氧化应激调控肌少症发病机制及其中西药物靶向干预研究进展
Oxidative Stress Regulates the Pathogenesis of Sarcopenia and Its Research Progress on Targeted Intervention of Chinese and Western Drugs
DOI: 10.12677/acm.2025.152481, PDF, HTML, XML,   
作者: 韦继婵:成都中医药大学临床医学院,四川 成都;刘雪辉*:成都中医药大学附属医院老年科,四川 成都
关键词: 肌少症药物治疗氧化应激Sarcopenia Drug Therapy Oxidative Stress
摘要: 肌少症(sarcopenia)是一种以肌肉量减少、肌肉质量和力量下降、躯体功能减退为特征的老年综合征。由于老龄化程度的增加,肌少症已成为一个重大的社会经济负担。肌少症发病机制复杂,大量研究发现氧化应激可能是肌少症发生的重要机制之一。尽管目前还没有特定的药物被批准用于治疗肌少症,但也有一些药物干预可改善肌少症,多数可能治疗肌少症的药物尚处于研发阶段。本文针对肌少症氧化应激发病机制及治疗靶点对肌少症药物治疗的最新研究进展进行总结综述,期望为肌少症药物治疗及新药研发提供参考。
Abstract: Sarcopenia is an age-related syndrome characterized by reduced muscle mass, decreased muscle quality and strength, and impaired physical function. Due to the increasing degree of aging, sarcopenia has become a significant socioeconomic burden. The pathogenesis of sarcopenia is complex, and numerous studies have found that oxidative stress may be one of the important mechanisms underlying its occurrence. Although no specific drugs have been approved for the treatment of sarcopenia yet, some drug interventions can improve sarcopenia, and most of the potential drugs for treating sarcopenia are still in the research and development stage. This article summarizes and reviews the latest research progress on the oxidative stress pathogenesis and therapeutic targets of sarcopenia for drug treatment, hoping to provide references for the drug treatment of sarcopenia and the development of new drugs.
文章引用:韦继婵, 刘雪辉. 氧化应激调控肌少症发病机制及其中西药物靶向干预研究进展[J]. 临床医学进展, 2025, 15(2): 1341-1349. https://doi.org/10.12677/acm.2025.152481

1. 引言

肌肉减少症简称肌少症,是一种以肌肉量减少、肌肉质量和力量下降、躯体功能减退为特征的老年综合征[1]。肌少症的发病率与年龄增长呈正相关,但不同地区肌少症发病率也存在较大差异。在欧洲,采用欧洲肌少症工作组(EWGSOP)标准评估发现,60岁以上人群肌少症患病率约为10%~27% [2]。亚洲国家采用亚洲肌少症工作组诊断标准的流行病学调查研究显示,肌少症患病率5.5%~25.7% [3]

近年来,中国流行病学调查显示,肌少症患病率约为5.7%~23.9% [4]。肌少症损害患者日常生活活动能力,与不良结局如跌倒、衰弱和死亡密切相关,导致住院风险和护理成本增加,给个人、家庭及社会带来巨大经济负担。肌少症已成为影响老年人健康和生命质量的全球性问题,对肌少症识别及干预治疗具有重要意义。

目前肌少症一线治疗方案主要是运动、营养干预。肌少症发病机制非常复杂,目前仍处于研究和探索阶段,与营养、运动、激素、炎症、线粒体功能异常、脂质累积、胰岛素抵抗、糖基化、自噬、运动神经元退化以及骨骼肌蛋白合成与分解代谢失衡等因素有关。至今还没有特定的药物被批准用于治疗肌少症,多数治疗肌少症的药物尚处于研发阶段。研究发现一些药物干预可改善肌少症,同时也存在一些问题。研究发现氧化应激可能是肌少症发生的重要机制之一,本文针对肌少症氧化应激发病机制及治疗靶点对肌少症药物治疗的最新研究进展进行总结综述。

2. 氧化应激及相关通路在肌少症中作用机制

氧化应激是指体内过度活性氧(reactive oxygen species, ROS)产生使机体氧化–抗氧化系统失衡,导致中性粒细胞浸润、蛋白酶分泌增加,从而引起细胞凋亡和炎性反应。生理情况下,线粒体会产生少量的ROS,这些ROS在调节机体生长、增殖分化、细胞信号转导过程中发挥作用。然而,高水平ROS会破坏细胞稳态,导致蛋白质降解、蛋白质合成受损、细胞信号转导改变和线粒体功能障碍,上述均会导致肌肉萎缩[5]。氧化应激激活p38丝裂原活化蛋白激酶(MAPKs),并进一步激活叉形头转录因子O亚型(FOXO) 3分子,激活的FOXO3分子将抑制磷脂酰肌醇-3-激酶/蛋白激酶B/哺乳动物雷帕霉素靶蛋白(PI3K/AKT/mTOR)合成通路,进而抑制蛋白质合成;此外,ROS可以促进泛素–蛋白酶体(UPS)途径中的肌肉萎缩因子如肌萎缩盒F蛋白(MAFbx)、肌肉环指蛋白(MuRF1)的表达,进而促进蛋白质的降解[6]。衰老会导致ROS生成增加、抗氧化能力下降,高浓度ROS会造成线粒体功能障碍,并激活线粒体介导的细胞凋亡信号通路使肌肉细胞发生凋亡,从而导致肌量减少[7]。氧化应激、线粒体功能障碍和肌肉萎缩之间的关系是双向的。氧化应激可诱发线粒体功能障碍,而功能失调的线粒体会产生更多的ROS,使氧化应激和肌肉萎缩永久化。氧化应激还可通过促进NF-κB信号传导,诱导肿瘤坏死因子-α (TNF-α)和白细胞介素-6 (IL-6)等促炎细胞因子的表达,从而导致肌肉蛋白质降解[8]

