞信号传导和稳态。蛋白质动力学:太赫兹辐射可引起蛋白质结构变化,改变其功能。据报道,太赫兹波可破坏蛋白质折叠,可能导致功能损害或应激反应。DNA和遗传物质:虽然太赫兹辐射不会直接损伤DNA,但它可以引起局部发热或诱导分子振动,这可能会长期影响基因表达或细胞行为(图1) [9]。生物安全:虽然太赫兹辐射的非电离性质表明,它比能量更高的形式更安全,但仍在进行研究,以充分了解暴露的长期生物影响,特别是在较高强度或较长时间下[10]

近些年来,越来越多的证据揭示了太赫兹辐射对生物体结构和功能的物理影响,并预测了太赫兹在电磁生物医学和临床实践中的一个有前途的前景[11]。本文综述了对太赫兹辐射的生物学机制进行总结,并重点介绍了近年来对太赫兹波在生物学效应影响的研究进展。本文进一步讨论增殖、凋亡、DNA甲基化、细胞膜的渗透性、基因表达、炎症反应、神经元调控等生物效应。对未来太赫兹在生物学领域提供了帮助。

Figure 1. Terahertz biological effects [9]

1. 太赫兹生物学效应[9]

2. 太赫兹辐射源

2.1. 热效应和非热效应

连续波太赫兹辐射:由于其功率较高,更可能在生物材料中引起热效应。这种热效应是由于生物组织吸收太赫兹辐射后,将吸收的辐射能量转化为热能,导致物体温度升高[12]。在较高功率密度下,太赫兹波可能导致组织热损伤,包括细胞死亡和组织结构破坏。也可能导致细胞内热休克蛋白的表达增加,这是细胞对热应激的反应不同生物组织对太赫兹辐射的热效应敏感性不同,这与组织的介电特性(如介电常数和电导率)有关。

脉冲波太赫兹辐射:脉冲波辐射可能具有非热效应,这种效应与辐射吸收后的加热无关。非热效应可能涉及太赫兹波与生物系统的共振和非共振激发,以及与生物分子中氢键的强烈振荡和最终断裂有关,导致蛋白质构象变化[12]。同时也会改变基因的表达。可能影响生物分子的三维结构,如DNA和蛋白质,导致其功能发生变化,这种影响通常不涉及显著的温度变化。

2.2. 生物效应的具体表现

连续波太赫兹辐射:可能导致生物组织的升温、急性炎症反应或肿瘤消融等生物效应。这些效应通常与辐射的热效应相关。

脉冲波太赫兹辐射:脉冲波辐射可能在基因表达上引起非热响应。太赫兹波已被用于调节神经活动,包括增强神经突触传递和改变神经元的放电模式。例如,Peltek等人[13]的研究显示,太赫兹脉冲在细菌中诱导了基因表达的非热响应,涉及“菌毛粘附”、“细胞聚集”和“隔环组装”等应激反应。

2.3. 暴露参数的影响

两者的生物效应都受到辐射参数(如频率、功率密度、暴露时间)和生物材料的性质(如生物系统属性和细胞类型)的影响。这些因素导致对太赫兹辐射的响应存在异质性[13]。Wang等人[14]采用太赫兹波(0.02~8 THz, 2.4 mW/cm2, 22.5分钟)刺激头顶的白辉穴位,这是调节神经血管活动最关键的区域之一。Tsurkan等人[15]使用太赫兹波(0.5THz,功率密度0.5~50 uW/cm2,3分钟)加速神经节生长。Cherkasova等人[16]对神经元施加太赫兹辐射(2.3 THz,平均强度为0.5~20 mW/cm2,0.6分钟),增加细胞膜的通透性,使不渗透的复合染料进入细胞质。

3. 太赫兹辐射引起的生物效应

3.1. 太赫兹对细胞增殖的影响

从一个受精卵(受精卵)到一个完全发育的个体,增殖在生物体的生长过程中是必不可少的。随着细胞的分裂和增殖,组织和器官形成和生长。当组织因损伤或疾病而受损时,细胞增殖有助于组织的修复。受伤区域周围的细胞会分裂,替换丢失或受损的细胞,促进愈合。太赫兹辐射可以潜在地刺激人红细胞和淋巴细胞的细胞生长,然而在某些情况下,这种刺激可能最终导致细胞死亡[17] [18]

但是仍然有多项研究发现,特定的太赫兹辐射可以阻碍特定类型细胞的增殖,包括大肠杆菌、HeLa细胞、Hep-2细胞和RH细胞,并可能引发细胞死亡[9]

Yunxia Wang等人[19]首先对小鼠神经干细胞(mNSCs)进行了实验,以检测太赫兹辐射对它们的影响。辐射采用两种不同的功率水平(25 mW/cm2和50 mW/cm2),以及两种不同的持续时间(5分钟和10分钟)。研究结果表明,太赫兹辐射抑制了小鼠脑干细胞的生长。此外,增加辐射强度和时间对小鼠神经干细胞的生长有更明显的抑制作用。同时,他还进行了人类脑干细胞增殖的实验。结果表明,像在小鼠中一样,对神经干细胞的增殖有抑制作用[20]

Xingkun Niu等人[21]研究了中红外光刺激(MIRS)和振动强耦合(VSC)对细胞增殖和迁移的非热生物效应。结果表明,MIRS和VSC均显著增加了成纤维细胞的增殖率和迁移能力(图2) [21]。转录组测序结果显示,与细胞增殖和迁移相关的基因表达发生了差异性变化。MIRS和VSC通过影响细胞内信号通路,特别是TGF-β、ErbB和PI3K-Akt信号通路,来增强细胞的增殖和迁移能力。

