[1]
|
毛峥乐, 王琛, 程亚. 超分辨远场生物荧光成像——突破光学衍射极限[J]. 中国激光, 2008, 35(9): 1283-1307.
|
[2]
|
姚保利, 雷铭, 薛彬, 等. 高分辨和超分辨光学成像技术在空间和生物中的应用[J]. 光子学报, 2011, 40(11): 1607-1618.
|
[3]
|
胡春光, 查日东, 凌秋雨, 等. 超分辨显微技术在活细胞中的应用与发展[J]. 红外与激光工程, 2017, 46(11): 1103002.
|
[4]
|
Giessibl, F.J. (1995) Atomic Resolution of the Silicon (111)-(7 × 7) Surface by Atomic Force Microscopy. Science, 267, 68-71. https://doi.org/10.1126/science.267.5194.68
|
[5]
|
Browning, N.D., Chisholm, M.F. and Pennycook, S.J. (1993) Atomic-resolution Chemical Analysis Using a Scanning Transmission Electron Microscope. Nature, 366, 143-146. https://doi.org/10.1038/366143a0
|
[6]
|
Sohda, Y., Yamanashi, H., Fukuda, M., et al. (2008) Scanning Electron Microscope. Science, 183, 119.
|
[7]
|
安莎, 但旦, 于湘华, 等. 单分子定位超分辨显微成像技术研究进展及展望(特邀综述) [J]. 光子学报, 2020, 49(9): 0918001.
|
[8]
|
Stephens, D.J. and Allan, V.J. (2003) Light Microscopy Techniques for Live Cell Imaging. Science, 300, 82-86. https://doi.org/10.1126/science.1082160
|
[9]
|
Czirók, A., Rupp, P.A., Rongish, B.J. and Little, C.D. (2002) Multi‐field 3D Scanning Light Microscopy of Early Embryogenesis. Journal of Microscopy, 206, 209-217. https://doi.org/10.1046/j.1365-2818.2002.01032.x
|
[10]
|
Kobat, D., Horton, N.G. and Xu, C. (2011) In Vivo Two-Photon Microscopy to 1.6 mm Depth in Mouse Cortex. Journal of Biomedical Optics, 16, Article ID: 106014. https://doi.org/10.1117/1.3646209
|
[11]
|
Yildiz, A., Forkey, J.N., McKinney, S.A., Ha, T., Goldman, Y.E. and Selvin, P.R. (2003) Myosin V Walks Hand-over-Hand: Single Fluorophore Imaging with 1.5 nm Localization. Science, 300, 2061-2065. https://doi.org/10.1126/science.1084398
|
[12]
|
Aquino, D., Schönle, A., Geisler, C., Middendorff, C.v., Wurm, C.A., Okamura, Y., et al. (2011) Two-Color Nanoscopy of Three-Dimensional Volumes by 4Pi Detection of Stochastically Switched Fluorophores. Nature Methods, 8, 353-359. https://doi.org/10.1038/nmeth.1583
|
[13]
|
Pertsinidis, A., Zhang, Y. and Chu, S. (2010) Subnanometre Single-Molecule Localization, Registration and Distance Measurements. Nature, 466, 647-651. https://doi.org/10.1038/nature09163
|
[14]
|
Zheng, Q., Juette, M.F., Jockusch, S., Wasserman, M.R., Zhou, Z., Altman, R.B., et al. (2014) Ultra-Stable Organic Fluorophores for Single-Molecule Research. Chemical Society Reviews, 43, 1044-1056. https://doi.org/10.1039/c3cs60237k
|
[15]
|
Shaner, N.C., Patterson, G.H. and Davidson, M.W. (2007) Advances in Fluorescent Protein Technology. Journal of Cell Science, 120, 4247-4260. https://doi.org/10.1242/jcs.005801
|
[16]
|
Lidke, K.A., Rieger, B., Jovin, T.M. and Heintzmann, R. (2005) Superresolution by Localization of Quantum Dots Using Blinking Statistics. Optics Express, 13, 7052-7062. https://doi.org/10.1364/opex.13.007052
|
[17]
|
