[1]
|
Cho, Y., Bello, A.K., Levin, A., Lunney, M., Osman, M.A., Ye, F., et al. (2021) Peritoneal Dialysis Use and Practice Patterns: An International Survey Study. American Journal of Kidney Diseases, 77, 315-325. https://doi.org/10.1053/j.ajkd.2020.05.032
|
[2]
|
Teitelbaum, I. (2021) Peritoneal Dialysis. New England Journal of Medicine, 385, 1786-1795. https://doi.org/10.1056/nejmra2100152
|
[3]
|
Himmelfarb, J., Vanholder, R., Mehrotra, R. and Tonelli, M. (2020) The Current and Future Landscape of Dialysis. Nature Reviews Nephrology, 16, 573-585. https://doi.org/10.1038/s41581-020-0315-4
|
[4]
|
Cho, Y. and Johnson, D.W. (2018) PD Solutions and Peritoneal Health. Clinical Journal of the American Society of Nephrology, 13, 1455-1457. https://doi.org/10.2215/cjn.09590818
|
[5]
|
Brimble, K.S., Walker, M., Margetts, P.J., Kundhal, K.K. and Rabbat, C.G. (2006) Meta-Analysis: Peritoneal Membrane Transport, Mortality, and Technique Failure in Peritoneal Dialysis. Journal of the American Society of Nephrology, 17, 2591-2598. https://doi.org/10.1681/asn.2006030194
|
[6]
|
Devuyst, O., Margetts, P.J. and Topley, N. (2010) The Pathophysiology of the Peritoneal Membrane. Journal of the American Society of Nephrology, 21, 1077-1085. https://doi.org/10.1681/asn.2009070694
|
[7]
|
Si, M., Wang, Q., Li, Y., Lin, H., Luo, D., Zhao, W., et al. (2019) Inhibition of Hyperglycolysis in Mesothelial Cells Prevents Peritoneal Fibrosis. Science Translational Medicine, 11, eaav5341. https://doi.org/10.1126/scitranslmed.aav5341
|
[8]
|
Yáñez-Mó, M., Lara-Pezzi, E., Selgas, R., Ramírez-Huesca, M., Domínguez-Jiménez, C., Jiménez-Heffernan, J.A., et al. (2003) Peritoneal Dialysis and Epithelial-to-Mesenchymal Transition of Mesothelial Cells. New England Journal of Medicine, 348, 403-413. https://doi.org/10.1056/nejmoa020809
|
[9]
|
Helmke, A., Nordlohne, J., Balzer, M.S., Dong, L., Rong, S., Hiss, M., et al. (2019) CX3CL1-CX3CR1 Interaction Mediates Macrophage-Mesothelial Cross Talk and Promotes Peritoneal Fibrosis. Kidney International, 95, 1405-1417. https://doi.org/10.1016/j.kint.2018.12.030
|
[10]
|
Zhou, Q., Bajo, M., del Peso, G., Yu, X. and Selgas, R. (2016) Preventing Peritoneal Membrane Fibrosis in Peritoneal Dialysis Patients. Kidney International, 90, 515-524. https://doi.org/10.1016/j.kint.2016.03.040
|
[11]
|
Ramil-Gómez, O., Rodríguez-Carmona, A., Fernández-Rodríguez, J.A., Pérez-Fontán, M., Ferreiro-Hermida, T., López-Pardo, M., et al. (2021) Mitochondrial Dysfunction Plays a Relevant Role in Pathophysiology of Peritoneal Membrane Damage Induced by Peritoneal Dialysis. Antioxidants, 10, Article 447. https://doi.org/10.3390/antiox10030447
|
[12]
|
Busnadiego, O., Loureiro-Álvarez, J., Sandoval, P., Lagares, D., Dotor, J., Pérez-Lozano, M.L., et al. (2015) A Pathogenetic Role for Endothelin-1 in Peritoneal Dialysis-Associated Fibrosis. Journal of the American Society of Nephrology, 26, 173-182. https://doi.org/10.1681/asn.2013070799