3. 靶向肌少症氧化应激的药物治疗

3.1. 降糖药物

3.1.1. 胰高血糖素样肽-1 (GLP-1)受体激动剂

GLP-1由肠道细胞在进餐后释放,可促进胰腺β细胞释放胰岛素,并抑制胰腺α细胞释放胰高血糖素。GLP-1受体激动剂(GLP-1RA)是被推荐用于治疗2型糖尿病的药物之一,包括天然GLP-1衍生物如阿比鲁肽、度拉糖肽、利拉鲁肽和索马鲁肽,exendin-4衍生物如艾塞那肽和利西那肽。过量ROS可以导致慢性炎症和氧化应激,GLP-1RA可以抑制蛋白精氨酸甲基转移酶-1的表达和抑制ROS的产生,并能通过GLP-1R-ERK1/2通路增强组蛋白去乙酰化酶6 (HDAC6),抑制ROS引起的异常自噬和炎症,保护细胞免受氧化应激影响、防止细胞衰老和慢性炎症[9] [10]。在老年小鼠模型中,度拉糖肽可通过OPA-1-TLR-9信号通路减轻老龄小鼠胫骨前肌和股四头肌的炎症反应,抑制IL-6和TNF-α等炎症因子表达,并能增加老年小鼠过氧化物酶体增殖激活受体-γ辅助激活因子-1α (PGC-1α)表达,减轻肌肉萎缩并恢复肌肉力量[11]。艾塞那肽通过抑制肌肉萎缩因子和增强肌源性因子改善肌肉萎缩,增加肌肉质量和功能;在肾功能不全肌肉萎缩模型中,艾塞那肽还增加了肌肉质量、肌纤维大小和肌肉功能[12]。在C2C12成肌细胞中,利拉鲁肽通过GLP-1受体和下游cAMP依赖性通路诱导肌发生;在一些肌肉萎缩模型中,利拉鲁肽恢复了肌原纤维结构的破坏[13]。然而,在一项为期6个月,共纳入300名慢性心力衰竭患者的临床二期随机对照实验中,接受利拉鲁肽1.8 mg/d皮下注射的治疗组与安慰剂组在6分钟步行距离上没有明显差异[14]。迄今为止,还没有试验报告GLP-1受体激动剂对患有肌少症的老年人骨骼肌质量或力量的影响,仍需更多的临床试验。

3.1.2. 二肽基肽酶4 (DPP-4)抑制剂

DPP-4抑制剂(DPP-4i)通过抑制DPP-4酶对GLP-1的灭活,从而增加内源性GLP-1水平发挥抗糖作用。常见的DPP-4i包括沙格列汀、西他列汀、维达列汀等。DPP-4i对骨骼肌的潜在作用与GLP-1水平增加以及其直接抗氧化应激和抗炎作用有关[15]。在患有T2DM的老年人中,DPP4-i与更好的肌肉质量和力量指数之间存在关联,与磺脲类药物组相比,DPP4-i治疗组患者通过手握式测力计测量的肌肉力量更大[16]。一项回顾性研究发现,与未服用DPP4-i的T2DM患者相比,服用DPP4-i的T2DM患者通过DXA测量的骨骼肌指数下降较慢[17]。一项为期24周的回顾性研究证明,在T2DM患者治疗中加入DPP4-i对肌肉力量有积极影响[18]。西格列汀24周的治疗不仅使身体和肝脏脂肪减少,还增加了肌肉/脂肪比例[19]

3.2. 代谢调节剂

曲美他嗪、雷诺嗪是一类调节代谢的哌嗪类衍生物,能够抑制细胞内脂肪酸β氧化,刺激葡萄糖氧化,改善细胞能量代谢。研究发现,曲美他嗪给药不会影响小鼠腓肠肌和胫骨前肌的质量,同时会显着增加肌肉力量。与未治疗的小鼠相比,曲美他嗪治疗的小鼠跌倒潜伏期和握力都显着增加[20]。雷诺嗪对衰老和肌肉减少症影响的评估表明,雷诺嗪上调抗氧化相关和线粒体相关基因,NADH脱氢酶活性显着抑制ROS产生,有效保护骨骼肌免受氧化损伤[21]

3.3. 血管紧张素受体阻滞剂(ARB)、血管紧张素转化酶抑制剂(ACEI)