太赫兹波对细胞凋亡的影响可能取决于多种因素,包括波的频率、强度、持续时间以及细胞类型等。此外,太赫兹波的生物效应可能既有正面也有负面的影响,因此,太赫兹波在医学应用中的安全性和有效性需要进一步的研究和评估。

3.2. 太赫兹对细胞凋亡的影响

凋亡也是生物学中一个重要的研究方向(图3)。目前,太赫兹波对细胞凋亡的影响是一个重要的研究

Figure 2. MIRS enhances cell proliferation. (a) Schematic of cells experiencing MIRS and analysis. (b) Dependency of temperature variation of cell culture media on the MIRS time. Inset is a zoom-in figure. (c) Plots of the relative cell proliferation rate against the culture time after MIRS with different time. (d) Comparison of cell proliferation rate at different culture time after 1-min MIRS, Ctrl represents there was no MIRS treatments. (e) Cell proliferation images taken at different times after 1-min MIRS. Cell culture was fixed at the time of detection and stained with crystal violet. Scale bars are all 200 μm. The fibroblasts used were all L929 cells [21]

2. MIRS促进细胞增殖。(a)经历MIRS的细胞示意图和分析。(b)细胞培养液温度变化对MIRS时间的依赖性。插入是一个放大的图形。(c) MIRS后不同时间细胞相对增殖率与培养时间的曲线图。(d) MIRS处理1 min后不同培养时间细胞增殖率比较,Ctrl表示未进行MIRS处理。(e) 1 minMIRS后不同时间的细胞增殖图像。细胞培养物在检测时固定,并用结晶紫染色。比例尺均为200 um。所用成纤维细胞均为L929细胞[21]

领域,因为太赫兹波的热效应和非热效应都可以诱导细胞凋亡。同时细胞凋亡是癌症的标志。当凋亡机制缺陷时,将导致癌症的发生[22] [23]。同时,我们得到了太赫兹辐射可以诱导细胞凋亡的一些结论,在肿瘤细胞领域具有良好的前景,为未来的临床试验奠定了一定的基础。美国空军研究实验室(AFRL) [18] [24]证实,人皮肤成纤维细胞的死亡率随着暴露于2.52 THz太赫兹辐射的时间的延长而成比例增加。

Figure 3. Cell viability upon THz irradiation. (a) The absolute number obtained by cell counting, while the horn was placed at different distances from the surface of the cell suspension; (b) as in (a), calculated as a proportion of viable cells with respect to the original cell concentration. (c) absolute number from the cell count, upon irradiation and without irradiation; (d) as in (c), calculated as a proportion of viable cells with respect to the original cell concentration. Cells depicted in ((a), (b)) were suspended in PBS, and those in ((c), (d)) in IMDM supplemented with FBS and antibiotics [26]

3. THz辐射对细胞活力的影响。(a)将角置于离细胞悬液表面不同距离处,通过细胞计数获得的绝对数;(b)如(a),以活细胞相对于原始细胞浓度的比例计算。(c)照射和未照射时细胞计数的绝对数;(d)如(c),以活细胞相对于原始细胞浓度的比例计算。((a), (b))细胞悬浮于PBS中,((c), (d))细胞悬浮于添加FBS和抗生素的IMDM中[26]

这表明太赫兹辐射的热效应可能会导致细胞的死亡。例如,人们注意到,强大的太赫兹波可以直接与生物分子相互作用,引起非线性共振,从而导致生物键的断裂。这可能会潜在地影响生物大分子和细胞的功能,在更严重的情况下,触发凋亡[25]

Larysa Kovalevska等人[26]利用0.14 THz的辐射来靶向癌细胞,即非霍奇金淋巴瘤细胞。观察其存活率,结果如图3所示[26]。无论是培养在PBS还是Meduim中,经过THz辐射后,其细胞活力都减弱,即说明有部分细胞产生凋亡。Wilmink G J等人使用频率为2.52 THz、功率为227 mW/cm2的光泵分子气体发射源。正如在MMT和Flow技术中观察到的那样,暴露于太赫兹辐射后,大多数细胞通过凋亡和坏死发生细胞死亡。

3.3. 太赫兹对细胞渗透率的影响

细胞膜,又称质膜,是包裹细胞的一层薄层,主要由磷脂双分子层组成。这一双层结构由两层磷脂分子组成,每一层都有疏水脂肪酸尾部和亲水磷酸盐头部。细胞膜将细胞内部与外部环境隔开,并调节物质进出细胞的运输。通透性是细胞膜选择性地允许特定物质通过其结构的能力。太赫兹辐射对细胞膜的生物效应揭示了其在细胞膜介电响应特性、离子跨膜转运和大分子跨膜转运中的作用。太赫兹辐射可以影响细胞膜[27]的离子通道,如钙和钾通道,从而调节细胞内离子浓度,这对细胞信号传导和细胞功能至关重要。

Palalle G. Tharushi Perera等人[28]将PC12细胞(具有神经元样特征的嗜铬细胞瘤细胞)暴露于0.3~19.5 THz波段的电磁辐射。通过高分辨率透射电子显微镜(TEM)观察到进入pc12细胞的二氧化硅m球(直径约为23.5 nm)及其团簇(直径约为63 nm [29])。由此可以推断出其细胞膜的渗透性增强。Erling Hu等人[30]使用0.1 THz辐射HT22细胞[31]并用fm4-64标记,观察其内吞过程的内吞过程,结果表明增强了其内吞过程(图4) [28]