Lincoln, R., Bossi, M.L., Remmel, M., D’Este, E., Butkevich, A.N. and Hell, S.W. (2022) A General Design of Caging-Group-Free Photoactivatable Fluorophores for Live-Cell Nanoscopy. Nature Chemistry, 14, 1013-1020. https://doi.org/10.1038/s41557-022-00995-0
|
[18]
|
Gould, T.J., Verkhusha, V.V. and Hess, S.T. (2009) Imaging Biological Structures with Fluorescence Photoactivation Localization Microscopy. Nature Protocols, 4, 291-308. https://doi.org/10.1038/nprot.2008.246
|
[19]
|
Dempsey, G.T., Bates, M., Kowtoniuk, W.E., Liu, D.R., Tsien, R.Y. and Zhuang, X. (2009) Photoswitching Mechanism of Cyanine Dyes. Journal of the American Chemical Society, 131, 18192-18193. https://doi.org/10.1021/ja904588g
|
[20]
|
Nirmal, M., Dabbousi, B.O., Bawendi, M.G., Macklin, J.J., Trautman, J.K., Harris, T.D., et al. (1996) Fluorescence Intermittency in Single Cadmium Selenide Nanocrystals. Nature, 383, 802-804. https://doi.org/10.1038/383802a0
|
[21]
|
Abbe, E. (1873) Beiträge zur Theorie des Mikroskops und der mikroskopischen Wahrnehmung. Archiv für Mikroskopische Anatomie, 9, 413-468. https://doi.org/10.1007/bf02956173
|
[22]
|
Mortensen, K.I., Churchman, L.S., Spudich, J.A. and Flyvbjerg, H. (2010) Optimized Localization Analysis for Single-Molecule Tracking and Super-Resolution Microscopy. Nature Methods, 7, 377-381. https://doi.org/10.1038/nmeth.1447
|
[23]
|
Rust, M.J., Bates, M. and Zhuang, X. (2006) Sub-Diffraction-Limit Imaging by Stochastic Optical Reconstruction Microscopy (Storm). Nature Methods, 3, 793-796. https://doi.org/10.1038/nmeth929
|
[24]
|
Heilemann, M., van de Linde, S., Schüttpelz, M., Kasper, R., Seefeldt, B., Mukherjee, A., et al. (2008) Subdiffraction‐Resolution Fluorescence Imaging with Conventional Fluorescent Probes. Angewandte Chemie International Edition, 47, 6172-6176. https://doi.org/10.1002/anie.200802376
|
[25]
|
Betzig, E., Patterson, G.H., Sougrat, R., Lindwasser, O.W., Olenych, S., Bonifacino, J.S., et al. (2006) Imaging Intracellular Fluorescent Proteins at Nanometer Resolution. Science, 313, 1642-1645. https://doi.org/10.1126/science.1127344
|
[26]
|
Ostersehlt, L.M., Jans, D.C., Wittek, A., Keller-Findeisen, J., Inamdar, K., Sahl, S.J., et al. (2022) DNA-Paint Minflux Nanoscopy. Nature Methods, 19, 1072-1075. https://doi.org/10.1038/s41592-022-01577-1
|
[27]
|
Jungmann, R., Steinhauer, C., Scheible, M., Kuzyk, A., Tinnefeld, P. and Simmel, F.C. (2010) Single-Molecule Kinetics and Super-Resolution Microscopy by Fluorescence Imaging of Transient Binding on DNA Origami. Nano Letters, 10, 4756-4761. https://doi.org/10.1021/nl103427w
|
[28]
|
Li, H. and Vaughan, J.C. (2018) Switchable Fluorophores for Single-Molecule Localization Microscopy. Chemical Reviews, 118, 9412-9454. https://doi.org/10.1021/acs.chemrev.7b00767
|
[29]
|
Hess, S.T., Girirajan, T.P.K. and Mason, M.D. (2006) Ultra-high Resolution Imaging by Fluorescence Photoactivation Localization Microscopy. Biophysical Journal, 91, 4258-4272. https://doi.org/10.1529/biophysj.106.091116
