[1]
|
刘娟, 丁清清, 周白瑜, 刘祥, 刘静民, 刘永铭, 丁国宪, 张存泰, 王建业, 于普林, 中华医学会老年医学分会, 《中华老年医学杂志》编辑委员会. 中国老年人肌少症诊疗专家共识(2021) [J]. 中华老年医学杂志, 2021, 40(8): 943-952.
|
[2]
|
Petermann‐Rocha, F., Balntzi, V., Gray, S.R., Lara, J., Ho, F.K., Pell, J.P., et al. (2021) Global Prevalence of Sarcopenia and Severe Sarcopenia: A Systematic Review and Meta-Analysis. Journal of Cachexia, Sarcopenia and Muscle, 13, 86-99. https://doi.org/10.1002/jcsm.12783
|
[3]
|
Chen, L., Woo, J., Assantachai, P., Auyeung, T., Chou, M., Iijima, K., et al. (2020) Asian Working Group for Sarcopenia: 2019 Consensus Update on Sarcopenia Diagnosis and Treatment. Journal of the American Medical Directors Association, 21, 300-307.e2. https://doi.org/10.1016/j.jamda.2019.12.012
|
[4]
|
崔华, 王朝晖, 吴剑卿, 刘颖, 郑瑾, 肖文凯, 等. 老年人肌少症防控干预中国专家共识(2023)[J]. 中华老年医学杂志, 2023, 42(2): 144-153.
|
[5]
|
Mason, S.A., Morrison, D., McConell, G.K. and Wadley, G.D. (2016) Muscle Redox Signalling Pathways in Exercise. Role of Antioxidants. Free Radical Biology and Medicine, 98, 29-45. https://doi.org/10.1016/j.freeradbiomed.2016.02.022
|
[6]
|
Ghosh, A. and Shcherbik, N. (2020) Effects of Oxidative Stress on Protein Translation: Implications for Cardiovascular Diseases. International Journal of Molecular Sciences, 21, Article 2661. https://doi.org/10.3390/ijms21082661
|
[7]
|
Guo, C., Sun, L., Chen, X. and Zhang, D. (2013) Oxidative Stress, Mitochondrial Damage and Neurodegenerative Diseases. Neural Regeneration Research, 8, 2003-2014.
|
[8]
|
Arfin, S., Jha, N.K., Jha, S.K., Kesari, K.K., Ruokolainen, J., Roychoudhury, S., et al. (2021) Oxidative Stress in Cancer Cell Metabolism. Antioxidants, 10, Article 642. https://doi.org/10.3390/antiox10050642
|
[9]
|
Li, Q., Tuo, X., Li, B., Deng, Z., Qiu, Y. and Xie, H. (2020) Semaglutide Attenuates Excessive Exercise-Induced Myocardial Injury through Inhibiting Oxidative Stress and Inflammation in Rats. Life Sciences, 250, Article 117531. https://doi.org/10.1016/j.lfs.2020.117531
|
[10]
|
Ojima, A., Ishibashi, Y., Matsui, T., Maeda, S., Nishino, Y., Takeuchi, M., et al. (2013) Glucagon-Like Peptide-1 Receptor Agonist Inhibits Asymmetric Dimethylarginine Generation in the Kidney of Streptozotocin-Induced Diabetic Rats by Blocking Advanced Glycation End Product-Induced Protein Arginine Methyltranferase-1 Expression. The American Journal of Pathology, 182, 132-141. https://doi.org/10.1016/j.ajpath.2012.09.016
|
[11]
|
Khin, P.P., Hong, Y., Yeon, M., Lee, D.H., Lee, J.H. and Jun, H. (2021) Dulaglutide Improves Muscle Function by Attenuating Inflammation through OPA-1-TLR-9 Signaling in Aged Mice. Aging, 13, 21962-21974. https://doi.org/10.18632/aging.203546
|
[12]
|
Hong, Y., Lee, J.H., Jeong, K.W., Choi, C.S. and Jun, H. (2019) Amelioration of Muscle Wasting by Glucagon-Like Peptide-1 Receptor Agonist in Muscle Atrophy. Journal of Cachexia, Sarcopenia and Muscle, 10, 903-918. https://doi.org/10.1002/jcsm.12434
|
[13]
|