Figure 4. Nanosphere internalisation of PC 12 cells following a 10 min exposure of THz radiation. Confocal laser scanning microscopy (CLSM; top row) images illustrate the uptake of silica nanospheres (FITC) by the THz treated cells whereas the untreated control does not exhibit any nanosphere uptake. No signal was detected in the FITC channel for the untreated cells. Scale bar is 5 µm. Thin sliced transmission electron microscopy (TEM) micrographs confirm silica nanospheres (NS) being internalized by the PC 12 cells (red arrow; bottom). Nanospheres are also seen lining the cell membrane whereas no nanosphere internalisation was observed in the untreated control cells. Scale bar is 1 µm [28]

4. 在太赫兹辐射暴露10 min后,PC 12细胞的纳米球内化。共聚焦激光扫描显微镜(CLSM;顶部一行)图像显示了太赫兹处理的细胞对二氧化硅纳米球(FITC)的摄取,而未处理的对照组没有显示任何纳米球的摄取。未处理的细胞在FITC通道中未检测到信号。比例尺为5 µm。薄片透射电子显微镜(TEM)显微照片证实了二氧化硅纳米球(NS)被PC 12细胞内化(红色箭头;底部)。纳米球也可见在细胞膜上,而在未处理的对照细胞中没有观察到纳米球内化。比例尺为1 µm [28]

3.4. 太赫兹波对基因表达的影响

基因表达是指DNA编码的遗传信息在生物体内被翻译成功能性蛋白质的机制。基因表达的主要阶段有转录、转录后加工、翻译、蛋白质折叠、翻译后修饰、调控、表观遗传调控、非编码RNA、时空特异性等。基因表达[32]在疾病的发生中起着至关重要的作用。Boian S等人[33]使用2.52 THz辐射可导致小鼠干细胞中特定基因的表达水平发生变化[33] [34]。不同的频率、功率和照射时间可影响基因表达的上调或下调[35] [36],对未来的基因表达研究、疾病的诊断和治疗具有良好的发展前景。Shang等人[37]发现太赫兹照射可能通过影响转录因子与DNA的相互作用来调控原代神经元细胞的基因表达。

Lyubov V Titova等人[38]研究了高强度太赫兹脉冲对人工合成人类皮肤组织基因表达的影响。实验中使用的太赫兹(THz)脉冲范围为0.2到2.5 THz,能量水平分别为1和0.1毫焦(mj),持续时间为30分钟。结果表明,高强度太赫兹脉冲引起442个基因表达水平的显著变化。1mj脉冲能量影响442个基因,0.1 mj脉冲能量影响397个基因(图5) [38]。Avital Korenstein-Ilan等人[39]进行了一项研究,评估了在0.1 THz频率连续照射下人类细胞的遗传不稳定性。照射时间分别为1、2、24 h。采用间期荧光原位杂交(FISH)技术检测11、10、11、17号染色体数目的变化,以及这些染色体的着丝粒复制时间和模式。结果表明,11号和17号染色体对0.1 THz辐射最敏感,暴露2小时和24小时后,非整倍体增加约30%。1号和10号染色体未见异常。11、17和1号染色体的复制模式在暴露于辐射后2小时发生了变化,所有4个着丝粒在暴露于辐射后24小时表现出更显著的变化(增加50%)。暴露于0.1 THz辐射可引起淋巴细胞的遗传不稳定性。

Figure 5. Intense THz-pulse-induced gene expression in human skin. Venn diagrams summarizing differentially-expressed genes in EpiDermFT tissues exposed to either 1.0 mJ or 0.1 mJ THz or UVA (400 nm, 0.024 mJ) pulses, as described in Materials and Methods. Genes with a False Discovery Rate (FDR)-adjusted p-value, 0.05 and log2 fold change. 0.6 (1.53 change) were considered differentially expressed. Left diagram: down-regulated genes. Right diagram: up-regulated genes. The complete lists of the affected genes, the fold change and p-values are given in Supplementary Tables S1, S2 and S3 [38]

5. 在人类皮肤中,强烈的太赫兹脉冲诱导的基因表达。Venn图总结了暴露于1.0 mJ或0.1 mJ THz或UVA (400 nm, 0.0204 mJ)脉冲的EpiDermFT组织中差异表达的基因,如材料和方法所述。错误发现率(FDR)调整的基因p值,0.05和log2倍的变化。0.6 (1.53个变化)被认为是差异表达。左图:表达下调的基因。右图:上调基因[38]

3.5. 太赫兹对炎症反应的影响

炎症反应是身体对有害刺激(如感染、损伤或外来物质)的自然防御机制[40]-[42],它是免疫系统的组成部分,保护机体免受有害化学物质的伤害。研究表明,太赫兹辐射在触发炎症反应方面具有重要作用。太赫兹辐射可以影响免疫细胞的功能[43] [44],包括免疫细胞的增殖、分化和迁移,在炎症反应中起关键作用。同时,太赫兹辐射可能具有治疗潜力,例如,通过促进血液循环和加速组织修复,这可能有助于治疗某些炎症性疾病。