ACEI或ARB可以抑制炎症信号通路、减轻氧化应激,并能改善血管内皮功能障碍、促进微血管再生来改善骨骼肌血流量,在改善骨骼肌萎缩中发挥重要作用[22] [23]。氯沙坦是ARB类的一种高血压药物,通过阻断血管紧张素II受体的激活起作用。氯沙坦可以抑制NF-κB活性和ROS介导的炎症过程从而减少炎症反应和氧化应激。一项动物实验发现,氯沙坦组衰老小鼠的肌肉质量和体重均有所增加,其机制可能是氯沙坦刺激生长因子增强了PI3K-AKT和mTOR活性,抑制肌肉纤维化和促进肌肉纤维分化来促进肌肉再生[24]。Misako Tanaka [25]发现,在使用氯沙坦或IGF-1治疗后,小鼠脂肪性肝炎和骨骼肌萎缩得到显着抑制,而这些效果在联合治疗后得到增强。其机制可能是抑制泛素蛋白酶体介导的蛋白质降解、降低促炎细胞因子的肌内表达并增加抗氧化能力。阿奇沙坦显著改善了肌肉减少症大鼠的肌肉握力和抗氧化水平,并恢复了肌肉减少症大鼠的胰岛素、睾酮和肌肉生物标志物的水平。

一氧化氮在氧气的生理压力下对骨骼肌的收缩性具有促进作用,并增加肌节的数量和行走速度[26],ACEI可以增加一氧化氮的产生。Sumukadas D [27]随机对照实验发现,培哚普利组6分钟步行距离较安慰剂组有显着改善,培哚普利不仅能改善身体机能、提高运动耐力,而且还可以防止功能受损老年人与健康相关的生活质量恶化。上述研究肯定了ACEI能提高老年人体能状况,但也有一些研究得出了ACEI并无显著改善肌少症指标的相反结论,但不能排除长期对身体机能下降的预防作用。因此,还需进行更多的临床试验来以进一步验证。

3.4. 非甾体类抗炎药

塞来昔布是一种选择性非甾体抗炎药,研究证实塞来昔布可以通过抑制炎症、氧化应激和内质网应激来减轻后肢卸载引起的废用性肌肉萎缩,其机制可能是通过抑制体内和体外促炎性STAT3通路的激活,降低MAFbx、MuRF1和自噬相关蛋白的水平来抑制肌肉蛋白水解,为废用性肌萎缩提供了新的潜在治疗靶点[28]

3.5. 抗氧化剂

抗氧化剂被定义为能够中和ROS并防止细胞免受氧化损伤的物质,常见抗氧化剂分为两大类,一类是外源性化合物,包括膳食补充剂,通过保持平衡的氧化状态来防止细胞损伤。一类是内源性化合物,包括氧化物质的低分子量清除剂及主要分解超氧化物毒性作用的酶和过氧化氢。

维生素是最常用的抗氧化剂,维生素C缺乏症会促进肌肉萎缩,这是由于ROS的过度产生以及MAFbx和MuRF1的上调,经持续补充维生素C约3个月后,小鼠的肌肉萎缩得到逆转[29]。Nasimi [30]等研究发现,老年肌少症患者每天接受含有500 mg维生素C的强化酸奶12周,其步速、握力和生活质量得到显著提高。维生素E可以清除自由基,具有抗氧化、抗炎能力。既往研究证明,维生素E可以通过抑制氧化应激和炎症来延缓肌肉萎缩的进展;有限数量的人体横断面观察性研究揭示了维生素E水平与肌肉力量呈正相关[31]。牛磺酸的抗氧化和抗炎特性在维持骨骼肌稳态方面起着重要作用,牛磺酸能够减少比目鱼肌细胞中ROS的产生,抑制NF-κB信号通路的激活和高糖诱导的细胞凋亡,并显著下调炎性细胞因子和肌肉萎缩因子的表达[32]。在老年小鼠中,牛磺酸通过下调炎症反应、维持氧化还原平衡、保持肌肉纤维的完整性来增强肌肉再生[33]。辅酶Q10参与机体抗炎抗氧化活动,包括防止自由基形成,保护细胞膜,血浆辅酶Q10水平已被证实与握力、肌肉成分和肌肉质量相关的结果之间存在关联[34]。S-烯丙基-L-半胱氨酸(SAC)是一种存在于大蒜中的含硫氨基酸,通过抑制蛋白质水解系统活化和炎症、氧化应激,保护肌管免受氢气侵害,对肌肉萎缩发挥治疗作用[35]。多不饱和脂肪酸(PUFAs)是人体所必需的脂肪酸,其中omega-3多不饱和脂肪酸(n-3PUFAs)在海洋鱼类及某些坚果中含量较为丰富,肌肉骨骼健康有重要的意义。其机制可能是通过抗炎、增强mTOR通路靶标的表达、减少细胞内蛋白质分解、改善线粒体功能等[36]。最近的一项meta分析发现,在60岁或以上的老年人中,与对照组相比,超过2克/天的n-3PUFAs干预后骨骼肌质量小幅增加0.33 kg,步行速度和身体机能得到改善,且时间越长,获益越明显[37]。Cornish SM的meta分析比较了补充n-3PUFAs对健康老年人下半身和上半身力量的影响,补充n-3PUFA后,老年人下半身力量得到改善[38]。槲皮素是一种存在于多种植物中的天然黄酮类化合物,具有抗氧化应激、抗炎、减少细胞凋亡和基质降解的作用,有助于维持肌腱的结构完整性和功能,显著增强肌肉再生、缓解肌肉萎缩[39]。水飞蓟宾素是一种从水飞蓟素种子提取物中分离的天然类黄酮,具有抗氧化、免疫调节、抗纤维化、抗肿瘤和抗病毒活性[40]。水飞蓟素种子通过下调ROS、脂质过氧化和过氧化氢酶活性的水平来减轻氧化应激,缓解肌肉萎缩[41]。芝麻酚,又名3,4-亚甲二氧基苯酚,脂溶性木酚素类化合物,在芝麻籽粒、芝麻油和芝麻粕中均有存在。芝麻酚具有强效的抗氧化能力,不仅是食品、医药的抗氧化剂,它更是合成抗高血压药物、心血管药物的重要的原料。芝麻酚通过激活AKT/mTOR/FoxO1信号通路,上调p-p70S6K和p-4EBP1促进肌蛋白合成,下调Atrogin-1和MuRF1抑制肌蛋白降解,从而改善与衰老和肥胖相关的肌肉减少症[42]。南非醉茄又称南非钩藤,是一种生长在南非地区的植物。南非醉茄提取物(WSE)富含多种生物活性成分,具有抗氧化、抗炎、抗疲劳等多种功能,广泛应用于食品添加剂中。研究发现,WSE给药有效地保持了老年小鼠的肌肉力量,稳定了握力,并增加了肌肉组织的重量,并对跑步表现和耐力有积极影响。其机制可能是减少促炎细胞因子TNF-α和IL-1β表达,减轻炎症相关的肌肉萎缩;激活IGF-1/Akt/mTOR通路抑制蛋白降解[43]

