|
[1]
|
Cho, Y., Bello, A.K., Levin, A., Lunney, M., Osman, M.A., Ye, F., et al. (2021) Peritoneal Dialysis Use and Practice Patterns: An International Survey Study. American Journal of Kidney Diseases, 77, 315-325. [Google Scholar] [CrossRef] [PubMed]
|
|
[2]
|
Teitelbaum, I. (2021) Peritoneal Dialysis. New England Journal of Medicine, 385, 1786-1795. [Google Scholar] [CrossRef] [PubMed]
|
|
[3]
|
Himmelfarb, J., Vanholder, R., Mehrotra, R. and Tonelli, M. (2020) The Current and Future Landscape of Dialysis. Nature Reviews Nephrology, 16, 573-585. [Google Scholar] [CrossRef] [PubMed]
|
|
[4]
|
Cho, Y. and Johnson, D.W. (2018) PD Solutions and Peritoneal Health. Clinical Journal of the American Society of Nephrology, 13, 1455-1457. [Google Scholar] [CrossRef] [PubMed]
|
|
[5]
|
Brimble, K.S., Walker, M., Margetts, P.J., Kundhal, K.K. and Rabbat, C.G. (2006) Meta-Analysis: Peritoneal Membrane Transport, Mortality, and Technique Failure in Peritoneal Dialysis. Journal of the American Society of Nephrology, 17, 2591-2598. [Google Scholar] [CrossRef] [PubMed]
|
|
[6]
|
Devuyst, O., Margetts, P.J. and Topley, N. (2010) The Pathophysiology of the Peritoneal Membrane. Journal of the American Society of Nephrology, 21, 1077-1085. [Google Scholar] [CrossRef] [PubMed]
|
|
[7]
|
Si, M., Wang, Q., Li, Y., Lin, H., Luo, D., Zhao, W., et al. (2019) Inhibition of Hyperglycolysis in Mesothelial Cells Prevents Peritoneal Fibrosis. Science Translational Medicine, 11, eaav5341. [Google Scholar] [CrossRef] [PubMed]
|
|
[8]
|
Yáñez-Mó, M., Lara-Pezzi, E., Selgas, R., Ramírez-Huesca, M., Domínguez-Jiménez, C., Jiménez-Heffernan, J.A., et al. (2003) Peritoneal Dialysis and Epithelial-to-Mesenchymal Transition of Mesothelial Cells. New England Journal of Medicine, 348, 403-413. [Google Scholar] [CrossRef] [PubMed]
|
|
[9]
|
Helmke, A., Nordlohne, J., Balzer, M.S., Dong, L., Rong, S., Hiss, M., et al. (2019) CX3CL1-CX3CR1 Interaction Mediates Macrophage-Mesothelial Cross Talk and Promotes Peritoneal Fibrosis. Kidney International, 95, 1405-1417. [Google Scholar] [CrossRef] [PubMed]
|
|
[10]
|
Zhou, Q., Bajo, M., del Peso, G., Yu, X. and Selgas, R. (2016) Preventing Peritoneal Membrane Fibrosis in Peritoneal Dialysis Patients. Kidney International, 90, 515-524. [Google Scholar] [CrossRef] [PubMed]
|
|
[11]
|
Ramil-Gómez, O., Rodríguez-Carmona, A., Fernández-Rodríguez, J.A., Pérez-Fontán, M., Ferreiro-Hermida, T., López-Pardo, M., et al. (2021) Mitochondrial Dysfunction Plays a Relevant Role in Pathophysiology of Peritoneal Membrane Damage Induced by Peritoneal Dialysis. Antioxidants, 10, Article 447. [Google Scholar] [CrossRef] [PubMed]
|
|
[12]
|
Busnadiego, O., Loureiro-Álvarez, J., Sandoval, P., Lagares, D., Dotor, J., Pérez-Lozano, M.L., et al. (2015) A Pathogenetic Role for Endothelin-1 in Peritoneal Dialysis-Associated Fibrosis. Journal of the American Society of Nephrology, 26, 173-182. [Google Scholar] [CrossRef] [PubMed]