Yoonha Hwang等人[45]用平均输出功率260 mW/cm2的自由电子激光(FEL)产生的THz波(2.7 THz, 4 us脉宽,61.4 uj/脉冲,3 Hz重复频率)刺激镇静小鼠的耳皮肤30分钟。利用激光扫描共聚焦显微镜设备对活小鼠耳部皮肤区域中性粒细胞进行重复图像采集,观察THz波辐射前后中性粒细胞可能的炎症反应。结果表明,THz波脉冲照射6小时后,照射部位的中性粒细胞浸润较对照组明显增加。这表明脉冲太赫兹波辐射引起的热过程导致皮肤的急性炎症。中性粒细胞是第一反应的免疫细胞,可以通过血液循环在一小时内迅速迁移到炎症部位。通过静脉注射10 μg抗GR-1抗体(553122, BD)与远红荧光团Alexa面粉647 (A-20186, Invitrogen),对活小鼠体内的中性粒细胞进行荧光标记(图6) [45]。Qi zhang等人[46]研究0.1次太赫兹辐射对小鼠胶原诱致关节炎(CIA)的影响,特别是研究其对免疫调节和抗炎反应的影响。研究结果表明,0.1次太赫兹辐射对患类风湿关节炎的小鼠(即CIA小鼠)具有抗炎和免疫调节特性。

Figure 6. (a) Distribution of neutrophils in the ear skin of a live mouse before and after THz wave irradiation, Gr-1 + neutrophil (red), Tie2 + blood vessel (green) and autofluorescent hair follicle (magenta). (b) Magnified images of the skin area marked by dotted line in (a). (c) Gr-1 + neutrophil density in the THz wave irradiated and non-irradiated skin. Scale bars are (a) 250 μm and (b) 50 μm, respectively [45]

6. (a)活鼠太赫兹波照射前、Gr-1 +中性粒细胞(红色)、Tie2 +血管(绿色)和自身荧光毛囊(品红)后耳皮肤中中性粒细胞的分布。(b) (a).中虚线标记的皮肤区域放大图像(c) Gr-1 +中性粒细胞密度。比例尺分别为(a) 250 um和(b) 50 um [45]

3.6. 太赫兹对神经元调控的影响

神经元调节包括神经元通过电化学信号进行信息交流和处理的机制,以及这些机制如何受到内部和外部因素的控制。神经元控制对于神经系统的正常功能至关重要,并包括一系列生理过程,包括认知、行为、感觉和运动[47]。最近的研究提供了大量关于太赫兹辐射对神经系统调节、结构和功能影响的数据[11]

太赫兹波具有穿透力强、光子能量低、无电离损伤等特点,在神经科学研究中具有潜在的应用价值[11]。太赫兹辐射可以促进神经元胞体和突起的生长。

Li Zhao等人[48]主要研究了不同功率密度的太赫兹(THz)辐射对大鼠原代海马神经元结构、发育和活性的影响。研究结果表明,太赫兹辐射的影响与辐射参数有着错综复杂的联系(图7)。太赫兹辐射通常会导致原代海马神经元凋亡,导致细胞活力[49]改变和氨基酸神经递质的释放。这反过来又影响了神经元兴奋性的平衡。Ma Shaoqing等人[50]研究了操纵太赫兹辐射参数对神经结构(突起和细胞质)的控制。神经元内的场强和温度主要受太赫兹波的频率和强度影响。应用0.1~2 THz频率范围内的宽频微太赫兹辐射,最大输出功率为100 μW,每日3 min、持续3 d的短期累积辐射暴露,未导致神经元死亡。此外,它还能

Figure 7. Effect of terahertz radiation on activity of the primary hippocampal neuron. Primary rat hippocampal neurons were isolated and cultured as described in materials and methods. (a), primary hippocampal cells showing neuronal staining with MAP2 (green). Nuclei were stained with DAPI (blue) (scale bar = 50 μm). Cellular activity was measured by CCK-8 assay immediately or 1 h after indicated terahertz radiation. The cellular activities were shown in (b) and (c) after exposure to 0.12 THz with power of 10 mW for 10 min and 30 min, respectively. Moreover, cellular activities were also presented in (d) and (e) after radiated by 0.157 THz with power of 50 mW for 10 min and 30 min respectively. Sham-radiated cells under the same conditions were used as the controls. Three independent experiments were conducted. Data were shown as mean ± s.e.m. *p < 0.05, **p < 0.01 vs corresponding group [48]

7. 太赫兹辐射对初级海马神经元活动的影响。原代大鼠海马神经元的分离和培养方法见材料和方法。(a),原代海马细胞显示MAP2染色(绿色)。细胞核用DAPI (蓝色)染色(比例条 = 50 um)。太赫兹辐射立即或1小时后用CCK-8测定细胞活性。分别在功率为10 mW、10 min和10 min后,(b)和(c)显示细胞活性。此外,在用0.157 THz、功率为50 mW、分别照射10 min和30 min后,(d)和(e)中也有细胞活性。以相同条件下的假辐照细胞作为对照。共进行了三个独立的实验。数据以mean ± s.e.m.表示*p < 0.05,**p < 0.01与对应组比较[48]

