[1]
|
Che, H., Xia, X., Zhao, H., Li, L., Gui, K., Zheng, Y., et al. (2024) Aerosol Optical and Radiative Properties and Their Environmental Effects in China: A Review. Earth-Science Reviews, 248, Article 104634. https://doi.org/10.1016/j.earscirev.2023.104634
|
[2]
|
Kenlee, B., Owens, J.D., Raiswell, R., Poulton, S.W., Severmann, S., Sadler, P.M., et al. (2024) Long-Range Transport of Dust Enhances Oceanic Iron Bioavailability. Frontiers in Marine Science, 11, Article 1428621. https://doi.org/10.3389/fmars.2024.1428621
|
[3]
|
Harrison, S.P., Kohfeld, K.E., Roelandt, C. and Claquin, T. (2001) The Role of Dust in Climate Changes Today, at the Last Glacial Maximum and in the Future. Earth-Science Reviews, 54, 43-80. https://doi.org/10.1016/s0012-8252(01)00041-1
|
[4]
|
Zhang, X.Y., Arimoto, R. and An, Z.S. (1997) Dust Emission from Chinese Desert Sources Linked to Variations in Atmospheric Circulation. Journal of Geophysical Research: Atmospheres, 102, 28041-28047. https://doi.org/10.1029/97jd02300
|
[5]
|
刘宁, 韩永翔, 汤耀国, 等. 基于WRF/chem模式的1961~2015年青藏高原逐日起沙量及对东亚沙尘气溶胶的贡献模拟[J]. 科学技术与工程, 2017, 17(28): 166-171.
|
[6]
|
Zhang, T., Zheng, M., Sun, X., Chen, H., Wang, Y., Fan, X., et al. (2023) Environmental Impacts of Three Asian Dust Events in the Northern China and the Northwestern Pacific in Spring 2021. Science of the Total Environment, 859, Article 160230. https://doi.org/10.1016/j.scitotenv.2022.160230
|
[7]
|
曹佳慧, 陈思宇, 张潮, 等. 青藏高原沙尘的外源贡献[J]. 中国沙漠, 2024, 44(2): 57-65.
|
[8]
|
金炯, 董光荣, 邵立业, 等. 西藏土地风沙化问题的研究[J]. 地理研究, 1994, 13(1): 60-69.
|
[9]
|
Buck, C.S., Landing, W.M. and Resing, J.A. (2010) Particle Size and Aerosol Iron Solubility: A High-Resolution Analysis of Atlantic Aerosols. Marine Chemistry, 120, 14-24. https://doi.org/10.1016/j.marchem.2008.11.002
|
[10]
|
Baker, A.R. and Jickells, T.D. (2006) Mineral Particle Size as a Control on Aerosol Iron Solubility. Geophysical Research Letters, 33, L17608. https://doi.org/10.1029/2006gl026557
|
[11]
|
Hsieh, C., Chen, H. and Ho, T. (2022) The Effect of Aerosol Size on Fe Solubility and Deposition Flux: A Case Study in the East China Sea. Marine Chemistry, 241, Article 104106. https://doi.org/10.1016/j.marchem.2022.104106
|
[12]
|
Journet, E., Desboeufs, K.V., Caquineau, S. and Colin, J. (2008) Mineralogy as a Critical Factor of Dust Iron Solubility. Geophysical Research Letters, 35, L07805. https://doi.org/10.1029/2007gl031589
|
[13]
|
李森, 董玉祥, 董光荣, 等. 青藏高原土地沙漠化区划[J]. 中国沙漠, 2001, 21(4): 103-112.
|
[14]
|
Wu, F., Song, N., Hu, T., Ho, S.S.H., Cao, J. and Zhang, D. (2023) Surrogate Atmospheric Dust Particles Generated from Dune Soils in Laboratory: Comparison with Field Measurement. Particuology, 72, 29-36. https://doi.org/10.1016/j.partic.2022.02.007
|
[15]
|
Wu, F., Cheng, Y., Hu, T., Song, N., Zhang, F., Shi, Z., et al. (2022) Saltation-Sandblasting Processes Driving Enrichment of Water-Soluble Salts in Mineral Dust. Environmental Science & Technology Letters, 9, 921-928. https://doi.org/10.1021/acs.estlett.2c00652
|
[16]
|
Etyemezian, V., Nikolich, G., Ahonen, S., Pitchford, M., Sweeney, M., Purcell, R., et al. (2007) The Portable in Situ Wind Erosion Laboratory (PI-SWERL): A New Method to Measure PM10 Windblown Dust Properties and Potential for Emissions. Atmospheric Environment, 41, 3789-3796. https://doi.org/10.1016/j.atmosenv.2007.01.018
|
[17]
|
Hu, T., Wu, F., Song, Y., Liu, S., Duan, J., Zhu, Y., et al. (2022) Morphology and Mineralogical Composition of Sandblasting Dust Particles from the Taklimakan Desert. Science of the Total Environment, 834, Article 155315. https://doi.org/10.1016/j.scitotenv.2022.155315
|
[18]
|
Nowak, S., Lafon, S., Caquineau, S., Journet, E. and Laurent, B. (2018) Quantitative Study of the Mineralogical Composition of Mineral Dust Aerosols by X-Ray Diffraction. Talanta, 186, 133-139. https://doi.org/10.1016/j.talanta.2018.03.059
|
[19]
|
Shi, Z., Krom, M.D., Jickells, T.D., Bonneville, S., Carslaw, K.S., Mihalopoulos, N., et al. (2012) Impacts on Iron Solubility in the Mineral Dust by Processes in the Source Region and the Atmosphere: A Review. Aeolian Research, 5, 21-42. https://doi.org/10.1016/j.aeolia.2012.03.001
|
[20]
|
Inkson, B.J. (2016) Scanning Electron Microscopy (SEM) and Transmission Electron Microscopy (TEM) for Materials Characterization. In: Hübschen, G., Altpeter, I., Tschuncky, R. and Herrmann, H.-G., Eds., Materials Characterization Using Nondestructive Evaluation (NDE) Methods, Elsevier, 17-43. https://doi.org/10.1016/b978-0-08-100040-3.00002-x
|
[21]
|
Maki, T., Lee, K.C., Pointing, S.B., Watanabe, K., Aoki, K., Archer, S.D.J., et al. (2021) Desert and Anthropogenic Mixing Dust Deposition Influences Microbial Communities in Surface Waters of the Western Pacific Ocean. Science of the Total Environment, 791, Article 148026. https://doi.org/10.1016/j.scitotenv.2021.148026
|
[22]
|
张帆, 陈颖军, 王晓平, 等. 砣矶岛国家大气背景站PM2.5化学组成及季节变化特征[J]. 2014, 43(4): 317-328.