|
|
[13]
|
Lopaschuk, G.D., Karwi, Q.G., Tian, R., Wende, A.R. and Abel, E.D. (2021) Cardiac Energy Metabolism in Heart Failure. Circulation Research, 128, 1487-1513. [Google Scholar] [CrossRef] [PubMed]
|
|
[14]
|
Cortassa, S., Sollott, S.J. and Aon, M.A. (2017) Mitochondrial Respiration and ROS Emission during β-Oxidation in the Heart: An Experimental-Computational Study. PLOS Computational Biology, 13, e1005588. [Google Scholar] [CrossRef] [PubMed]
|
|
[15]
|
Pike, L.S., Smift, A.L., Croteau, N.J., Ferrick, D.A. and Wu, M. (2011) Inhibition of Fatty Acid Oxidation by Etomoxir Impairs NADPH Production and Increases Reactive Oxygen Species Resulting in ATP Depletion and Cell Death in Human Glioblastoma Cells. Biochimica et Biophysica Acta (BBA)-Bioenergetics, 1807, 726-734. [Google Scholar] [CrossRef] [PubMed]
|
|
[16]
|
Schlaepfer, I.R. and Joshi, M. (2020) CPT1A-Mediated Fat Oxidation, Mechanisms, and Therapeutic Potential. Endocrinology, 161, bqz046. [Google Scholar] [CrossRef] [PubMed]
|
|
[17]
|
Lundsgaard, A., Fritzen, A.M. and Kiens, B. (2018) Molecular Regulation of Fatty Acid Oxidation in Skeletal Muscle during Aerobic Exercise. Trends in Endocrinology & Metabolism, 29, 18-30. [Google Scholar] [CrossRef] [PubMed]
|
|
[18]
|
Schönfeld, P. and Wojtczak, L. (2016) Short-and Medium-Chain Fatty Acids in Energy Metabolism: The Cellular Perspective. Journal of Lipid Research, 57, 943-954. [Google Scholar] [CrossRef] [PubMed]
|
|
[19]
|
He, W., Li, Q. and Li, X. (2023) Acetyl-CoA Regulates Lipid Metabolism and Histone Acetylation Modification in Cancer. Biochimica et Biophysica Acta (BBA)-Reviews on Cancer, 1878, Article 188837. [Google Scholar] [CrossRef] [PubMed]
|
|
[20]
|
Gu, L., Surolia, R., Larson-Casey, J.L., He, C., Davis, D., Kang, J., et al. (2021) Targeting CPT1A-BCL-2 Interaction Modulates Apoptosis Resistance and Fibrotic Remodeling. Cell Death & Differentiation, 29, 118-132. [Google Scholar] [CrossRef] [PubMed]
|
|
[21]
|
Xiao, Q., Yu, X., Yu, X., Liu, S., Jiang, J., Cheng, Y., et al. (2022) An Integrated Network Pharmacology and Cell Metabolomics Approach to Reveal the Role of Rhein, a Novel PPARα Agonist, against Renal Fibrosis by Activating the PPARα-CPT1A Axis. Phytomedicine, 102, Article 154147. [Google Scholar] [CrossRef] [PubMed]
|
|
[22]
|
Miguel, V., Tituaña, J., Herrero, J.I., Herrero, L., Serra, D., Cuevas, P., et al. (2021) Renal Tubule CPT1A Overexpression Protects from Kidney Fibrosis by Restoring Mitochondrial Homeostasis. Journal of Clinical Investigation, 131, e140695. [Google Scholar] [CrossRef] [PubMed]
|
|
[23]
|
Cheng, S., Lu, Y., Li, Y., Gao, L., Shen, H. and Song, K. (2018) Hydrogen Sulfide Inhibits Epithelial-Mesenchymal Transition in Peritoneal Mesothelial Cells. Scientific Reports, 8, Article No. 5863. [Google Scholar] [CrossRef] [PubMed]