刺激神经元胞体和突起的生长。太赫兹辐射在短时间内累积可以改变神经元的结构[51] [52]。Xin Song等人[53]-[56]研究了太赫兹辐射对斑马鱼幼鱼神经发育的影响。利用脑Ca2+成像和聚合酶链反应(qPCR)对多巴胺相关基因进行定量分析。研究结果表明,太赫兹辐射显著增加了斑马鱼幼鱼的移动距离和速度。神经Ca2+成像数据显示斑马鱼的神经元活性显著增强。qPCR检测显示多巴胺相关基因,包括drd2b、drd4a、slc6a3和th的表达显著增加,神经元兴奋性显著增强[57]。因此,通过非热效应获得的THz辐射的精确频率和持续时间可以作为一种神经兴奋剂。

表1对上述罗列的文献做出了一些总结,由表1可以看出目前对太赫兹辐射生物样本的研究较多且方向较为多元化。表中总结太赫兹发射源频段较多在0.1~4 THz之间,这些频段的波束对生物体有着特异性的作用,也是为未来研究做出一系列的贡献。但是,我们仍然需要扩大辐射源频段,采用不同功率进行研究。研发不同频段的辐射源也将成为我们未来的难题。

Table 1. Effect of terahertz radiation on sample radiation

1. 太赫兹辐射对样本辐射的效应

辐射样本

频率(THz)

功率

辐射时长(time)

结果

参考文献

小鼠神经干细(mNSCs)

0.22 THz

25 mW/cm2

50 mW/cm2

5分钟

10分钟

抑制神经干细胞的增殖

[19]

非霍奇金淋巴瘤细胞

0.14 THz

10 mW/cm2

15分钟

引起了癌细胞凋亡

[26]

PC12神经元样嗜铬 细胞瘤细胞

0.3~19.5 THz

--

10分钟

细胞膜通透性的变化

[28]

人工合成人类皮肤组织

0.2~2.5 THz

0.1 W

1 W

30分钟

引起基因表达水平的显著变化

[38]

小鼠耳皮肤

2.7 THz

260 mW/cm2

30分钟

导致皮肤的急性炎症反应

[45]

斑马鱼幼鱼神经

2.52 THz

50 mW/cm2

10分钟

20分钟

太赫兹辐射可以作为一种神经兴奋剂

[56]

胶质细胞

0.12~0.18 THz

3.2 mW/cm2

5分钟

导致细胞死亡

[58]

雄性小鼠

3.6 THz

23.6 mW/cm2

30分钟

增加动物的焦虑水平

[59]

4. 总结

本文详细介绍了太赫兹技术在生物分子研究中的应用。太赫兹辐射对细胞的增殖、凋亡、细胞膜通透性、基因表达、炎症和神经调控等过程产生多种影响。这些影响将有利于未来的生物分子研究。通过以上总结的内容,太赫兹辐射可以在肿瘤治疗、检测等方面进行应用,为未来的放疗方向提供了帮助。虽然太赫兹技术在生物医学领域具有重要前景,但仍面临一定的技术障碍,如需要建立临床应用和确定最佳辐射频段、功率等,同时要确保足够的能量传递到生物分子上,也要控制温度效应,热效应和非热效应对生物体辐射造成的影响是不同的。为了实现太赫兹技术在生物医学领域的广泛应用,未来的研究必须解决和克服这些挑战。