4. 中药

补骨脂(PCS)是一种传统草药,具有温肾助阳,纳气止泻的功效,用于治疗白癜风、癌症以及炎症、神经退行性、肾脏和肌肉骨骼疾病。地塞米松(DEX)是一种合成的糖皮质激素,可在各种细胞中诱导氧化应激,包括成骨细胞、海马细胞和肌肉细胞。PCS提取物给药可防止DEX诱导的肌肉萎缩。这种有益作用是通过抑制氧化应激和炎症反应,减轻肌肉降解因子的表达和增加肌肉再生和合成因子的表达[44]。黄精性平味甘,具有温润心肺、补中益气等作用。现代药理研究表明,黄精提取物黄精多糖(PSP)具有调节免疫、抗氧化、保护心血管系统、降糖调脂、抗肿瘤、治疗骨质疏松等多种药理作用。PSP治疗降低了老年小鼠ROS水平并增加了骨骼肌组织中的抗氧化酶活性,增加了老年小鼠肌肉质量、改善了握力、悬吊时间[45]。黄芪甲苷IV (ASIV)是从黄芪中纯化的单体化合物。体内和体外实验表明,ASIV具有强大的抗炎、抗肿瘤、抗凋亡和抗氧化作用[46]。ASIV被证明可以缓解氧化应激。此外,ASIV通过抑制MuRF1和MAFbx的表达来减少肌肉质量损失,减轻肌肉纤维横截面积减少,并缓解C2C12肌管萎缩,ASIV还可以通过TGF-β1/Smad信号转导通路对肌肉萎缩发挥治疗作用[47]。菊花是传统中药之一,具有抗炎抗氧化、改善功能性便秘、免疫调节等作用[48]。研究表明,菊花通过减少炎性细胞因子水平,抑制肌萎缩因子表达改善了小鼠肌肉功能,增加了骨骼肌的肌纤维大小[49]。菊花还能通过抑制糖皮质激素受体易位有效逆转DEX诱导的骨骼肌萎缩并增加小鼠的运动能力[50]。姜黄素是姜黄植物中的主要天然化合物,可用于治疗由炎症和氧化应激引起的各种疾病。姜黄素对C2C12成肌细胞发挥抗氧化和抗炎作用[51]。姜黄素还能通过抑制GSK-3β减轻CKD诱导的肌肉线粒体功能障碍、减轻线粒体氧化损伤,延缓肌肉萎缩[52]。白术内酯III (ATL-III)是白术根茎的主要活性成分,具有抗氧化剂的作用。ATL-III可以减轻线粒体损伤并上调抗氧化酶的活性,抑制ROS的产生;ATL-III下调炎症因子IL-1β和TNF-α的表达水平,抑制促氧化标志物的水平,并上调抗氧化酶(过氧化氢酶、超氧化物歧化酶和谷胱甘肽过氧化物酶)的表达水平。此外,ATL-III可通过下调Nox2,抑制ROS的产生,进而抑制氧化应激和自噬,激活PI3K/AKT/mTOR通路,从而缓解CKD患者的肌肉萎缩[53]。人参皂甙Rb1是从人参中提取的天然化合物,具有抗氧化、抗炎、抗衰老和抗细胞凋亡的作用。人参皂甙Rb1抑制ROS在细胞中的积累,保护细胞免受氧化应激,并通过PI3K/Akt/FoxO信号通路抑制蛋白质降解,Akt/mTOR信号通路促进蛋白质合成和成肌细胞分化,这两者都协同作用以抵抗肌肉萎缩[54]。当归多糖可促进肌肉蛋白质合成,同时具有抗炎抗氧化的效果,其还可促进肌管肥大,增加握力,改善骨骼肌萎缩[55]