|
[13]
|
Lopaschuk, G.D., Karwi, Q.G., Tian, R., Wende, A.R. and Abel, E.D. (2021) Cardiac Energy Metabolism in Heart Failure. Circulation Research, 128, 1487-1513. https://doi.org/10.1161/circresaha.121.318241
|
[14]
|
Cortassa, S., Sollott, S.J. and Aon, M.A. (2017) Mitochondrial Respiration and ROS Emission during β-Oxidation in the Heart: An Experimental-Computational Study. PLOS Computational Biology, 13, e1005588. https://doi.org/10.1371/journal.pcbi.1005588
|
[15]
|
Pike, L.S., Smift, A.L., Croteau, N.J., Ferrick, D.A. and Wu, M. (2011) Inhibition of Fatty Acid Oxidation by Etomoxir Impairs NADPH Production and Increases Reactive Oxygen Species Resulting in ATP Depletion and Cell Death in Human Glioblastoma Cells. Biochimica et Biophysica Acta (BBA)-Bioenergetics, 1807, 726-734. https://doi.org/10.1016/j.bbabio.2010.10.022
|
[16]
|
Schlaepfer, I.R. and Joshi, M. (2020) CPT1A-Mediated Fat Oxidation, Mechanisms, and Therapeutic Potential. Endocrinology, 161, bqz046. https://doi.org/10.1210/endocr/bqz046
|
[17]
|
Lundsgaard, A., Fritzen, A.M. and Kiens, B. (2018) Molecular Regulation of Fatty Acid Oxidation in Skeletal Muscle during Aerobic Exercise. Trends in Endocrinology & Metabolism, 29, 18-30. https://doi.org/10.1016/j.tem.2017.10.011
|
[18]
|
Schönfeld, P. and Wojtczak, L. (2016) Short-and Medium-Chain Fatty Acids in Energy Metabolism: The Cellular Perspective. Journal of Lipid Research, 57, 943-954. https://doi.org/10.1194/jlr.r067629
|
[19]
|
He, W., Li, Q. and Li, X. (2023) Acetyl-CoA Regulates Lipid Metabolism and Histone Acetylation Modification in Cancer. Biochimica et Biophysica Acta (BBA)-Reviews on Cancer, 1878, Article 188837. https://doi.org/10.1016/j.bbcan.2022.188837
|
[20]
|
Gu, L., Surolia, R., Larson-Casey, J.L., He, C., Davis, D., Kang, J., et al. (2021) Targeting CPT1A-BCL-2 Interaction Modulates Apoptosis Resistance and Fibrotic Remodeling. Cell Death & Differentiation, 29, 118-132. https://doi.org/10.1038/s41418-021-00840-w
|
[21]
|
Xiao, Q., Yu, X., Yu, X., Liu, S., Jiang, J., Cheng, Y., et al. (2022) An Integrated Network Pharmacology and Cell Metabolomics Approach to Reveal the Role of Rhein, a Novel PPARα Agonist, against Renal Fibrosis by Activating the PPARα-CPT1A Axis. Phytomedicine, 102, Article 154147. https://doi.org/10.1016/j.phymed.2022.154147
|
[22]
|
Miguel, V., Tituaña, J., Herrero, J.I., Herrero, L., Serra, D., Cuevas, P., et al. (2021) Renal Tubule CPT1A Overexpression Protects from Kidney Fibrosis by Restoring Mitochondrial Homeostasis. Journal of Clinical Investigation, 131, e140695. https://doi.org/10.1172/jci140695
|
[23]
|
Cheng, S., Lu, Y., Li, Y., Gao, L., Shen, H. and Song, K. (2018) Hydrogen Sulfide Inhibits Epithelial-Mesenchymal Transition in Peritoneal Mesothelial Cells. Scientific Reports, 8, Article No. 5863. https://doi.org/10.1038/s41598-018-21807-x