致 谢

感谢上海理工大学陈麟老师对本文的支持和指导。

NOTES

*通讯作者。

参考文献

[1] Sun, L., Zhao, L. and Peng, R. (2021) Research Progress in the Effects of Terahertz Waves on Biomacromolecules. Military Medical Research, 8, Article No. 28.
https://doi.org/10.1186/s40779-021-00321-8
[2] Pawar, A.Y., Sonawane, D.D., Erande, K.B. and Derle, D.V. (2013) Terahertz Technology and Its Applications. Drug Invention Today, 5, 157-163.
https://doi.org/10.1016/j.dit.2013.03.009
[3] Alexandrov, B.S., Gelev, V., Bishop, A.R., Usheva, A. and Rasmussen, K.Ø. (2010) DNA Breathing Dynamics in the Presence of a Terahertz Field. Physics Letters A, 374, 1214-1217.
https://doi.org/10.1016/j.physleta.2009.12.077
[4] Cherkasova, O.P., Fedorov, V.I., Nemova, E.F. and Pogodin, A.S. (2009) Influence of Terahertz Laser Radiation on the Spectral Characteristics and Functional Properties of Albumin. Optics and Spectroscopy, 107, 534-537.
https://doi.org/10.1134/s0030400x09100063
[5] Mancini, T., Mosetti, R., Marcelli, A., Petrarca, M., Lupi, S. and D’Arco, A. (2022) Terahertz Spectroscopic Analysis in Protein Dynamics: Current Status. Radiation, 2, 100-123.
https://doi.org/10.3390/radiation2010008
[6] Wang, K., Lu, J., Xing, Z., Zhao, Q., Hu, L., Xue, L., et al. (2017) Effect of 1.8 GHz Radiofrequency Electromagnetic Radiation on Novel Object Associative Recognition Memory in Mice. Scientific Reports, 7, Article No. 44521.
https://doi.org/10.1038/srep44521
[7] Ma, S., Ding, P., Zhou, Z., Jin, H., Li, X. and Li, Y. (2024) Terahertz Radiation Modulates Neuronal Morphology and Dynamics Properties. Brain Sciences, 14, Article 279.
https://doi.org/10.3390/brainsci14030279
[8] Gallerano, G.P., Grosse, E., Korenstein, R., Dressel, M., Mantele, W., Scarfi, M.R., et al. (2004) THz-BRIDGE: A European Project for the Study of the Interaction of Terahertz Radiation with Biological Systems. Infrared and Millimeter Waves, Conference Digest of the 2004 Joint 29th International Conference on 2004 and 12th International Conference on Terahertz Electronics, Karlsruhe, 27 September-1 October 2004, 817-818.
https://doi.org/10.1109/icimw.2004.1422345
[9] Shi, S., Yuan, S., Zhou, J. and Jiang, P. (2023) Terahertz Technology and Its Applications in Head and Neck Diseases. iScience, 26, Article 107060.
https://doi.org/10.1016/j.isci.2023.107060
[10] Wilmink, G.J. and Grundt, J.E. (2011) Invited Review Article: Current State of Research on Biological Effects of Terahertz Radiation. Journal of Infrared, Millimeter, and Terahertz Waves, 32, 1074-1122.
https://doi.org/10.1007/s10762-011-9794-5
[11] Zhang, J., Li, S. and Le, W. (2021) Advances of Terahertz Technology in Neuroscience: Current Status and a Future Perspective. iScience, 24, Article 103548.
https://doi.org/10.1016/j.isci.2021.103548
[12] Liu, M., Liu, J., Liang, W., Lu, B., Fan, P., Song, Y., et al. (2023) Recent Advances and Research Progress on Microsystems and Bioeffects of Terahertz Neuromodulation. Microsystems & Nanoengineering, 9, Article No. 143.
https://doi.org/10.1038/s41378-023-00612-1
[13] Dione, M.N., Shang, S., Zhang, Q., Zhao, S. and Lu, X. (2024) Non-Thermal Effects of Terahertz Radiation on Gene Expression: Systematic Review and Meta-Analysis. Genes, 15, Article 1045.
https://doi.org/10.3390/genes15081045
[14] Wang, W., Xie, C., Lu, L. and Zheng, G. (2014) A Systematic Review and Meta-Analysis of Baihui (GV20)-Based Scalp Acupuncture in Experimental Ischemic Stroke. Scientific Reports, 4, Article No. 3981.
https://doi.org/10.1038/srep03981
[15] Tsurkan, M.V., Smolyanskaya, O.A., Bespalov, V.G., Penniyainen, V.A., Kipenko, A.V., Lopatina, E.V., et al. (2012) Changing Growth of Neurites of Sensory Ganglion by Terahertz Radiation. Proceedings Volume 8261, Terahertz Technology and Applications V, San Francisco, 21-26 January 2012, Article 82610S.
https://doi.org/10.1117/12.909350
[16] Cherkasova, O.P., Serdyukov, D.S., Ratushnyak, A.S., Nemova, E.F., Kozlov, E.N., Shidlovskii, Y.V., et al. (2020) Effects of Terahertz Radiation on Living Cells: A Review. Optics and Spectroscopy, 128, 855-866.
https://doi.org/10.1134/s0030400x20060041
[17] Khamoyan, A., Shevela, E.Y. and Chernykh, E. (2007) Investigation of Possibility of Submillimeter Laser Using as Instrument for Diagnostics in Medicine. Proceedings Volume 6734, International Conference on Lasers, Applications, and Technologies 2007, Minsk, 28 May-1 June 2007, Article 673404.
https://doi.org/10.1117/12.753111
[18] Yu, Z.P. and Zhang, L. (2020) Progress and Prospective in Biological Effects of Terahertz Radiation. Journal of Third Military Medical University, 42, 2259-2266.
https://doi.org/10.16016/j.1000-5404.202008139
[19] Wang, Y., Xiong, Y., Chen, M., Liu, F., He, H., Ma, Q., et al. (2023) The Biological Effects of Terahertz Wave Radiation-Induced Injury on Neural Stem Cells. iScience, 26, Article 107418.