Gurjar, A.A., Kushwaha, S., Chattopadhyay, S., Das, N., Pal, S., China, S.P., et al. (2020) Long Acting GLP-1 Analog Liraglutide Ameliorates Skeletal Muscle Atrophy in Rodents. Metabolism, 103, Article 154044. https://doi.org/10.1016/j.metabol.2019.154044
|
[14]
|
Margulies, K.B., Hernandez, A.F., Redfield, M.M., Givertz, M.M., Oliveira, G.H., Cole, R., et al. (2016) Effects of Liraglutide on Clinical Stability among Patients with Advanced Heart Failure and Reduced Ejection Fraction. Journal of the American Medical Association, 316, 500-508. https://doi.org/10.1001/jama.2016.10260
|
[15]
|
Rizzo, M.R., Barbieri, M., Marfella, R. and Paolisso, G. (2012) Reduction of Oxidative Stress and Inflammation by Blunting Daily Acute Glucose Fluctuations in Patients with Type 2 Diabetes. Diabetes Care, 35, 2076-2082. https://doi.org/10.2337/dc12-0199
|
[16]
|
Rizzo, M.R., Barbieri, M., Fava, I., Desiderio, M., Coppola, C., Marfella, R., et al. (2016) Sarcopenia in Elderly Diabetic Patients: Role of Dipeptidyl Peptidase 4 Inhibitors. Journal of the American Medical Directors Association, 17, 896-901. https://doi.org/10.1016/j.jamda.2016.04.016
|
[17]
|
Bouchi, R., Fukuda, T., Takeuchi, T., Nakano, Y., Murakami, M., Minami, I., et al. (2017) Dipeptidyl Peptidase 4 Inhibitors Attenuates the Decline of Skeletal Muscle Mass in Patients with Type 2 Diabetes. Diabetes/Metabolism Research and Reviews, 34, 500-508. https://doi.org/10.1001/jama.2016.10260
|
[18]
|
Sencan, C., Dost, F.S., Ates Bulut, E. and Isik, A.T. (2022) DPP4 Inhibitors as a Potential Therapeutic Option for Sarcopenia: A 6-Month Follow-Up Study in Diabetic Older Patients. Experimental Gerontology, 164, Article 111832. https://doi.org/10.1016/j.exger.2022.111832
|
[19]
|
Ishii, S., Nagai, Y., Kato, H., Fukuda, H. and Tanaka, Y. (2020) Effect of the Dipeptidyl Peptidase-4 Inhibitor Sitagliptin on Muscle Mass and the Muscle/fat Ratio in Patients with Type 2 Diabetes. Journal of Clinical Medicine Research, 12, 122-126. https://doi.org/10.14740/jocmr4078
|
[20]
|
Ferraro, E., Pin, F., Gorini, S., Pontecorvo, L., Ferri, A., Mollace, V., et al. (2016) Improvement of Skeletal Muscle Performance in Ageing by the Metabolic Modulator Trimetazidine. Journal of Cachexia, Sarcopenia and Muscle, 7, 449-457. https://doi.org/10.1002/jcsm.12097
|
[21]
|
Torcinaro, A., Cappetta, D., De Santa, F., Telesca, M., Leigheb, M., Berrino, L., et al. (2022) Ranolazine Counteracts Strength Impairment and Oxidative Stress in Aged Sarcopenic Mice. Metabolites, 12, Article 663. https://doi.org/10.3390/metabo12070663
|
[22]
|
Kingsley, J., Torimoto, K., Hashimoto, T. and Eguchi, S. (2021) Angiotensin II Inhibition: A Potential Treatment to Slow the Progression of Sarcopenia. Clinical Science, 135, 2503-2520. https://doi.org/10.1042/cs20210719
|
[23]
|
da Cunha, V., Tham, D.M., Martin-McNulty, B., Deng, G., Ho, J.J., Wilson, D.W., et al. (2005) Enalapril Attenuates Angiotensin II-Induced Atherosclerosis and Vascular Inflammation. Atherosclerosis, 178, 9-17. https://doi.org/10.1016/j.atherosclerosis.2004.08.023
|
[24]
|