|
[30]
|
van de Linde, S., Löschberger, A., Klein, T., Heidbreder, M., Wolter, S., Heilemann, M., et al. (2011) Direct Stochastic Optical Reconstruction Microscopy with Standard Fluorescent Probes. Nature Protocols, 6, 991-1009. https://doi.org/10.1038/nprot.2011.336
|
[31]
|
Deschout, H., Zanacchi, F.C., Mlodzianoski, M., Diaspro, A., Bewersdorf, J., Hess, S.T., et al. (2014) Precisely and Accurately Localizing Single Emitters in Fluorescence Microscopy. Nature Methods, 11, 253-266. https://doi.org/10.1038/nmeth.2843
|
[32]
|
Shroff, H., Galbraith, C.G., Galbraith, J.A. and Betzig, E. (2008) Live-Cell Photoactivated Localization Microscopy of Nanoscale Adhesion Dynamics. Nature Methods, 5, 417-423. https://doi.org/10.1038/nmeth.1202
|
[33]
|
Lukinavičius, G., Umezawa, K., Olivier, N., Honigmann, A., Yang, G., Plass, T., et al. (2013) A Near-Infrared Fluorophore for Live-Cell Super-Resolution Microscopy of Cellular Proteins. Nature Chemistry, 5, 132-139. https://doi.org/10.1038/nchem.1546
|
[34]
|
Wäldchen, S., Lehmann, J., Klein, T., van de Linde, S. and Sauer, M. (2015) Light-Induced Cell Damage in Live-Cell Super-Resolution Microscopy. Scientific Reports, 5, Article No. 15348. https://doi.org/10.1038/srep15348
|
[35]
|
Baddeley, D., Cannell, M.B. and Soeller, C. (2010) Visualization of Localization Microscopy Data. Microscopy and Microanalysis, 16, 64-72. https://doi.org/10.1017/s143192760999122x
|
[36]
|
Nicovich, P.R., Owen, D.M. and Gaus, K. (2017) Turning Single-Molecule Localization Microscopy into a Quantitative Bioanalytical Tool. Nature Protocols, 12, 453-460. https://doi.org/10.1038/nprot.2016.166
|
[37]
|
Owen, D.M., Rentero, C., Rossy, J., Magenau, A., Williamson, D., Rodriguez, M., et al. (2010) PALM Imaging and Cluster Analysis of Protein Heterogeneity at the Cell Surface. Journal of Biophotonics, 3, 446-454. https://doi.org/10.1002/jbio.200900089
|
[38]
|
Sengupta, P., Jovanovic-Talisman, T., Skoko, D., Renz, M., Veatch, S.L. and Lippincott-Schwartz, J. (2011) Probing Protein Heterogeneity in the Plasma Membrane Using PALM and Pair Correlation Analysis. Nature Methods, 8, 969-975. https://doi.org/10.1038/nmeth.1704
|
[39]
|
Cisse, I.I., Izeddin, I., Causse, S.Z., Boudarene, L., Senecal, A., Muresan, L., et al. (2013) Real-Time Dynamics of RNA Polymerase II Clustering in Live Human Cells. Science, 341, 664-667. https://doi.org/10.1126/science.1239053
|
[40]
|
Shivanandan, A., Unnikrishnan, J. and Radenovic, A. (2016) On Characterizing Protein Spatial Clusters with Correlation Approaches. Scientific Reports, 6, Article No. 31164. https://doi.org/10.1038/srep31164
|
[41]
|
Ripley, B.D. (1977) Modelling Spatial Patterns. Journal of the Royal Statistical Society Series B: Statistical Methodology, 39, 172-192. https://doi.org/10.1111/j.2517-6161.1977.tb01615.x
|
[42]
|
Dixon, P.M. (2006) Ripley’s K Function.