肌少症的发病机制十分复杂,氧化应激、炎症反应、线粒体功能障碍、蛋白质合成减少和蛋白水解增加都是肌肉萎缩过程中的关键因素,氧化应激在肌少症发生发展中尤为关键。骨骼肌中的氧化应激促进线粒体功能障碍、炎症和一些信号通路的激活。这些因素之间的相互作用可能是肌肉萎缩的重要调控机制,为延缓肌肉萎缩提供了新的研究方向。一些具有抗氧化作用的药物和中药已被用于肌少症的治疗,但仍处于探索阶段,仍需更多的试验阐明其延缓肌肉萎缩的具体机制,为治疗肌少症开发新型药物,提供了新的视角。

NOTES

*通讯作者。

参考文献

[1] 刘娟, 丁清清, 周白瑜, 刘祥, 刘静民, 刘永铭, 丁国宪, 张存泰, 王建业, 于普林, 中华医学会老年医学分会, 《中华老年医学杂志》编辑委员会. 中国老年人肌少症诊疗专家共识(2021) [J]. 中华老年医学杂志, 2021, 40(8): 943-952.
[2] Petermann‐Rocha, F., Balntzi, V., Gray, S.R., Lara, J., Ho, F.K., Pell, J.P., et al. (2021) Global Prevalence of Sarcopenia and Severe Sarcopenia: A Systematic Review and Meta-Analysis. Journal of Cachexia, Sarcopenia and Muscle, 13, 86-99.
https://doi.org/10.1002/jcsm.12783
[3] Chen, L., Woo, J., Assantachai, P., Auyeung, T., Chou, M., Iijima, K., et al. (2020) Asian Working Group for Sarcopenia: 2019 Consensus Update on Sarcopenia Diagnosis and Treatment. Journal of the American Medical Directors Association, 21, 300-307.e2.
https://doi.org/10.1016/j.jamda.2019.12.012
[4] 崔华, 王朝晖, 吴剑卿, 刘颖, 郑瑾, 肖文凯, 等. 老年人肌少症防控干预中国专家共识(2023)[J]. 中华老年医学杂志, 2023, 42(2): 144-153.
[5] Mason, S.A., Morrison, D., McConell, G.K. and Wadley, G.D. (2016) Muscle Redox Signalling Pathways in Exercise. Role of Antioxidants. Free Radical Biology and Medicine, 98, 29-45.
https://doi.org/10.1016/j.freeradbiomed.2016.02.022
[6] Ghosh, A. and Shcherbik, N. (2020) Effects of Oxidative Stress on Protein Translation: Implications for Cardiovascular Diseases. International Journal of Molecular Sciences, 21, Article 2661.
https://doi.org/10.3390/ijms21082661
[7] Guo, C., Sun, L., Chen, X. and Zhang, D. (2013) Oxidative Stress, Mitochondrial Damage and Neurodegenerative Diseases. Neural Regeneration Research, 8, 2003-2014.
[8] Arfin, S., Jha, N.K., Jha, S.K., Kesari, K.K., Ruokolainen, J., Roychoudhury, S., et al. (2021) Oxidative Stress in Cancer Cell Metabolism. Antioxidants, 10, Article 642.
https://doi.org/10.3390/antiox10050642
[9] Li, Q., Tuo, X., Li, B., Deng, Z., Qiu, Y. and Xie, H. (2020) Semaglutide Attenuates Excessive Exercise-Induced Myocardial Injury through Inhibiting Oxidative Stress and Inflammation in Rats. Life Sciences, 250, Article 117531.
https://doi.org/10.1016/j.lfs.2020.117531
[10] Ojima, A., Ishibashi, Y., Matsui, T., Maeda, S., Nishino, Y., Takeuchi, M., et al. (2013) Glucagon-Like Peptide-1 Receptor Agonist Inhibits Asymmetric Dimethylarginine Generation in the Kidney of Streptozotocin-Induced Diabetic Rats by Blocking Advanced Glycation End Product-Induced Protein Arginine Methyltranferase-1 Expression. The American Journal of Pathology, 182, 132-141.
https://doi.org/10.1016/j.ajpath.2012.09.016
[11] Khin, P.P., Hong, Y., Yeon, M., Lee, D.H., Lee, J.H. and Jun, H. (2021) Dulaglutide Improves Muscle Function by Attenuating Inflammation through OPA-1-TLR-9 Signaling in Aged Mice. Aging, 13, 21962-21974.
https://doi.org/10.18632/aging.203546
[12] Hong, Y., Lee, J.H., Jeong, K.W., Choi, C.S. and Jun, H. (2019) Amelioration of Muscle Wasting by Glucagon-Like Peptide-1 Receptor Agonist in Muscle Atrophy. Journal of Cachexia, Sarcopenia and Muscle, 10, 903-918.
https://doi.org/10.1002/jcsm.12434
[13] Gurjar, A.A., Kushwaha, S., Chattopadhyay, S., Das, N., Pal, S., China, S.P., et al. (2020) Long Acting GLP-1 Analog Liraglutide Ameliorates Skeletal Muscle Atrophy in Rodents. Metabolism, 103, Article 154044.
https://doi.org/10.1016/j.metabol.2019.154044
[14] Margulies, K.B., Hernandez, A.F., Redfield, M.M., Givertz, M.M., Oliveira, G.H., Cole, R., et al. (2016) Effects of Liraglutide on Clinical Stability among Patients with Advanced Heart Failure and Reduced Ejection Fraction. Journal of the American Medical Association, 316, 500-508.
https://doi.org/10.1001/jama.2016.10260