Kang, D., Park, K. and Kim, D. (2022) Study of Therapeutic Effects of Losartan for Sarcopenia Based on the F344xBN Rat Aging Model. In Vivo, 36, 2740-2750. https://doi.org/10.21873/invivo.13010
|
[25]
|
Tanaka, M., Kaji, K., Nishimura, N., Asada, S., Koizumi, A., Matsuda, T., et al. (2024) Blockade of Angiotensin II Modulates Insulin-Like Growth Factor 1-Mediated Skeletal Muscle Homeostasis in Experimental Steatohepatitis. Biochimica et Biophysica Acta—Molecular Cell Research, 1871, Article 119649. https://doi.org/10.1016/j.bbamcr.2023.119649
|
[26]
|
Henriksen, E.J. and Jacob, S. (2003) Modulation of Metabolic Control by Angiotensin Converting Enzyme (ACE) Inhibition. Journal of Cellular Physiology, 196, 171-179. https://doi.org/10.1002/jcp.10294
|
[27]
|
Sumukadas, D., Witham, M.D., Struthers, A.D. and McMurdo, M.E.T. (2007) Effect of Perindopril on Physical Function in Elderly People with Functional Impairment: A Randomized Controlled Trial. Canadian Medical Association Journal, 177, 867-874. https://doi.org/10.1503/cmaj.061339
|
[28]
|
Ji, Y., Lin, J., Liu, R., Wang, K., Chang, M., Gao, Z., et al. (2024) Celecoxib Attenuates Hindlimb Unloading-Induced Muscle Atrophy via Suppressing Inflammation, Oxidative Stress and ER Stress by Inhibiting Stat3. Inflammopharmacology, 32, 1633-1646. https://doi.org/10.1007/s10787-024-01454-7
|
[29]
|
Takisawa, S., Funakoshi, T., Yatsu, T., Nagata, K., Aigaki, T., Machida, S., et al. (2019) Vitamin C Deficiency Causes Muscle Atrophy and a Deterioration in Physical Performance. Scientific Reports, 9, Article No. 4702. https://doi.org/10.1038/s41598-019-41229-7
|
[30]
|
Nasimi, N., Sohrabi, Z., Dabbaghmanesh, M.H., Eskandari, M.H., Bedeltavana, A., Famouri, M., et al. (2021) A Novel Fortified Dairy Product and Sarcopenia Measures in Sarcopenic Older Adults: A Double-Blind Randomized Controlled Trial. Journal of the American Medical Directors Association, 22, 809-815. https://doi.org/10.1016/j.jamda.2020.08.035
|
[31]
|
Chung, E., Mo, H., Wang, S., Zu, Y., Elfakhani, M., Rios, S.R., et al. (2018) Potential Roles of Vitamin E in Age-Related Changes in Skeletal Muscle Health. Nutrition Research, 49, 23-36. https://doi.org/10.1016/j.nutres.2017.09.005
|
[32]
|
Liu, J., Pan, M., Liu, Y., Huang, D., Luo, K., Wu, Z., et al. (2022) Taurine Alleviates Endoplasmic Reticulum Stress, Inflammatory Cytokine Expression and Mitochondrial Oxidative Stress Induced by High Glucose in the Muscle Cells of Olive Flounder (Paralichthys olivaceus). Fish & Shellfish Immunology, 123, 358-368. https://doi.org/10.1016/j.fsi.2022.03.021
|
[33]
|
Barbiera, A., Sorrentino, S., Fard, D., Lepore, E., Sica, G., Dobrowolny, G., et al. (2022) Taurine Administration Counteracts Aging-Associated Impingement of Skeletal Muscle Regeneration by Reducing Inflammation and Oxidative Stress. Antioxidants, 11, Article 1016. https://doi.org/10.3390/antiox11051016
|
[34]
|
Fischer, A., Onur, S., Niklowitz, P., Menke, T., Laudes, M., Rimbach, G., et al. (2016) Coenzyme Q10 Status as a Determinant of Muscular Strength in Two Independent Cohorts. PLOS ONE, 11, e0167124. https://doi.org/10.1371/journal.pone.0167124