|
[43]
|
Hansson, K., Jafari-Mamaghani, M. and Krieger, P. (2013) RipleyGUI: Software for Analyzing Spatial Patterns in 3D Cell Distributions. Frontiers in Neuroinformatics, 7, Article No. 5. https://doi.org/10.3389/fninf.2013.00005
|
[44]
|
Wiegand, T. and A. Moloney, K. (2004) Rings, Circles, and Null‐Models for Point Pattern Analysis in Ecology. Oikos, 104, 209-229. https://doi.org/10.1111/j.0030-1299.2004.12497.x
|
[45]
|
Haase, P. (1995) Spatial Pattern Analysis in Ecology Based on Ripley’s K‐Function: Introduction and Methods of Edge Correction. Journal of Vegetation Science, 6, 575-582. https://doi.org/10.2307/3236356
|
[46]
|
Marcon, E. and Puech, F. (2009) Generalizing Ripley’s K Function to Inhomogeneous Populations. https://shs.hal.science/halshs-00372631/document
|
[47]
|
Baddeley, A.J., Moyeed, R.A., Howard, C.V. and Boyde, A. (1993) Analysis of a Three-Dimensional Point Pattern with Replication. Applied Statistics, 42, 641-668. https://doi.org/10.2307/2986181
|
[48]
|
Goreaud, F. and Pélissier, R. (1999) On Explicit Formulas of Edge Effect Correction for Ripley’s k‐Function. Journal of Vegetation Science, 10, 433-438. https://doi.org/10.2307/3237072
|
[49]
|
Kiskowski, M.A., Hancock, J.F. and Kenworthy, A.K. (2009) On the Use of Ripley’s K-Function and Its Derivatives to Analyze Domain Size. Biophysical Journal, 97, 1095-1103. https://doi.org/10.1016/j.bpj.2009.05.039
|
[50]
|
Besag, J. (1977) Comments on Ripley’s Paper. Journal of the Royal Statistical Society B, 39, 193-195.
|
[51]
|
Ehrlich, M., Boll, W., van Oijen, A., Hariharan, R., Chandran, K., Nibert, M.L., et al. (2004) Endocytosis by Random Initiation and Stabilization of Clathrin-Coated Pits. Cell, 118, 591-605. https://doi.org/10.1016/j.cell.2004.08.017
|
[52]
|
Curd, A.P., Leng, J., Hughes, R.E., Cleasby, A.J., Rogers, B., Trinh, C.H., et al. (2020) Nanoscale Pattern Extraction from Relative Positions of Sparse 3D Localizations. Nano Letters, 21, 1213-1220. https://doi.org/10.1021/acs.nanolett.0c03332
|
[53]
|
Pageon, S.V., Tabarin, T., Yamamoto, Y., Ma, Y., Nicovich, P.R., Bridgeman, J.S., et al. (2016) Functional Role of T-Cell Receptor Nanoclusters in Signal Initiation and Antigen Discrimination. Proceedings of the National Academy of Sciences, 113, E5454-E5463. https://doi.org/10.1073/pnas.1607436113
|
[54]
|
Deschout, H., Shivanandan, A., Annibale, P., Scarselli, M. and Radenovic, A. (2014) Progress in Quantitative Single-Molecule Localization Microscopy. Histochemistry and Cell Biology, 142, 5-17. https://doi.org/10.1007/s00418-014-1217-y
|
[55]
|
Ester, M., et al. (1996) A Density-Based Algorithm for Discovering Clusters in Large Spatial Databases with Noise. Proceedings of the Second International Conference on Knowledge Discovery and Data Mining, Portland, 2-4 August 1996, 226-231.
