脂肪酸氧化在腹膜透析相关性腹膜纤维化中的作用
The Role of Fatty Acid Oxidation in Peritoneal Dialysis Related Peritoneal Fibrosis
DOI: 10.12677/acm.2025.152482, PDF, HTML, XML,    科研立项经费支持
作者: 徐李亚星, 陈方敏:西安医学院研究生工作部,陕西 西安;王晓明*:陕西省人民医院肾内科,陕西 西安
关键词: 腹膜纤维化腹膜透析间皮细胞脂肪酸氧化CPT1APeritoneal Fibrosis Peritoneal Dialysis Mesothelial Cells Fatty Acid Oxidation CPT1A
摘要: 终末期肾脏病患者需要进行肾脏替代治疗维持生命,其中腹膜透析是一种可居家进行的肾脏替代治疗方式。PD的有效性取决于腹膜的结构和功能,然而腹膜长期暴露于生物不相容的高浓度葡萄糖透析液中,会发生纤维化改变,最终导致超滤失败。间皮细胞可在延长的PD反应中获得纤维化表型,促进腹膜纤维化的发展,最新的研究证明间皮细胞脂肪酸氧化的降低在PF发生发展中起到重要作用。该文章主要对间皮细胞脂肪酸氧化与腹膜纤维化的关系进行论述。
Abstract: Patients with end-stage kidney disease require renal replacement therapy to maintain their lives, among which peritoneal dialysis is a home-based kidney replacement therapy option. The effectiveness of PD depends on the structure and function of the peritoneum. However, long-term exposure of the peritoneum to biocompatible high concentration glucose dialysate can cause fibrosis changes, ultimately leading to ultrafiltration failure. Mesothelial cells can acquire fibrotic phenotype in prolonged PD response, promoting the development of peritoneal fibrosis. Recent studies have shown that the reduction of fatty acid oxidation in mesothelial cells plays an important role in the occurrence and development of PF. This article mainly discusses the relationship between mesothelial cell fatty acid oxidation and peritoneal fibrosis.
文章引用:徐李亚星, 王晓明, 陈方敏. 脂肪酸氧化在腹膜透析相关性腹膜纤维化中的作用[J]. 临床医学进展, 2025, 15(2): 1350-1355. https://doi.org/10.12677/acm.2025.152482

1. 引言

本腹膜透析(Peritoneal dialysis, PD)仍然是治疗终末期肾病的家庭透析的主要形式[1] [2]。据统计,全球约11%的透析患者选择PD治疗且近年来呈上升趋势。PD与血液透析(Hemodialysis, HD)比较,因具有保护残余肾功能、经济、居家等优点,越来越受患者青睐[3]。但PD的效率取决于健康和功能性的腹膜[4]。不幸的是,腹膜长期暴露于非生理性腹膜透析溶液中通常会导致进行性纤维化病变,其特征是促纤维化因子的产生增加和细胞外基质的过度沉积。腹膜纤维化的发展导致溶质转运速率的逐渐增加和超滤能力的丧失,最终导致PD失败,高达50%的PD患者受到影响[5] [6]。促进这种纤维化反应的细胞机制是有限的,因此缺乏改善PD患者预后的有效治疗办法。

间皮细胞是静息腹膜中最常见的细胞之一[7]。它们是可塑的,可在延长的PD反应中获得纤维化表型,促进腹膜纤维化的发展[2] [7] [8]。虽然已经确定了许多调节这种促纤维化反应的遗传和体液因素[7] [9]-[12],但对代谢的作用知之甚少。Si等人报道过,间皮细胞在长期PD下发生高糖酵解代谢,以推动细胞外基质的过度产生,将能量产生与改变的间皮细胞表型联系起来[7]。许多细胞类型中的脂肪酸氧化(Fatty acid oxidation, FAO)与细胞应激期间ATP的产生和活性氧的清除有关[13]-[16]。该文就FAO在间皮细胞中在腹膜纤维化进展中的作用和重要性进行进一步阐述。