https://doi.org/10.1016/j.isci.2023.107418
[20] Tachizaki, T., Sakaguchi, R., Terada, S., Kamei, K. and Hirori, H. (2020) Terahertz Pulse-Altered Gene Networks in Human Induced Pluripotent Stem Cells. Optics Letters, 45, 6078-6081.
https://doi.org/10.1364/ol.402815
[21] Niu, X., Wu, Z., Gao, F., Hou, S., Liu, S., Zhao, X., et al. (2024) Resonating with Cellular Pathways: Transcriptome Insights into Nonthermal Bioeffects of Middle Infrared Light Stimulation and Vibrational Strong Coupling on Cell Proliferation and Migration. Research, 7, Article ID: 0353.
https://doi.org/10.34133/research.0353
[22] Hanahan, D. and Weinberg, R.A. (2000) The Hallmarks of Cancer. Cell, 100, 57-70.
https://doi.org/10.1016/s0092-8674(00)81683-9
[23] Hassan, M., Watari, H., AbuAlmaaty, A., Ohba, Y. and Sakuragi, N. (2014) Apoptosis and Molecular Targeting Therapy in Cancer. BioMed Research International, 2014, Article ID: 150845.
https://doi.org/10.1155/2014/150845
[24] Wilmink, G.J., Rivest, B.D., Ibey, B.L., Roth, C.L., Bernhard, J. and Roach, W.P. (2010) Quantitative Investigation of the Bioeffects Associated with Terahertz Radiation. Proceedings Volume 7562, Optical Interactions with Tissues and Cells XXI, San Francisco, 23-28 January 2010, Article 75620L.
https://doi.org/10.1117/12.844916
[25] Peng, X. and Zhou, H. (2021) Biological Effects of Terahertz Waves. Acta Physica Sinica, 70, 240701.
https://doi.org/10.7498/aps.70.20211996
[26] Kovalevska, L., Golenkov, O., Kulahina, Y., Callender, T., Sizov, F. and Kashuba, E. (2022) A Comparative Study on the Viability of Normal and Cancerous Cells Upon Irradiation with a Steady Beam of THz Rays. Life, 12, Article 376.
https://doi.org/10.3390/life12030376
[27] Ramundo‐Orlando, A., Gallerano, G.P., Stano, P., Doria, A., Giovenale, E., Messina, G., et al. (2007) Permeability Changes Induced by 130 GHz Pulsed Radiation on Cationic Liposomes Loaded with Carbonic Anhydrase. Bioelectromagnetics, 28, 587-598.
https://doi.org/10.1002/bem.20343
[28] Perera, P.G.T., Appadoo, D.R.T., Cheeseman, S., Wandiyanto, J.V., Linklater, D., Dekiwadia, C., et al. (2019) PC 12 Pheochromocytoma Cell Response to Super High Frequency Terahertz Radiation from Synchrotron Source. Cancers, 11, Article 162.
https://doi.org/10.3390/cancers11020162
[29] Perera, P.G.T., Nguyen, T.H.P., Dekiwadia, C., Wandiyanto, J., Sbarski, I., Bazaka, O., et al. (2018) Exposure to High-Frequency Electromagnetic Field Triggers Rapid Uptake of Large Nanosphere Clusters by Pheochromocytoma Cells. International Journal of Nanomedicine, 13, 8429-8442.
https://doi.org/10.2147/ijn.s183767
[30] Hu, E., Zhang, Q., Shang, S., Jiang, Y. and Lu, X. (2022) Continuous Wave Irradiation at 0.1 Terahertz Facilitates Transmembrane Transport of Small Molecules. iScience, 25, Article 103966.
https://doi.org/10.1016/j.isci.2022.103966
[31] Hu, E., Wang, L., Zhang, Q., Li, P., Zhang, P., Wu, D., et al. (2021) Studying the Influence of 3.1 THz Irradiation on the Endocytosis of Neuronal Cells. Journal of the Optical Society of America B, 39, 129-136.
https://doi.org/10.1364/josab.439502
[32] Chen, X., Chen, L. and Li, D. (2019) Research Progress of Gene Therapy in Clinical Application. Chinese Journal of Biotechnology, 35, 2295-2307.
http://dx.doi.org/10.13345/j.cjb.190363
[33] Alexandrov, B.S., Rasmussen, K.Ø., Bishop, A.R., Usheva, A., Alexandrov, L.B., Chong, S., et al. (2011) Non-Thermal Effects of Terahertz Radiation on Gene Expression in Mouse Stem Cells. Biomedical Optics Express, 2, 2679-2689.
https://doi.org/10.1364/boe.2.002679
[34] Bock, J., Fukuyo, Y., Kang, S., Phipps, M.L., Alexandrov, L.B., Rasmussen, K.Ø., et al. (2010) Mammalian Stem Cells Reprogramming in Response to Terahertz Radiation. PLOS ONE, 5, e15806.
https://doi.org/10.1371/journal.pone.0015806
[35] Serdyukov, D.S., Goryachkovskaya, T.N., Mescheryakova, I.A., Bannikova, S.V., Kuznetsov, S.A., Cherkasova, O.P., et al. (2020) Study on the Effects of Terahertz Radiation on Gene Networks of Escherichia coli by Means of Fluorescent Biosensors. Biomedical Optics Express, 11, 5258-5273.
https://doi.org/10.1364/boe.400432
[36] Peltek, S.E., Demidova, E.V., Popik, V.M. and Goryachkovskaya, T.N. (2017) Stress-Induced Systems in Escherichia Coli and Their Response to Terahertz Radiation. Russian Journal of Genetics: Applied Research, 7, 858-868.
https://doi.org/10.1134/s2079059717080019
[37] Shang, S., Wu, X., Zhang, Q., Zhao, J., Hu, E., Wang, L., et al. (2021) 0.1 THz Exposure Affects Primary Hippocampus Neuron Gene Expression via Alternating Transcription Factor Binding. Biomedical Optics Express, 12, 3729-3742.
https://doi.org/10.1364/boe.426928
[38] Titova, L.V., Ayesheshim, A.K., Golubov, A., Rodriguez-Juarez, R., Woycicki, R., Hegmann, F.A., et al. (2013) Intense Thz Pulses Down-Regulate Genes Associated with Skin Cancer and Psoriasis: A New Therapeutic Avenue? Scientific Reports, 3, Article No. 2363.