|
[24]
|
Su, W., Hu, Z., Zhong, X., Cong, A., Zhang, Y., Zhou, Z., et al. (2023) Restoration of CPT1A-Mediated Fatty Acid Oxidation in Mesothelial Cells Protects against Peritoneal Fibrosis. Theranostics, 13, 4482-4496. https://doi.org/10.7150/thno.84921
|
[25]
|
Hung, K., Liu, S., Yang, T., Liao, T. and Kao, S. (2014) High-Dialysate-Glucose-Induced Oxidative Stress and Mitochondrial-Mediated Apoptosis in Human Peritoneal Mesothelial Cells. Oxidative Medicine and Cellular Longevity, 2014, Article ID: 642793. https://doi.org/10.1155/2014/642793
|
[26]
|
Xie, X., Wang, J., Xiang, S., Chen, Z., Zhang, X. and Chen, J. (2019) Dialysate Cell-Free Mitochondrial DNA Fragments as a Marker of Intraperitoneal Inflammation and Peritoneal Solute Transport Rate in Peritoneal Dialysis. BMC Nephrology, 20, Article No. 128. https://doi.org/10.1186/s12882-019-1284-3
|
[27]
|
Wu, J., Li, J., Feng, B., Bi, Z., Zhu, G., Zhang, Y., et al. (2022) Activation of AMPK-PGC-1α Pathway Ameliorates Peritoneal Dialysis Related Peritoneal Fibrosis in Mice by Enhancing Mitochondrial Biogenesis. Renal Failure, 44, 1546-1558. https://doi.org/10.1080/0886022x.2022.2126789
|
[28]
|
Lu, H., Chen, W., Liu, W., Si, Y., Zhao, T., Lai, X., et al. (2020) Molecular Hydrogen Regulates PTEN‐AKT‐mTOR Signaling via ROS to Alleviate Peritoneal Dialysis‐Related Peritoneal Fibrosis. The FASEB Journal, 34, 4134-4146. https://doi.org/10.1096/fj.201901981r
|
[29]
|
Carracedo, A., Cantley, L.C. and Pandolfi, P.P. (2013) Cancer Metabolism: Fatty Acid Oxidation in the Limelight. Nature Reviews Cancer, 13, 227-232. https://doi.org/10.1038/nrc3483
|
[30]
|
Li, X., Wang, Z., Zheng, Y., Guan, Y., Yang, P., Chen, X., et al. (2018) Nuclear Receptor Nur77 Facilitates Melanoma Cell Survival under Metabolic Stress by Protecting Fatty Acid Oxidation. Molecular Cell, 69, 480-492.E7. https://doi.org/10.1016/j.molcel.2018.01.001
|
[31]
|
Cardanho-Ramos, C. and Morais, V.A. (2021) Mitochondrial Biogenesis in Neurons: How and Where. International Journal of Molecular Sciences, 22, Article 13059. https://doi.org/10.3390/ijms222313059
|
[32]
|
Carracedo, A., Weiss, D., Leliaert, A.K., Bhasin, M., de Boer, V.C.J., Laurent, G., et al. (2012) A Metabolic Prosurvival Role for PML in Breast Cancer. Journal of Clinical Investigation, 122, 3088-3100. https://doi.org/10.1172/jci62129
|
[33]
|
Jiang, J., Wang, K., Chen, Y., Chen, H., Nice, E.C. and Huang, C. (2017) Redox Regulation in Tumor Cell Epithelial-Mesenchymal Transition: Molecular Basis and Therapeutic Strategy. Signal Transduction and Targeted Therapy, 2, Article No. 17036. https://doi.org/10.1038/sigtrans.2017.36
|
[34]
|
Zhao, M., Wang, Y., Li, L., Liu, S., Wang, C., Yuan, Y., et al. (2021) Mitochondrial ROS Promote Mitochondrial Dysfunction and Inflammation in Ischemic Acute Kidney Injury by Disrupting TFAM-Mediated mtDNA Maintenance. Theranostics, 11, 1845-1863. https://doi.org/10.7150/thno.50905