[15] Rizzo, M.R., Barbieri, M., Marfella, R. and Paolisso, G. (2012) Reduction of Oxidative Stress and Inflammation by Blunting Daily Acute Glucose Fluctuations in Patients with Type 2 Diabetes. Diabetes Care, 35, 2076-2082.
https://doi.org/10.2337/dc12-0199
[16] Rizzo, M.R., Barbieri, M., Fava, I., Desiderio, M., Coppola, C., Marfella, R., et al. (2016) Sarcopenia in Elderly Diabetic Patients: Role of Dipeptidyl Peptidase 4 Inhibitors. Journal of the American Medical Directors Association, 17, 896-901.
https://doi.org/10.1016/j.jamda.2016.04.016
[17] Bouchi, R., Fukuda, T., Takeuchi, T., Nakano, Y., Murakami, M., Minami, I., et al. (2017) Dipeptidyl Peptidase 4 Inhibitors Attenuates the Decline of Skeletal Muscle Mass in Patients with Type 2 Diabetes. Diabetes/Metabolism Research and Reviews, 34, 500-508.
https://doi.org/10.1001/jama.2016.10260
[18] Sencan, C., Dost, F.S., Ates Bulut, E. and Isik, A.T. (2022) DPP4 Inhibitors as a Potential Therapeutic Option for Sarcopenia: A 6-Month Follow-Up Study in Diabetic Older Patients. Experimental Gerontology, 164, Article 111832.
https://doi.org/10.1016/j.exger.2022.111832
[19] Ishii, S., Nagai, Y., Kato, H., Fukuda, H. and Tanaka, Y. (2020) Effect of the Dipeptidyl Peptidase-4 Inhibitor Sitagliptin on Muscle Mass and the Muscle/fat Ratio in Patients with Type 2 Diabetes. Journal of Clinical Medicine Research, 12, 122-126.
https://doi.org/10.14740/jocmr4078
[20] Ferraro, E., Pin, F., Gorini, S., Pontecorvo, L., Ferri, A., Mollace, V., et al. (2016) Improvement of Skeletal Muscle Performance in Ageing by the Metabolic Modulator Trimetazidine. Journal of Cachexia, Sarcopenia and Muscle, 7, 449-457.
https://doi.org/10.1002/jcsm.12097
[21] Torcinaro, A., Cappetta, D., De Santa, F., Telesca, M., Leigheb, M., Berrino, L., et al. (2022) Ranolazine Counteracts Strength Impairment and Oxidative Stress in Aged Sarcopenic Mice. Metabolites, 12, Article 663.
https://doi.org/10.3390/metabo12070663
[22] Kingsley, J., Torimoto, K., Hashimoto, T. and Eguchi, S. (2021) Angiotensin II Inhibition: A Potential Treatment to Slow the Progression of Sarcopenia. Clinical Science, 135, 2503-2520.
https://doi.org/10.1042/cs20210719
[23] da Cunha, V., Tham, D.M., Martin-McNulty, B., Deng, G., Ho, J.J., Wilson, D.W., et al. (2005) Enalapril Attenuates Angiotensin II-Induced Atherosclerosis and Vascular Inflammation. Atherosclerosis, 178, 9-17.
https://doi.org/10.1016/j.atherosclerosis.2004.08.023
[24] Kang, D., Park, K. and Kim, D. (2022) Study of Therapeutic Effects of Losartan for Sarcopenia Based on the F344xBN Rat Aging Model. In Vivo, 36, 2740-2750.
https://doi.org/10.21873/invivo.13010
[25] Tanaka, M., Kaji, K., Nishimura, N., Asada, S., Koizumi, A., Matsuda, T., et al. (2024) Blockade of Angiotensin II Modulates Insulin-Like Growth Factor 1-Mediated Skeletal Muscle Homeostasis in Experimental Steatohepatitis. Biochimica et Biophysica ActaMolecular Cell Research, 1871, Article 119649.
https://doi.org/10.1016/j.bbamcr.2023.119649
[26] Henriksen, E.J. and Jacob, S. (2003) Modulation of Metabolic Control by Angiotensin Converting Enzyme (ACE) Inhibition. Journal of Cellular Physiology, 196, 171-179.
https://doi.org/10.1002/jcp.10294
[27] Sumukadas, D., Witham, M.D., Struthers, A.D. and McMurdo, M.E.T. (2007) Effect of Perindopril on Physical Function in Elderly People with Functional Impairment: A Randomized Controlled Trial. Canadian Medical Association Journal, 177, 867-874.
https://doi.org/10.1503/cmaj.061339
[28] Ji, Y., Lin, J., Liu, R., Wang, K., Chang, M., Gao, Z., et al. (2024) Celecoxib Attenuates Hindlimb Unloading-Induced Muscle Atrophy via Suppressing Inflammation, Oxidative Stress and ER Stress by Inhibiting Stat3. Inflammopharmacology, 32, 1633-1646.
https://doi.org/10.1007/s10787-024-01454-7