|
[56]
|
Endesfelder, U., Finan, K., Holden, S.J., Cook, P.R., Kapanidis, A.N. and Heilemann, M. (2013) Multiscale Spatial Organization of RNA Polymerase in Escherichia coli. Biophysical Journal, 105, 172-181. https://doi.org/10.1016/j.bpj.2013.05.048
|
[57]
|
Mazouchi, A. and Milstein, J.N. (2015) Fast Optimized Cluster Algorithm for Localizations (FOCAL): A Spatial Cluster Analysis for Super-Resolved Microscopy. Bioinformatics, 32, 747-754. https://doi.org/10.1093/bioinformatics/btv630
|
[58]
|
Nino, D.F., Djayakarsana, D. and Milstein, J.N. (2020) FOCAL3D: A 3-Dimensional Clustering Package for Single-Molecule Localization Microscopy. PLOS Computational Biology, 16, e1008479. https://doi.org/10.1371/journal.pcbi.1008479
|
[59]
|
Pengo, T., Holden, S.J. and Manley, S. (2014) PALMsiever: A Tool to Turn Raw Data into Results for Single-Molecule Localization Microscopy. Bioinformatics, 31, 797-798. https://doi.org/10.1093/bioinformatics/btu720
|
[60]
|
Sieben, C., Banterle, N., Douglass, K.M., Gönczy, P. and Manley, S. (2018) Multicolor Single-Particle Reconstruction of Protein Complexes. Nature Methods, 15, 777-780. https://doi.org/10.1038/s41592-018-0140-x
|
[61]
|
Barna, L., Dudok, B., Miczán, V., Horváth, A., László, Z.I. and Katona, I. (2015) Correlated Confocal and Super-Resolution Imaging by VividSTORM. Nature Protocols, 11, 163-183. https://doi.org/10.1038/nprot.2016.002
|
[62]
|
Pageon, S.V., Nicovich, P.R., Mollazade, M., Tabarin, T. and Gaus, K. (2016) Clus-DoC: A Combined Cluster Detection and Colocalization Analysis for Single-Molecule Localization Microscopy Data. Molecular Biology of the Cell, 27, 3627-3636. https://doi.org/10.1091/mbc.e16-07-0478
|
[63]
|
Lagache, T., Grassart, A., Dallongeville, S., Faklaris, O., Sauvonnet, N., Dufour, A., et al. (2018) Mapping Molecular Assemblies with Fluorescence Microscopy and Object-Based Spatial Statistics. Nature Communications, 9, Article No. 698. https://doi.org/10.1038/s41467-018-03053-x
|
[64]
|
Malkusch, S. and Heilemann, M. (2016) Extracting Quantitative Information from Single-Molecule Super-Resolution Imaging Data with LAMA—Localization Microscopy Analyzer. Scientific Reports, 6, Article No. 34486. https://doi.org/10.1038/srep34486
|
[65]
|
Schnitzbauer, J., Wang, Y., Zhao, S., Bakalar, M., Nuwal, T., Chen, B., et al. (2018) Correlation Analysis Framework for Localization-Based Superresolution Microscopy. Proceedings of the National Academy of Sciences, 115, 3219-3224. https://doi.org/10.1073/pnas.1711314115
|
[66]
|
Mollazade, M., Tabarin, T., Nicovich, P.R., Soeriyadi, A., Nieves, D.J., Gooding, J.J., et al. (2017) Can Single Molecule Localization Microscopy Be Used to Map Closely Spaced RGD Nanodomains? PLOS ONE, 12, e0180871. https://doi.org/10.1371/journal.pone.0180871
|
[67]
|
Zhang, Y., Lara-Tejero, M., Bewersdorf, J. and Galán, J.E. (2017) Visualization and Characterization of Individual Type III Protein Secretion Machines in Live Bacteria. Proceedings of the National Academy of Sciences, 114, 6098-6103. https://doi.org/10.1073/pnas.1705823114
|
[68]
|
Pape, J.K., Stephan, T., Balzarotti, F., Büchner, R., Lange, F., Riedel, D., et al. (2020) Multicolor 3D MINFLUX Nanoscopy of Mitochondrial MICOS Proteins. Proceedings of the National Academy of Sciences, 117, 20607-20614. https://doi.org/10.1073/pnas.2009364117