|
|
[24]
|
Su, W., Hu, Z., Zhong, X., Cong, A., Zhang, Y., Zhou, Z., et al. (2023) Restoration of CPT1A-Mediated Fatty Acid Oxidation in Mesothelial Cells Protects against Peritoneal Fibrosis. Theranostics, 13, 4482-4496. [Google Scholar] [CrossRef] [PubMed]
|
|
[25]
|
Hung, K., Liu, S., Yang, T., Liao, T. and Kao, S. (2014) High-Dialysate-Glucose-Induced Oxidative Stress and Mitochondrial-Mediated Apoptosis in Human Peritoneal Mesothelial Cells. Oxidative Medicine and Cellular Longevity, 2014, Article ID: 642793. [Google Scholar] [CrossRef] [PubMed]
|
|
[26]
|
Xie, X., Wang, J., Xiang, S., Chen, Z., Zhang, X. and Chen, J. (2019) Dialysate Cell-Free Mitochondrial DNA Fragments as a Marker of Intraperitoneal Inflammation and Peritoneal Solute Transport Rate in Peritoneal Dialysis. BMC Nephrology, 20, Article No. 128. [Google Scholar] [CrossRef] [PubMed]
|
|
[27]
|
Wu, J., Li, J., Feng, B., Bi, Z., Zhu, G., Zhang, Y., et al. (2022) Activation of AMPK-PGC-1α Pathway Ameliorates Peritoneal Dialysis Related Peritoneal Fibrosis in Mice by Enhancing Mitochondrial Biogenesis. Renal Failure, 44, 1546-1558. [Google Scholar] [CrossRef] [PubMed]
|
|
[28]
|
Lu, H., Chen, W., Liu, W., Si, Y., Zhao, T., Lai, X., et al. (2020) Molecular Hydrogen Regulates PTEN‐AKT‐mTOR Signaling via ROS to Alleviate Peritoneal Dialysis‐Related Peritoneal Fibrosis. The FASEB Journal, 34, 4134-4146. [Google Scholar] [CrossRef] [PubMed]
|
|
[29]
|
Carracedo, A., Cantley, L.C. and Pandolfi, P.P. (2013) Cancer Metabolism: Fatty Acid Oxidation in the Limelight. Nature Reviews Cancer, 13, 227-232. [Google Scholar] [CrossRef] [PubMed]
|
|
[30]
|
Li, X., Wang, Z., Zheng, Y., Guan, Y., Yang, P., Chen, X., et al. (2018) Nuclear Receptor Nur77 Facilitates Melanoma Cell Survival under Metabolic Stress by Protecting Fatty Acid Oxidation. Molecular Cell, 69, 480-492.E7. [Google Scholar] [CrossRef] [PubMed]
|
|
[31]
|
Cardanho-Ramos, C. and Morais, V.A. (2021) Mitochondrial Biogenesis in Neurons: How and Where. International Journal of Molecular Sciences, 22, Article 13059. [Google Scholar] [CrossRef] [PubMed]
|
|
[32]
|
Carracedo, A., Weiss, D., Leliaert, A.K., Bhasin, M., de Boer, V.C.J., Laurent, G., et al. (2012) A Metabolic Prosurvival Role for PML in Breast Cancer. Journal of Clinical Investigation, 122, 3088-3100. [Google Scholar] [CrossRef] [PubMed]
|
|
[33]
|
Jiang, J., Wang, K., Chen, Y., Chen, H., Nice, E.C. and Huang, C. (2017) Redox Regulation in Tumor Cell Epithelial-Mesenchymal Transition: Molecular Basis and Therapeutic Strategy. Signal Transduction and Targeted Therapy, 2, Article No. 17036. [Google Scholar] [CrossRef] [PubMed]
|
|
[34]
|
Zhao, M., Wang, Y., Li, L., Liu, S., Wang, C., Yuan, Y., et al. (2021) Mitochondrial ROS Promote Mitochondrial Dysfunction and Inflammation in Ischemic Acute Kidney Injury by Disrupting TFAM-Mediated mtDNA Maintenance. Theranostics, 11, 1845-1863. [Google Scholar] [CrossRef] [PubMed]