[29] Takisawa, S., Funakoshi, T., Yatsu, T., Nagata, K., Aigaki, T., Machida, S., et al. (2019) Vitamin C Deficiency Causes Muscle Atrophy and a Deterioration in Physical Performance. Scientific Reports, 9, Article No. 4702.
https://doi.org/10.1038/s41598-019-41229-7
[30] Nasimi, N., Sohrabi, Z., Dabbaghmanesh, M.H., Eskandari, M.H., Bedeltavana, A., Famouri, M., et al. (2021) A Novel Fortified Dairy Product and Sarcopenia Measures in Sarcopenic Older Adults: A Double-Blind Randomized Controlled Trial. Journal of the American Medical Directors Association, 22, 809-815.
https://doi.org/10.1016/j.jamda.2020.08.035
[31] Chung, E., Mo, H., Wang, S., Zu, Y., Elfakhani, M., Rios, S.R., et al. (2018) Potential Roles of Vitamin E in Age-Related Changes in Skeletal Muscle Health. Nutrition Research, 49, 23-36.
https://doi.org/10.1016/j.nutres.2017.09.005
[32] Liu, J., Pan, M., Liu, Y., Huang, D., Luo, K., Wu, Z., et al. (2022) Taurine Alleviates Endoplasmic Reticulum Stress, Inflammatory Cytokine Expression and Mitochondrial Oxidative Stress Induced by High Glucose in the Muscle Cells of Olive Flounder (Paralichthys olivaceus). Fish & Shellfish Immunology, 123, 358-368.
https://doi.org/10.1016/j.fsi.2022.03.021
[33] Barbiera, A., Sorrentino, S., Fard, D., Lepore, E., Sica, G., Dobrowolny, G., et al. (2022) Taurine Administration Counteracts Aging-Associated Impingement of Skeletal Muscle Regeneration by Reducing Inflammation and Oxidative Stress. Antioxidants, 11, Article 1016.
https://doi.org/10.3390/antiox11051016
[34] Fischer, A., Onur, S., Niklowitz, P., Menke, T., Laudes, M., Rimbach, G., et al. (2016) Coenzyme Q10 Status as a Determinant of Muscular Strength in Two Independent Cohorts. PLOS ONE, 11, e0167124.
https://doi.org/10.1371/journal.pone.0167124
[35] Gupta, P., Dutt, V., Kaur, N., Kalra, P., Gupta, S., Dua, A., et al. (2020) S-allyl Cysteine: A Potential Compound against Skeletal Muscle Atrophy. Biochimica et Biophysica ActaGeneral Subjects, 1864, Article 129676.
https://doi.org/10.1016/j.bbagen.2020.129676
[36] Therdyothin, A., Phiphopthatsanee, N. and Isanejad, M. (2023) The Effect of Omega-3 Fatty Acids on Sarcopenia: Mechanism of Action and Potential Efficacy. Marine Drugs, 21, Article 399.
https://doi.org/10.3390/md21070399
[37] Huang, Y., Chiu, W., Hsu, Y., Lo, Y. and Wang, Y. (2020) Effects of Omega-3 Fatty Acids on Muscle Mass, Muscle Strength and Muscle Performance among the Elderly: A Meta-Analysis. Nutrients, 12, Article 3739.
https://doi.org/10.3390/nu12123739
[38] Cornish, S.M., Cordingley, D.M., Shaw, K.A., Forbes, S.C., Leonhardt, T., Bristol, A., et al. (2022) Effects of Omega-3 Supplementation Alone and Combined with Resistance Exercise on Skeletal Muscle in Older Adults: A Systematic Review and Meta-Analysis. Nutrients, 14, Article 2221.
https://doi.org/10.3390/nu14112221
[39] Kim, J.G., Sharma, A.R., Lee, Y., Chatterjee, S., Choi, Y.J., Rajvansh, R., et al. (2024) Therapeutic Potential of Quercetin as an Antioxidant for Bone-Muscle-Tendon Regeneration and Aging. Aging and Disease, 16, Article No. 3.
https://doi.org/10.14336/ad.2024.0282
[40] Zappavigna, S., Vanacore, D., Lama, S., Potenza, N., Russo, A., Ferranti, P., et al. (2019) Silybin-Induced Apoptosis Occurs in Parallel to the Increase of Ceramides Synthesis and miRNAs Secretion in Human Hepatocarcinoma Cells. International Journal of Molecular Sciences, 20, Article 2190.
https://doi.org/10.3390/ijms20092190
[41] Vecchione, G., Grasselli, E., Voci, A., Baldini, F., Grattagliano, I., Wang, D.Q., et al. (2016) Silybin Counteracts Lipid Excess and Oxidative Stress in Cultured Steatotic Hepatic Cells. World Journal of Gastroenterology, 22, 6016-6026.
https://doi.org/10.3748/wjg.v22.i26.6016
[42] Yang, J., Wang, Z., Xie, Y., Tang, Y., Fu, Y., Xu, Z., et al. (2024) Sesamol Alleviates Sarcopenia via Activating AKT/mTOR/FoxO1 Signal Pathway in Aged Obese Mice. Plant Foods for Human Nutrition, 79, 607-616.