|
[69]
|
Balzarotti, F., Eilers, Y., Gwosch, K.C., Gynnå, A.H., Westphal, V., Stefani, F.D., et al. (2017) Nanometer Resolution Imaging and Tracking of Fluorescent Molecules with Minimal Photon Fluxes. Science, 355, 606-612. https://doi.org/10.1126/science.aak9913
|
[70]
|
Eilers, Y., Ta, H., Gwosch, K.C., Balzarotti, F. and Hell, S.W. (2018) MINFLUX Monitors Rapid Molecular Jumps with Superior Spatiotemporal Resolution. Proceedings of the National Academy of Sciences, 115, 6117-6122. https://doi.org/10.1073/pnas.1801672115
|
[71]
|
Gwosch, K.C., Pape, J.K., Balzarotti, F., Hoess, P., Ellenberg, J., Ries, J., et al. (2020) MINFLUX Nanoscopy Delivers 3D Multicolor Nanometer Resolution in Cells. Nature Methods, 17, 217-224. https://doi.org/10.1038/s41592-019-0688-0
|
[72]
|
Schmidt, R., Weihs, T., Wurm, C.A., Jansen, I., Rehman, J., Sahl, S.J., et al. (2021) MINFLUX Nanometer-Scale 3D Imaging and Microsecond-Range Tracking on a Common Fluorescence Microscope. Nature Communications, 12, Article No. 1478. https://doi.org/10.1038/s41467-021-21652-z
|
[73]
|
Macqueen, J. (1967) Some Methods for Classification and Analysis of Multivariate Observations. Proceedings of the 5th Berkeley Symposium on Mathematical Statistics and Probability, Berkeley, 1 January 1967, 281-297. http://projecteuclid.org/euclid.bsmsp/1200512992
|
[74]
|
Jacak, J., Schaller, S., Borgmann, D. and Winkler, S.M. (2015) Characterization of the Distance Relationship between Localized Serotonin Receptors and Glia Cells on Fluorescence Microscopy Images of Brain Tissue. Microscopy and Microanalysis, 21, 826-836. https://doi.org/10.1017/s1431927615013513
|
[75]
|
Okabe, A., Boots, B., Sugihara, K. and Chiu, S.N. (2000) Spatial Tessellations: Concepts and Applications of Voronoi Diagrams. John Wiley & Sons Ltd.
|
[76]
|
Levet, F., Hosy, E., Kechkar, A., Butler, C., Beghin, A., Choquet, D., et al. (2015) SR-Tesseler: A Method to Segment and Quantify Localization-Based Super-Resolution Microscopy Data. Nature Methods, 12, 1065-1071. https://doi.org/10.1038/nmeth.3579
|
[77]
|
Andronov, L., Orlov, I., Lutz, Y., Vonesch, J. and Klaholz, B.P. (2016) ClusterViSu, a Method for Clustering of Protein Complexes by Voronoi Tessellation in Super-Resolution Microscopy. Scientific Reports, 6, Article No. 24084. https://doi.org/10.1038/srep24084
|
[78]
|
Baddeley, D., Jayasinghe, I., Lam, L., Rossberger, S., Cannell, M.B. and Soeller, C. (2009) Optical Single-Channel Resolution Imaging of the Ryanodine Receptor Distribution in Rat Cardiac Myocytes. Proceedings of the National Academy of Sciences, 106, 22275-22280. https://doi.org/10.1073/pnas.0908971106
|
[79]
|
Andronov, L., Michalon, J., Ouararhni, K., Orlov, I., Hamiche, A., Vonesch, J., et al. (2018) 3DClusterViSu: 3D Clustering Analysis of Super-Resolution Microscopy Data by 3D Voronoi Tessellations. Bioinformatics, 34, 3004-3012. https://doi.org/10.1093/bioinformatics/bty200
|
[80]
|
Dempsey, G.T., Vaughan, J.C., Chen, K.H., Bates, M. and Zhuang, X. (2011) Evaluation of Fluorophores for Optimal Performance in Localization-Based Super-Resolution Imaging. Nature Methods, 8, 1027-1036. https://doi.org/10.1038/nmeth.1768
|
[81]
|