|
[35]
|
Gupta, P., Dutt, V., Kaur, N., Kalra, P., Gupta, S., Dua, A., et al. (2020) S-allyl Cysteine: A Potential Compound against Skeletal Muscle Atrophy. Biochimica et Biophysica Acta—General Subjects, 1864, Article 129676. https://doi.org/10.1016/j.bbagen.2020.129676
|
[36]
|
Therdyothin, A., Phiphopthatsanee, N. and Isanejad, M. (2023) The Effect of Omega-3 Fatty Acids on Sarcopenia: Mechanism of Action and Potential Efficacy. Marine Drugs, 21, Article 399. https://doi.org/10.3390/md21070399
|
[37]
|
Huang, Y., Chiu, W., Hsu, Y., Lo, Y. and Wang, Y. (2020) Effects of Omega-3 Fatty Acids on Muscle Mass, Muscle Strength and Muscle Performance among the Elderly: A Meta-Analysis. Nutrients, 12, Article 3739. https://doi.org/10.3390/nu12123739
|
[38]
|
Cornish, S.M., Cordingley, D.M., Shaw, K.A., Forbes, S.C., Leonhardt, T., Bristol, A., et al. (2022) Effects of Omega-3 Supplementation Alone and Combined with Resistance Exercise on Skeletal Muscle in Older Adults: A Systematic Review and Meta-Analysis. Nutrients, 14, Article 2221. https://doi.org/10.3390/nu14112221
|
[39]
|
Kim, J.G., Sharma, A.R., Lee, Y., Chatterjee, S., Choi, Y.J., Rajvansh, R., et al. (2024) Therapeutic Potential of Quercetin as an Antioxidant for Bone-Muscle-Tendon Regeneration and Aging. Aging and Disease, 16, Article No. 3. https://doi.org/10.14336/ad.2024.0282
|
[40]
|
Zappavigna, S., Vanacore, D., Lama, S., Potenza, N., Russo, A., Ferranti, P., et al. (2019) Silybin-Induced Apoptosis Occurs in Parallel to the Increase of Ceramides Synthesis and miRNAs Secretion in Human Hepatocarcinoma Cells. International Journal of Molecular Sciences, 20, Article 2190. https://doi.org/10.3390/ijms20092190
|
[41]
|
Vecchione, G., Grasselli, E., Voci, A., Baldini, F., Grattagliano, I., Wang, D.Q., et al. (2016) Silybin Counteracts Lipid Excess and Oxidative Stress in Cultured Steatotic Hepatic Cells. World Journal of Gastroenterology, 22, 6016-6026. https://doi.org/10.3748/wjg.v22.i26.6016
|
[42]
|
Yang, J., Wang, Z., Xie, Y., Tang, Y., Fu, Y., Xu, Z., et al. (2024) Sesamol Alleviates Sarcopenia via Activating AKT/mTOR/FoxO1 Signal Pathway in Aged Obese Mice. Plant Foods for Human Nutrition, 79, 607-616. https://doi.org/10.1007/s11130-024-01199-2
|
[43]
|
Ko, J., Chang, B., Choi, Y., Choi, J., Kwon, H., Lee, J., et al. (2024) Ashwagandha Ethanol Extract Attenuates Sarcopenia-Related Muscle Atrophy in Aged Mice. Nutrients, 16, Article 157. https://doi.org/10.3390/nu16010157
|
[44]
|
Seo, E., Truong, C. and Jun, H. (2022) Psoralea Corylifolia L. Seed Extract Attenuates Dexamethasone-Induced Muscle Atrophy in Mice by Inhibition of Oxidative Stress and Inflammation. Journal of Ethnopharmacology, 296, Article 115490. https://doi.org/10.1016/j.jep.2022.115490
|
[45]
|
Chen, W., Shen, Z., Dong, W., Huang, G., Yu, D., Chen, W., et al. (2024) Polygonatum sibiricum Polysaccharide Ameliorates Skeletal Muscle Aging via Mitochondria-Associated Membrane-Mediated Calcium Homeostasis Regulation. Phytomedicine, 129, Article 155567. https://doi.org/10.1016/j.phymed.2024.155567