https://doi.org/10.1007/s11130-024-01199-2
[43] Ko, J., Chang, B., Choi, Y., Choi, J., Kwon, H., Lee, J., et al. (2024) Ashwagandha Ethanol Extract Attenuates Sarcopenia-Related Muscle Atrophy in Aged Mice. Nutrients, 16, Article 157.
https://doi.org/10.3390/nu16010157
[44] Seo, E., Truong, C. and Jun, H. (2022) Psoralea Corylifolia L. Seed Extract Attenuates Dexamethasone-Induced Muscle Atrophy in Mice by Inhibition of Oxidative Stress and Inflammation. Journal of Ethnopharmacology, 296, Article 115490.
https://doi.org/10.1016/j.jep.2022.115490
[45] Chen, W., Shen, Z., Dong, W., Huang, G., Yu, D., Chen, W., et al. (2024) Polygonatum sibiricum Polysaccharide Ameliorates Skeletal Muscle Aging via Mitochondria-Associated Membrane-Mediated Calcium Homeostasis Regulation. Phytomedicine, 129, Article 155567.
https://doi.org/10.1016/j.phymed.2024.155567
[46] Zhou, R., Guo, T. and Li, J. (2023) Research Progress on the Antitumor Effects of Astragaloside IV. European Journal of Pharmacology, 938, Article 175449.
https://doi.org/10.1016/j.ejphar.2022.175449
[47] Dai, H., Zheng, Y., Chen, R., Wang, Y., Zhong, Y., Zhou, C., et al. (2023) Astragaloside IV Alleviates Sepsis-Induced Muscle Atrophy by Inhibiting the TGF-Β1/Smad Signaling Pathway. International Immunopharmacology, 115, Artilc e109640.
https://doi.org/10.1016/j.intimp.2022.109640
[48] Zhang, Z., Hu, W., Yu, A., Wu, L., Yang, D., Kuang, H., et al. (2024) Review of Polysaccharides from Chrysanthemum Morifolium Ramat: Extraction, Purification, Structural Characteristics, Health Benefits, Structural-Activity Relationships and Applications. International Journal of Biological Macromolecules, 278, Article 134919.
https://doi.org/10.1016/j.ijbiomac.2024.134919
[49] Yoo, A., Jang, Y.J., Ahn, J., Jung, C.H., Seo, H.D. and Ha, T.Y. (2020) Chrysanthemi Zawadskii Var. Latilobum Attenuates Obesity-Induced Skeletal Muscle Atrophy via Regulation of PRMTs in Skeletal Muscle of Mice. International Journal of Molecular Sciences, 21, Article 2811.
https://doi.org/10.3390/ijms21082811
[50] Lee, H., Kim, Y.I., Nirmala, F.S., Jeong, H.Y., Seo, H., Ha, T.Y., et al. (2021) Chrysanthemum Zawadskil Herbich Attenuates Dexamethasone-Induced Muscle Atrophy through the Regulation of Proteostasis and Mitochondrial Function. Biomedicine & Pharmacotherapy, 136, Article 111226.
https://doi.org/10.1016/j.biopha.2021.111226
[51] Nosrati-Oskouie, M., Aghili-Moghaddam, N.S., Tavakoli-Rouzbehani, O.M., Jamialahmadi, T., Johnston, T.P. and Sahebkar, A. (2022) Curcumin: A Dietary Phytochemical for Boosting Exercise Performance and Recovery. Food Science & Nutrition, 10, 3531-3543.
https://doi.org/10.1002/fsn3.2983
[52] Wang, D., Yang, Y., Zou, X., Zheng, Z. and Zhang, J. (2020) Curcumin Ameliorates CKD-Induced Mitochondrial Dysfunction and Oxidative Stress through Inhibiting GSK-3β Activity. The Journal of Nutritional Biochemistry, 83, Article 108404.
https://doi.org/10.1016/j.jnutbio.2020.108404
[53] Wang, M., Hu, R., Wang, Y., Liu, L., You, H., Zhang, J., et al. (2019) Atractylenolide III Attenuates Muscle Wasting in Chronic Kidney Disease via the Oxidative Stress-Mediated PI3K/AKT/mTOR Pathway. Oxidative Medicine and Cellular Longevity, 2019, 1-16.
https://doi.org/10.1155/2019/1875471
[54] Zha, W., Sun, Y., Gong, W., Li, L., Kim, W. and Li, H. (2022) Ginseng and Ginsenosides: Therapeutic Potential for Sarcopenia. Biomedicine & Pharmacotherapy, 156, Article 113876.
https://doi.org/10.1016/j.biopha.2022.113876
[55] Yeh, T., Hsu, C., Yang, S., Hsu, M. and Liu, J. (2014) Angelica Sinensis Promotes Myotube Hypertrophy through the PI3K/AKT/mTOR Pathway. BMC Complementary and Alternative Medicine, 14, Article No. 144.
https://doi.org/10.1186/1472-6882-14-144