|
[35]
|
Yang, L., Besschetnova, T.Y., Brooks, C.R., Shah, J.V. and Bonventre, J.V. (2010) Epithelial Cell Cycle Arrest in G2/M Mediates Kidney Fibrosis after Injury. Nature Medicine, 16, 535-543. https://doi.org/10.1038/nm.2144
|
[36]
|
Si, M., Wang, Q., Li, Y., Lin, H., Luo, D., Zhao, W., et al. (2019) Inhibition of Hyperglycolysis in Mesothelial Cells Prevents Peritoneal Fibrosis. Science Translational Medicine, 11, eaav5341. https://doi.org/10.1126/scitranslmed.aav5341
|
[37]
|
Ko, Y., Mohtat, D., Suzuki, M., Park, A.S.D., Izquierdo, M.C., Han, S.Y., et al. (2013) Cytosine Methylation Changes in Enhancer Regions of Core Pro-Fibrotic Genes Characterize Kidney Fibrosis Development. Genome Biology, 14, Article No. R108. https://doi.org/10.1186/gb-2013-14-10-r108
|
[38]
|
Margetts, P.J., Bonniaud, P., Liu, L., Hoff, C.M., Holmes, C.J., West-Mays, J.A., et al. (2005) Transient Overexpression of TGF-β1 Induces Epithelial Mesenchymal Transition in the Rodent Peritoneum. Journal of the American Society of Nephrology, 16, 425-436. https://doi.org/10.1681/asn.2004060436
|
[39]
|
Guo, H., Leung, J.C.K., Lam, M.F., Chan, L.Y.Y., Tsang, A.W.L., Lan, H.Y., et al. (2007) Smad7 Transgene Attenuates Peritoneal Fibrosis in Uremic Rats Treated with Peritoneal Dialysis. Journal of the American Society of Nephrology, 18, 2689-2703. https://doi.org/10.1681/asn.2007010121
|
[40]
|
Shi, Y., Tao, M., Wang, Y., Zang, X., Ma, X., Qiu, A., et al. (2019) Genetic or Pharmacologic Blockade of Enhancer of Zeste Homolog 2 Inhibits the Progression of Peritoneal Fibrosis. The Journal of Pathology, 250, 79-94. https://doi.org/10.1002/path.5352
|
[41]
|
Ferrantelli, E., Liappas, G., Vila Cuenca, M., Keuning, E.D., Foster, T.L., Vervloet, M.G., et al. (2016) The Dipeptide Alanyl-Glutamine Ameliorates Peritoneal Fibrosis and Attenuates IL-17 Dependent Pathways during Peritoneal Dialysis. Kidney International, 89, 625-635. https://doi.org/10.1016/j.kint.2015.12.005
|
[42]
|
Guo, Y., Wang, L., Gou, R., Wang, Y., Shi, X., Pang, X., et al. (2020) SIRT1-Modified Human Umbilical Cord Mesenchymal Stem Cells Ameliorate Experimental Peritoneal Fibrosis by Inhibiting the TGF-β/Smad3 Pathway. Stem Cell Research & Therapy, 11, Article No. 362. https://doi.org/10.1186/s13287-020-01878-2
|
[43]
|
Kim, S.W., Yoon, S., Chuong, E., Oyolu, C., Wills, A.E., Gupta, R., et al. (2011) Chromatin and Transcriptional Signatures for Nodal Signaling during Endoderm Formation in hESCs. Developmental Biology, 357, 492-504. https://doi.org/10.1016/j.ydbio.2011.06.009
|
[44]
|
Kang, H.M., Ahn, S.H., Choi, P., Ko, Y., Han, S.H., Chinga, F., et al. (2014) Defective Fatty Acid Oxidation in Renal Tubular Epithelial Cells Has a Key Role in Kidney Fibrosis Development. Nature Medicine, 21, 37-46. https://doi.org/10.1038/nm.3762
|