Xu, K., Zhong, G. and Zhuang, X. (2013) Actin, Spectrin, and Associated Proteins Form a Periodic Cytoskeletal Structure in Axons. Science, 339, 452-456. https://doi.org/10.1126/science.1232251
|
[82]
|
Shi, X., Garcia, G., Van De Weghe, J.C., McGorty, R., Pazour, G.J., Doherty, D., et al. (2017) Super-Resolution Microscopy Reveals That Disruption of Ciliary Transition-Zone Architecture Causes Joubert Syndrome. Nature Cell Biology, 19, 1178-1188. https://doi.org/10.1038/ncb3599
|
[83]
|
Szymborska, A., de Marco, A., Daigle, N., Cordes, V.C., Briggs, J.A.G. and Ellenberg, J. (2013) Nuclear Pore Scaffold Structure Analyzed by Super-Resolution Microscopy and Particle Averaging. Science, 341, 655-658. https://doi.org/10.1126/science.1240672
|
[84]
|
Thevathasan, J.V., Kahnwald, M., Cieśliński, K., Hoess, P., Peneti, S.K., Reitberger, M., et al. (2019) Nuclear Pores as Versatile Reference Standards for Quantitative Superresolution Microscopy. Nature Methods, 16, 1045-1053. https://doi.org/10.1038/s41592-019-0574-9
|
[85]
|
Laine, R.F., Albecka, A., van de Linde, S., Rees, E.J., Crump, C.M. and Kaminski, C.F. (2015) Structural Analysis of Herpes Simplex Virus by Optical Super-Resolution Imaging. Nature Communications, 6, Article No. 5980. https://doi.org/10.1038/ncomms6980
|
[86]
|
Wu, Y., Hoess, P., Tschanz, A., Matti, U., Mund, M. and Ries, J. (2022) Maximum-Likelihood Model Fitting for Quantitative Analysis of SMLM Data. Nature Methods, 20, 139-148. https://doi.org/10.1038/s41592-022-01676-z
|
[87]
|
Khater, I.M., Aroca-Ouellette, S.T., Meng, F., Nabi, I.R. and Hamarneh, G. (2019) Caveolae and Scaffold Detection from Single Molecule Localization Microscopy Data Using Deep Learning. PLOS ONE, 14, e0211659. https://doi.org/10.1371/journal.pone.0211659
|
[88]
|
Khater, I.M., Meng, F., Wong, T.H., Nabi, I.R. and Hamarneh, G. (2018) Super Resolution Network Analysis Defines the Molecular Architecture of Caveolae and Caveolin-1 Scaffolds. Scientific Reports, 8, Article No. 9009. https://doi.org/10.1038/s41598-018-27216-4
|
[89]
|
Khater, I.M., Meng, F., Nabi, I.R. and Hamarneh, G. (2019) Identification of Caveolin-1 Domain Signatures via Machine Learning and Graphlet Analysis of Single-Molecule Super-Resolution Data. Bioinformatics, 35, 3468-3475. https://doi.org/10.1093/bioinformatics/btz113
|
[90]
|
Hyun, Y. and Kim, D. (2022) Development of Deep-Learning-Based Single-Molecule Localization Image Analysis. International Journal of Molecular Sciences, 23, Article No. 6896. https://doi.org/10.3390/ijms23136896
|
[91]
|
Williamson, D.J., Burn, G.L., Simoncelli, S., Griffié, J., Peters, R., Davis, D.M., et al. (2020) Machine Learning for Cluster Analysis of Localization Microscopy Data. Nature Communications, 11, Article No. 1493. https://doi.org/10.1038/s41467-020-15293-x
|
[92]
|
Saavedra, L.A., Mosqueira, A. and Barrantes, F.J. (2024) A Supervised Graph-Based Deep Learning Algorithm to Detect and Quantify Clustered Particles. Nanoscale, 16, 15308-15318. https://doi.org/10.1039/d4nr01944j
|
[93]
|
Lim, H., Kim, G.W., Heo, G.H., Jeong, U., Kim, M.J., Jeong, D., et al. (2024) Nanoscale Single-Vesicle Analysis: High-Throughput Approaches through Ai-Enhanced Super-Resolution Image Analysis. Biosensors and Bioelectronics, 263, Article ID: 116629. https://doi.org/10.1016/j.bios.2024.116629
|