[1]
|
Novoselov, K.S., Geim, A.K., Morozov, S.V., Jiang, D., Katsnelson, M.I., Grigorieva, I.V., et al. (2005) Two-Dimensional Gas of Massless Dirac Fermions in Graphene. Nature, 438, 197-200. https://doi.org/10.1038/nature04233
|
[2]
|
Novoselov, K.S., Fal’ko, V.I., Colombo, L., Gellert, P.R., Schwab, M.G. and Kim, K. (2012) A Roadmap for Graphene. Nature, 490, 192-200. https://doi.org/10.1038/nature11458
|
[3]
|
Zhao, X., E, J., Wu, G., Deng, Y., Han, D., Zhang, B., et al. (2019) A Review of Studies Using Graphenes in Energy Conversion, Energy Storage and Heat Transfer Development. Energy Conversion and Management, 184, 581-599. https://doi.org/10.1016/j.enconman.2019.01.092
|
[4]
|
Zhang, T., Wu, S., Yang, R. and Zhang, G. (2017) Graphene: Nanostructure Engineering and Applications. Frontiers of Physics, 12, Article No. 127206. https://doi.org/10.1007/s11467-017-0648-z
|
[5]
|
Lv, C., Hu, C., Luo, J., Liu, S., Qiao, Y., Zhang, Z., et al. (2019) Recent Advances in Graphene-Based Humidity Sensors. Nanomaterials, 9, Article 422. https://doi.org/10.3390/nano9030422
|
[6]
|
Rohaizad, N., Mayorga-Martinez, C.C., Fojtů, M., Latiff, N.M. and Pumera, M. (2021) Two-Dimensional Materials in Biomedical, Biosensing and Sensing Applications. Chemical Society Reviews, 50, 619-657. https://doi.org/10.1039/d0cs00150c
|
[7]
|
Nie, Q., Wei, X., Qin, X., Huang, Y., Chen, G., Yang, L., et al. (2020) Microstructure and Properties of Graphite Nanoflakes/cu Matrix Composites Fabricated by Pressureless Sintering and Subsequent Thermo-Mechanical Treatment. Diamond and Related Materials, 108, Article ID: 107948. https://doi.org/10.1016/j.diamond.2020.107948
|
[8]
|
Vo-Van, C., Kimouche, A., Reserbat-Plantey, A., Fruchart, O., Bayle-Guillemaud, P., Bendiab, N., et al. (2011) Epitaxial Graphene Prepared by Chemical Vapor Deposition on Single Crystal Thin Iridium Films on Sapphire. Applied Physics Letters, 98, Article ID: 181903. https://doi.org/10.1063/1.3585126
|
[9]
|
Zhang, Y., Zhang, L. and Zhou, C. (2013) Review of Chemical Vapor Deposition of Graphene and Related Applications. Accounts of Chemical Research, 46, 2329-2339. https://doi.org/10.1021/ar300203n
|
[10]
|
Hernandez, Y., Nicolosi, V., Lotya, M., Blighe, F.M., Sun, Z., De, S., et al. (2008) High-Yield Production of Graphene by Liquid-Phase Exfoliation of Graphite. Nature Nanotechnology, 3, 563-568. https://doi.org/10.1038/nnano.2008.215
|
[11]
|
Yi, M., Shen, Z., Ma, S. and Zhang, X. (2012) A Mixed-Solvent Strategy for Facile and Green Preparation of Graphene by Liquid-Phase Exfoliation of Graphite. Journal of Nanoparticle Research, 14, Article No. 1003. https://doi.org/10.1007/s11051-012-1003-5
|
[12]
|
Lotya, M., Hernandez, Y., King, P.J., Smith, R.J., Nicolosi, V., Karlsson, L.S., et al. (2009) Liquid Phase Production of Graphene by Exfoliation of Graphite in Surfactant/Water Solutions. Journal of the American Chemical Society, 131, 3611-3620. https://doi.org/10.1021/ja807449u
|
[13]
|