|
[23]
|
Zhao, R., Han, B., Lu, B., Zhang, N., Zhu, L. and Bai, Z. (2015) Element Composition and Source Apportionment of Atmospheric Aerosols over the China Sea. Atmospheric Pollution Research, 6, 191-201. https://doi.org/10.5094/apr.2015.023
|
[24]
|
Zhang, X., Zhuang, G., Guo, J., Yin, K. and Zhang, P. (2007) Characterization of Aerosol over the Northern South China Sea during Two Cruises in 2003. Atmospheric Environment, 41, 7821-7836. https://doi.org/10.1016/j.atmosenv.2007.06.031
|
[25]
|
杨一超, 薛金林, 任景玲, 等. 夏季南海气溶胶微量元素浓度, 溶解度及干沉降通量[J]. 环境科学学报, 2020, 40(7): 2365-2374.
|
[26]
|
Hand, J.L., Mahowald, N.M., Chen, Y., Siefert, R.L., Luo, C., Subramaniam, A., et al. (2004) Estimates of Atmospheric‐processed Soluble Iron from Observations and a Global Mineral Aerosol Model: Biogeochemical Implications. Journal of Geophysical Research: Atmospheres, 109, D17205. https://doi.org/10.1029/2004jd004574
|
[27]
|
张天乐, 郑玫. 中国近海及西北太平洋气溶胶铁的研究进展[J]. 中国环境科学, 2024, 44(2): 602-619.
|
[28]
|
Shi, Z.B., Woodhouse, M.T., Carslaw, K.S., Krom, M.D., Mann, G.W., Baker, A.R., et al. (2011) Minor Effect of Physical Size Sorting on Iron Solubility of Transported Mineral Dust. Atmospheric Chemistry and Physics, 11, 8459-8469. https://doi.org/10.5194/acp-11-8459-2011
|
[29]
|
Shi, Z., Krom, M.D., Bonneville, S., Baker, A.R., Bristow, C., Drake, N., et al. (2011) Influence of Chemical Weathering and Aging of Iron Oxides on the Potential Iron Solubility of Saharan Dust during Simulated Atmospheric Processing. Global Biogeochemical Cycles, 25, GB2010. https://doi.org/10.1029/2010gb003837
|
[30]
|
Baldo, C., Formenti, P., Nowak, S., Chevaillier, S., Cazaunau, M., Pangui, E., et al. (2020) Distinct Chemical and Mineralogical Composition of Icelandic Dust Compared to Northern African and Asian Dust. Atmospheric Chemistry and Physics, 20, 13521-13539. https://doi.org/10.5194/acp-20-13521-2020
|
[31]
|
Knippertz, P. and Todd, M.C. (2012) Mineral Dust Aerosols over the Sahara: Meteorological Controls on Emission and Transport and Implications for Modeling. Reviews of Geophysics, 50, RG1007. https://doi.org/10.1029/2011rg000362
|
[32]
|
Zhao, C., Yang, Y., Fan, H., Huang, J., Fu, Y., Zhang, X., et al. (2019) Aerosol Characteristics and Impacts on Weather and Climate over the Tibetan Plateau. National Science Review, 7, 492-495. https://doi.org/10.1093/nsr/nwz184
|
[33]
|
Martin, L.R. and Good, T.W. (1991) Catalyzed Oxidation of Sulfur Dioxide in Solution: The Iron-Manganese Synergism. Atmospheric Environment. Part A. General Topics, 25, 2395-2399. https://doi.org/10.1016/0960-1686(91)90113-l
|
[34]
|
Deboudt, K., Flament, P., Choël, M., Gloter, A., Sobanska, S. and Colliex, C. (2010) Mixing State of Aerosols and Direct Observation of Carbonaceous and Marine Coatings on African Dust by Individual Particle Analysis. Journal of Geophysical Research: Atmospheres, 115, D24207. https://doi.org/10.1029/2010jd013921
|
[35]
|
Smalley, I.J. (2006) Liu Tungsheng 1988: Loess in China (Second Edition). Beijing: China Ocean Press, Berlin: Springer-Verlag, 224 pp. Progress in Physical Geography: Earth and Environment, 30, 673-676. https://doi.org/10.1177/0309133306071148
|
[36]
|
Marcotte, A.R., Anbar, A.D., Majestic, B.J. and Herckes, P. (2020) Mineral Dust and Iron Solubility: Effects of Composition, Particle Size, and Surface Area. Atmosphere, 11, Article 533. https://doi.org/10.3390/atmos11050533
|