https://doi.org/10.1038/srep02363
[39] Korenstein-Ilan, A., Barbul, A., Hasin, P., Eliran, A., Gover, A. and Korenstein, R. (2008) Terahertz Radiation Increases Genomic Instability in Human Lymphocytes. Radiation Research, 170, 224-234.
https://doi.org/10.1667/rr0944.1
[40] Chen, L., Deng, H., Cui, H., Fang, J., Zuo, Z., Deng, J., et al. (2017) Inflammatory Responses and Inflammation-Associated Diseases in Organs. Oncotarget, 9, 7204-7218.
https://doi.org/10.18632/oncotarget.23208
[41] Nathan, C. and Ding, A. (2010) Nonresolving Inflammation. Cell, 140, 871-882.
https://doi.org/10.1016/j.cell.2010.02.029
[42] Punchard, N.A., Whelan, C.J. and Adcock, I. (2004) The Journal of Inflammation. Journal of Inflammation, 1, Article No. 1.
https://doi.org/10.1186/1476-9255-1-1
[43] Cheon, H., Hur, J.K., Hwang, W., Yang, H. and Son, J. (2023) Epigenetic Modification of Gene Expression in Cancer Cells by Terahertz Demethylation. Scientific Reports, 13, Article No. 4930.
https://doi.org/10.1038/s41598-023-31828-w
[44] Kirichuk, V.F., Antipova, O.N. and Krylova, Y.A. (2014) Effect of Continuous Irradiation with Terahertz Electromagnetic Waves of the NO Frequency Range on Behavioral Reactions of Male Albino Rats under Stress Conditions. Bulletin of Experimental Biology and Medicine, 157, 184-189.
https://doi.org/10.1007/s10517-014-2521-1
[45] Hwang, Y., Ahn, J., Mun, J., Bae, S., Jeong, Y.U., Vinokurov, N.A., et al. (2014) In vivo Analysis of THz Wave Irradiation Induced Acute Inflammatory Response in Skin by Laser-Scanning Confocal Microscopy. Optics Express, 22, 11465-11475.
https://doi.org/10.1364/oe.22.011465
[46] Zhang, Q., Shang, S., Li, X. and Lu, X. (2024) Anti-Inflammatory and Immunomodulatory Effects of 0.1 Sub-Terahertz Irradiation in Collagen-Induced Arthritis Mice. International Journal of Molecular Sciences, 25, Article 5963.
https://doi.org/10.3390/ijms25115963
[47] Kowalski, P.C., Dowben, J.S., et al. (2018) Sugerman, Psychobiologic Bases of Behavior.
[48] Zhao, L., Yi, R., Liu, S., Chi, Y., Tan, S., Dong, J., et al. (2023) Biological Responses to Terahertz Radiation with Different Power Density in Primary Hippocampal Neurons. PLOS ONE, 18, e0267064.
https://doi.org/10.1371/journal.pone.0267064
[49] Wei, C., Zhang, Y., Li, R., Wang, S., Wang, T., Liu, J., et al. (2018) Terahertz Irradiation-Induced Motility Enhancement and Intracellular Calcium Elevation in Human Sperm in vitro. Biomedical Optics Express, 9, 3998-4008.
https://doi.org/10.1364/boe.9.003998
[50] Ajenikoko, M.K., Ajagbe, A.O., Onigbinde, O.A., Okesina, A.A. and Tijani, A.A. (2023) Review of Alzheimer’s Disease Drugs and Their Relationship with Neuron-Glia Interaction. IBRO Neuroscience Reports, 14, 64-76.
https://doi.org/10.1016/j.ibneur.2022.11.005
[51] Ma, S., Li, Z., Gong, S., Lu, C., Li, X. and Li, Y. (2023) The Laws and Effects of Terahertz Wave Interactions with Neurons. Frontiers in Bioengineering and Biotechnology, 11, Article 1147684.
https://doi.org/10.3389/fbioe.2023.1147684
[52] Sun, L., Zhao, L. and Peng, R. (2021) Research Progress in the Effects of Terahertz Waves on Biomacromolecules. Military Medical Research, 8, Article No. 28.
https://doi.org/10.1186/s40779-021-00321-8
[53] Kalueff, A.V., Stewart, A.M. and Gerlai, R. (2014) Zebrafish as an Emerging Model for Studying Complex Brain Disorders. Trends in Pharmacological Sciences, 35, 63-75.
https://doi.org/10.1016/j.tips.2013.12.002
[54] Gerlai, R. (2011) A Small Fish with a Big Future: Zebrafish in Behavioral Neuroscience. Revneuro, 22, 3-4.
https://doi.org/10.1515/rns.2011.002
[55] Pang, M., Song, X., Miao, Y., Wang, Y., Zhou, C., Geng, Z., et al. (2023) Aconitum Carmichaelii Triggers Neurotoxicity and Parkinson‐Like Symptoms through Initiation of ROS‐Mitochondrial Apoptosis and the Nox5/DJ‐1 Signaling Pathway. BMEMat, 1, e12033.
https://doi.org/10.1002/bmm2.12033
[56] Song, X., Li, H., Liu, X., Pang, M. and Wang, Y. (2023) Calcium Imaging Characterize the Neurobiological Effect of Terahertz Radiation in Zebrafish Larvae. Sensors, 23, Article 7689.
https://doi.org/10.3390/s23187689
[57] Cabib, S. and Puglisi-Allegra, S. (2012) The Mesoaccumbens Dopamine in Coping with Stress. Neuroscience & Biobehavioral Reviews, 36, 79-89.
https://doi.org/10.1016/j.neubiorev.2011.04.012
[58] Borovkova, M., Serebriakova, M., Fedorov, V., Sedykh, E., Vaks, V., Lichutin, A., et al. (2016) Investigation of Terahertz Radiation Influence on Rat Glial Cells. Biomedical Optics Express, 8, 273-280.
https://doi.org/10.1364/boe.8.000273
[59] Bondar, N.P., Kovalenko, I.L., Avgustinovich, D.F., Khamoyan, A.G. and Kudryavtseva, N.N. (2008) Behavioral Effect of Terahertz Waves in Male Mice. Bulletin of Experimental Biology and Medicine, 145, 401-405.
https://doi.org/10.1007/s10517-008-0102-x