Bourlinos, A.B., Georgakilas, V., Zboril, R., Steriotis, T.A. and Stubos, A.K. (2009) Liquid‐Phase Exfoliation of Graphite Towards Solubilized Graphenes. Small, 5, 1841-1845. https://doi.org/10.1002/smll.200900242
|
[14]
|
Zhou, X., Wu, T., Ding, K., Hu, B., Hou, M. and Han, B. (2010) Dispersion of Graphene Sheets in Ionic Liquid [bmim][PF6] Stabilized by an Ionic Liquid Polymer. Chemical Communications, 46, 386-388. https://doi.org/10.1039/b914763b
|
[15]
|
Novoselov, K.S., Geim, A.K., Morozov, S.V., Jiang, D., Zhang, Y., Dubonos, S.V., et al. (2004) Electric Field Effect in Atomically Thin Carbon Films. Science, 306, 666-669. https://doi.org/10.1126/science.1102896
|
[16]
|
Dresselhaus, M.S. and Araujo, P.T. (2010) Perspectives on the 2010 Nobel Prize in Physics for Graphene. ACS Nano, 4, 6297-6302. https://doi.org/10.1021/nn1029789
|
[17]
|
Lin, L., Zheng, X., Zhang, S. and Allwood, D.A. (2014) Surface Energy Engineering in the Solvothermal Deoxidation of Graphene Oxide. Advanced Materials Interfaces, 1, Article ID: 1300078. https://doi.org/10.1002/admi.201300078
|
[18]
|
Antisari, M., Montone, A., Jovic, N., Piscopiello, E., Alvani, C. and Pilloni, L. (2006) Low Energy Pure Shear Milling: A Method for the Preparation of Graphite Nano-Sheets. Scripta Materialia, 55, 1047-1050. https://doi.org/10.1016/j.scriptamat.2006.08.002
|
[19]
|
Knieke, C., Berger, A., Voigt, M., Taylor, R.N.K., Röhrl, J. and Peukert, W. (2010) Scalable Production of Graphene Sheets by Mechanical Delamination. Carbon, 48, 3196-3204. https://doi.org/10.1016/j.carbon.2010.05.003
|
[20]
|
Zhao, W., Fang, M., Wu, F., Wu, H., Wang, L. and Chen, G. (2010) Preparation of Graphene by Exfoliation of Graphite Using Wet Ball Milling. Journal of Materials Chemistry, 20, 5817-5819. https://doi.org/10.1039/c0jm01354d
|
[21]
|
Jeon, I., Shin, Y., Sohn, G., Choi, H., Bae, S., Mahmood, J., et al. (2012) Edge-Carboxylated Graphene Nanosheets via Ball Milling. Proceedings of the National Academy of Sciences of the United States of America, 109, 5588-5593. https://doi.org/10.1073/pnas.1116897109
|
[22]
|
Del Rio-Castillo, A.E., Merino, C., Díez-Barra, E. and Vázquez, E. (2014) Selective Suspension of Single Layer Graphene Mechanochemically Exfoliated from Carbon Nanofibres. Nano Research, 7, 963-972. https://doi.org/10.1007/s12274-014-0457-4
|
[23]
|
Damm, C., Nacken, T.J. and Peukert, W. (2015) Quantitative Evaluation of Delamination of Graphite by Wet Media Milling. Carbon, 81, 284-294. https://doi.org/10.1016/j.carbon.2014.09.059
|
[24]
|
Aparna, R., Sivakumar, N., Balakrishnan, A., Sreekumar Nair, A., Nair, S.V. and Subramanian, K.R.V. (2013) An Effective Route to Produce Few-Layer Graphene Using Combinatorial Ball Milling and Strong Aqueous Exfoliants. Journal of Renewable and Sustainable Energy, 5, Article ID: 033123. https://doi.org/10.1063/1.4809794
|
[25]
|
Chen, X., Dobson, J.F. and Raston, C.L. (2012) Vortex Fluidic Exfoliation of Graphite and Boron Nitride. Chemical Communications, 48, 3703-3705. https://doi.org/10.1039/c2cc17611d