|
[46]
|
Zhou, R., Guo, T. and Li, J. (2023) Research Progress on the Antitumor Effects of Astragaloside IV. European Journal of Pharmacology, 938, Article 175449. https://doi.org/10.1016/j.ejphar.2022.175449
|
[47]
|
Dai, H., Zheng, Y., Chen, R., Wang, Y., Zhong, Y., Zhou, C., et al. (2023) Astragaloside IV Alleviates Sepsis-Induced Muscle Atrophy by Inhibiting the TGF-Β1/Smad Signaling Pathway. International Immunopharmacology, 115, Artilc e109640. https://doi.org/10.1016/j.intimp.2022.109640
|
[48]
|
Zhang, Z., Hu, W., Yu, A., Wu, L., Yang, D., Kuang, H., et al. (2024) Review of Polysaccharides from Chrysanthemum Morifolium Ramat: Extraction, Purification, Structural Characteristics, Health Benefits, Structural-Activity Relationships and Applications. International Journal of Biological Macromolecules, 278, Article 134919. https://doi.org/10.1016/j.ijbiomac.2024.134919
|
[49]
|
Yoo, A., Jang, Y.J., Ahn, J., Jung, C.H., Seo, H.D. and Ha, T.Y. (2020) Chrysanthemi Zawadskii Var. Latilobum Attenuates Obesity-Induced Skeletal Muscle Atrophy via Regulation of PRMTs in Skeletal Muscle of Mice. International Journal of Molecular Sciences, 21, Article 2811. https://doi.org/10.3390/ijms21082811
|
[50]
|
Lee, H., Kim, Y.I., Nirmala, F.S., Jeong, H.Y., Seo, H., Ha, T.Y., et al. (2021) Chrysanthemum Zawadskil Herbich Attenuates Dexamethasone-Induced Muscle Atrophy through the Regulation of Proteostasis and Mitochondrial Function. Biomedicine & Pharmacotherapy, 136, Article 111226. https://doi.org/10.1016/j.biopha.2021.111226
|
[51]
|
Nosrati-Oskouie, M., Aghili-Moghaddam, N.S., Tavakoli-Rouzbehani, O.M., Jamialahmadi, T., Johnston, T.P. and Sahebkar, A. (2022) Curcumin: A Dietary Phytochemical for Boosting Exercise Performance and Recovery. Food Science & Nutrition, 10, 3531-3543. https://doi.org/10.1002/fsn3.2983
|
[52]
|
Wang, D., Yang, Y., Zou, X., Zheng, Z. and Zhang, J. (2020) Curcumin Ameliorates CKD-Induced Mitochondrial Dysfunction and Oxidative Stress through Inhibiting GSK-3β Activity. The Journal of Nutritional Biochemistry, 83, Article 108404. https://doi.org/10.1016/j.jnutbio.2020.108404
|
[53]
|
Wang, M., Hu, R., Wang, Y., Liu, L., You, H., Zhang, J., et al. (2019) Atractylenolide III Attenuates Muscle Wasting in Chronic Kidney Disease via the Oxidative Stress-Mediated PI3K/AKT/mTOR Pathway. Oxidative Medicine and Cellular Longevity, 2019, 1-16. https://doi.org/10.1155/2019/1875471
|
[54]
|
Zha, W., Sun, Y., Gong, W., Li, L., Kim, W. and Li, H. (2022) Ginseng and Ginsenosides: Therapeutic Potential for Sarcopenia. Biomedicine & Pharmacotherapy, 156, Article 113876. https://doi.org/10.1016/j.biopha.2022.113876
|
[55]
|
Yeh, T., Hsu, C., Yang, S., Hsu, M. and Liu, J. (2014) Angelica Sinensis Promotes Myotube Hypertrophy through the PI3K/AKT/mTOR Pathway. BMC Complementary and Alternative Medicine, 14, Article No. 144. https://doi.org/10.1186/1472-6882-14-144
|