|
|
[35]
|
Yang, L., Besschetnova, T.Y., Brooks, C.R., Shah, J.V. and Bonventre, J.V. (2010) Epithelial Cell Cycle Arrest in G2/M Mediates Kidney Fibrosis after Injury. Nature Medicine, 16, 535-543. [Google Scholar] [CrossRef] [PubMed]
|
|
[36]
|
Si, M., Wang, Q., Li, Y., Lin, H., Luo, D., Zhao, W., et al. (2019) Inhibition of Hyperglycolysis in Mesothelial Cells Prevents Peritoneal Fibrosis. Science Translational Medicine, 11, eaav5341. [Google Scholar] [CrossRef] [PubMed]
|
|
[37]
|
Ko, Y., Mohtat, D., Suzuki, M., Park, A.S.D., Izquierdo, M.C., Han, S.Y., et al. (2013) Cytosine Methylation Changes in Enhancer Regions of Core Pro-Fibrotic Genes Characterize Kidney Fibrosis Development. Genome Biology, 14, Article No. R108. [Google Scholar] [CrossRef] [PubMed]
|
|
[38]
|
Margetts, P.J., Bonniaud, P., Liu, L., Hoff, C.M., Holmes, C.J., West-Mays, J.A., et al. (2005) Transient Overexpression of TGF-β1 Induces Epithelial Mesenchymal Transition in the Rodent Peritoneum. Journal of the American Society of Nephrology, 16, 425-436. [Google Scholar] [CrossRef] [PubMed]
|
|
[39]
|
Guo, H., Leung, J.C.K., Lam, M.F., Chan, L.Y.Y., Tsang, A.W.L., Lan, H.Y., et al. (2007) Smad7 Transgene Attenuates Peritoneal Fibrosis in Uremic Rats Treated with Peritoneal Dialysis. Journal of the American Society of Nephrology, 18, 2689-2703. [Google Scholar] [CrossRef] [PubMed]
|
|
[40]
|
Shi, Y., Tao, M., Wang, Y., Zang, X., Ma, X., Qiu, A., et al. (2019) Genetic or Pharmacologic Blockade of Enhancer of Zeste Homolog 2 Inhibits the Progression of Peritoneal Fibrosis. The Journal of Pathology, 250, 79-94. [Google Scholar] [CrossRef] [PubMed]
|
|
[41]
|
Ferrantelli, E., Liappas, G., Vila Cuenca, M., Keuning, E.D., Foster, T.L., Vervloet, M.G., et al. (2016) The Dipeptide Alanyl-Glutamine Ameliorates Peritoneal Fibrosis and Attenuates IL-17 Dependent Pathways during Peritoneal Dialysis. Kidney International, 89, 625-635. [Google Scholar] [CrossRef] [PubMed]
|
|
[42]
|
Guo, Y., Wang, L., Gou, R., Wang, Y., Shi, X., Pang, X., et al. (2020) SIRT1-Modified Human Umbilical Cord Mesenchymal Stem Cells Ameliorate Experimental Peritoneal Fibrosis by Inhibiting the TGF-β/Smad3 Pathway. Stem Cell Research & Therapy, 11, Article No. 362. [Google Scholar] [CrossRef] [PubMed]
|
|
[43]
|
Kim, S.W., Yoon, S., Chuong, E., Oyolu, C., Wills, A.E., Gupta, R., et al. (2011) Chromatin and Transcriptional Signatures for Nodal Signaling during Endoderm Formation in hESCs. Developmental Biology, 357, 492-504. [Google Scholar] [CrossRef] [PubMed]
|
|
[44]
|
Kang, H.M., Ahn, S.H., Choi, P., Ko, Y., Han, S.H., Chinga, F., et al. (2014) Defective Fatty Acid Oxidation in Renal Tubular Epithelial Cells Has a Key Role in Kidney Fibrosis Development. Nature Medicine, 21, 37-46. [Google Scholar] [CrossRef] [PubMed]
|