|
[26]
|
Wahid, M.H., Eroglu, E., Chen, X., Smith, S.M. and Raston, C.L. (2013) Functional Multi-Layer Graphene-Algae Hybrid Material Formed Using Vortex Fluidics. Green Chemistry, 15, 650-655. https://doi.org/10.1039/c2gc36892g
|
[27]
|
Tian, R., Jia, X., Yang, J., Li, Y. and Song, H. (2020) Large-Scale, Green, and High-Efficiency Exfoliation and Noncovalent Functionalization of Fluorinated Graphene by Ionic Liquid Crystal. Chemical Engineering Journal, 395, Article ID: 125104. https://doi.org/10.1016/j.cej.2020.125104
|
[28]
|
Ismail, Z., Kassim, N.F.A., Abdullah, A.H., Abidin, A.S.Z., Ismail, F.S. and Yusoh, K. (2017) Black Tea Assisted Exfoliation Using a Kitchen Mixer Allowing One-Step Production of Graphene. Materials Research Express, 4, Article ID: 075607. https://doi.org/10.1088/2053-1591/aa7ae2
|
[29]
|
Zhao, S., Xie, S., Zhao, Z., Zhang, J., Li, L. and Xin, Z. (2018) Green and High-Efficiency Production of Graphene by Tannic Acid-Assisted Exfoliation of Graphite in Water. ACS Sustainable Chemistry & Engineering, 6, 7652-7661. https://doi.org/10.1021/acssuschemeng.8b00497
|
[30]
|
Lozano-Chico, M., Fernández-d’Arlas, B., Matias-Alkaiaga, M., Eceiza, A., Iturrondobeitia, M. and Ugarte, L. (2024) Water-based and Tannin-Assisted Liquid-Phase Exfoliation for a Sustainable Production of Graphene. Sustainable Materials and Technologies, 40, e00956. https://doi.org/10.1016/j.susmat.2024.e00956
|
[31]
|
Sun, G., Li, X., Qu, Y., Wang, X., Yan, H. and Zhang, Y. (2008) Preparation and Characterization of Graphite Nanosheets from Detonation Technique. Materials Letters, 62, 703-706. https://doi.org/10.1016/j.matlet.2007.06.035
|
[32]
|
Pu, N., Wang, C., Sung, Y., Liu, Y. and Ger, M. (2009) Production of Few-Layer Graphene by Supercritical CO2 Exfoliation of Graphite. Materials Letters, 63, 1987-1989. https://doi.org/10.1016/j.matlet.2009.06.031
|
[33]
|
Rangappa, D., Sone, K., Wang, M., Gautam, U.K., Golberg, D., Itoh, H., et al. (2010) Rapid and Direct Conversion of Graphite Crystals into High‐Yielding, Good‐Quality Graphene by Supercritical Fluid Exfoliation. Chemistry—A European Journal, 16, 6488-6494. https://doi.org/10.1002/chem.201000199
|
[34]
|
Zheng, X., Xu, Q., Li, J., Li, L. and Wei, J. (2012) High-throughput, Direct Exfoliation of Graphite to Graphene via a Cooperation of Supercritical CO2 and Pyrene-Polymers. RSC Advances, 2, 10632-10638. https://doi.org/10.1039/c2ra21316h
|
[35]
|
Li, L., Zheng, X., Wang, J., Sun, Q. and Xu, Q. (2012) Solvent-Exfoliated and Functionalized Graphene with Assistance of Supercritical Carbon Dioxide. ACS Sustainable Chemistry & Engineering, 1, 144-151. https://doi.org/10.1021/sc3000724
|
[36]
|
Gao, Y., Shi, W., Wang, W., Wang, Y., Zhao, Y., Lei, Z., et al. (2014) Ultrasonic-assisted Production of Graphene with High Yield in Supercritical CO2 and Its High Electrical Conductivity Film. Industrial & Engineering Chemistry Research, 53, 2839-2845. https://doi.org/10.1021/ie402889s
|