2. 脂肪酸氧化

FAO是线粒体将脂肪酸(FA)分解为乙酰辅酶A (CoA)并与氧化磷酸化偶联的有氧过程。其中长链FA (长度为13~21个碳原子)必须进入线粒体,这个过程需要在通过肉毒碱/酰基肉毒碱转移酶穿梭到线粒体基质之前与肉毒碱结合。相反,短链和中链FA (长度 < 12个碳原子)则以非酯化形式渗透线粒体,并在线粒体基质中被激活。在基质中,脱氢酶活性的循环以乙酰CoA的形式从FA中去除两个碳原子,然后进入三羧酸循环[17] [18]。乙酰CoA一方面进入三羧酸循环氧化供能,另一方面为酮体和类固醇等化合物的合成提供原料[19]。其中,肉碱棕榈酰转移酶1A (carnitine palmitoyltransferase 1A, CPT1A)是FAO的限速酶,受脂质合成中间体丙二酰CoA负反馈调节。过氧化物酶体增殖物激活受体α (peroxisome proliferators-activated receptor α, PPARα)是调节肾脏FAO的关键转录因子,脂肪酸是其内源性配体[20]

PPARα是通过直接转录控制参与过氧化物酶体和线粒体FAO通路、FA摄取和TG分解代谢的基因来调节细胞内脂质的关键转录因子。越来越多的证据支持PPARα和FAO通路的缺陷在肾间质纤维化的发展中起着重要作用,通过改善有缺陷的FAO通路和减少脂质积累将有效缓解肾纤维化[21]

FAO的一个限速步骤是通过肉碱棕榈酰转移酶1 (CPT1)将长链脂肪酸穿梭到线粒体中。在CPT1家族中,CPT1A是分布最广泛的亚型,具有高催化活性[22]。而有证据表明肾小管细胞中CPT1A表达的降低与肾损伤动物模型中的肾纤维化有关[13] [23]。此外,Migue等人通过对慢性肾功能衰竭患者的研究表明,CPT1A水平的降低与纤维化的程度相关。并且CPT1A过表达可防止线粒体功能障碍并恢复纤维化肾中的FAO,CPT1A可能通过增强肾小管上皮细胞FAO,而缓解DKD肾间质纤维化。而在PD的情况下,FAO在间皮细胞中也有一定的作用[22]

3. 脂肪酸氧化和PF

Su等人的研究中发现,长期腹膜透析患者的间皮细胞中脂肪代谢和CPT1A的表达降低,并且与这些细胞中纤维化标志物的表达呈负相关。这在长期腹膜透析小鼠以及转化生长因子(TGF) β1孵育的小鼠间皮细胞中得到了证实。在间皮细胞中过表达CPT1A可阻止(TGF) β1对线粒体呼吸的抑制,恢复细胞内ATP水平,并下调纤维化标志物的表达。说明在间皮细胞中脂肪代谢水平和腹膜纤维化呈负相关[24]

间皮线粒体异常是腹膜纤维化发病机制的常见特征[11] [25] [26]。促进间皮细胞损伤的细胞通路会损害线粒体稳态,导致间皮细胞促纤维化表型的发展和腹膜功能的恶化[27] [28]。Su等人的研究则进一步说明恢复间皮细胞中的FAO可以减少PD引起的线粒体异常[24]。FAO主要存在于线粒体中,是ATP和抗氧化剂NADPH的重要来源[29] [30]。在PD的情况下,间皮FAO的恢复会增加ATP的产生,为线粒体生物发生提供能量[23] [31] [32]。此外,恢复间皮细胞中的FAO会增加NADPH的产生,从而逆转PD诱导的线粒体超氧化物产生。ATP产生增加和线粒体氧化应激减少有助于线粒体生物发生增加、线粒体DNA损伤减少和间皮间充质转化氧化还原敏感转录因子的下调,所有维持线粒体稳态的过程并在PD期间保持腹膜结构[33] [34]

多项研究均支持PD流出物衍生的间皮细胞可能是导致纤维化的细胞外基质的重要来源,因为它们能可靠地产生胶原蛋白。然而,在PD的情况下,间皮细胞仍有可能表现出促纤维化分泌组,该分泌组可以激活常驻腹膜成纤维细胞,从而诱导它们细胞外基质的合成能力[15] [24]。事实上,PD流出物中的间皮细胞表现出特异性分泌组,促纤维化生长因子TGF-β1和CTGF的表达增加,它们是通过促进成纤维细胞增殖和胶原蛋白产生而成为纤维化的公认主要驱动因素[35]。这种间皮细胞介导的成纤维细胞激活也受到FAO的调节[36]。在TGF-β1处理的间皮细胞中恢复FAO会改变其分泌组,有助于减少成纤维细胞活化和胶原蛋白生成[24]。总之,表明了间皮细胞是细胞外基质产生和腹膜纤维化发展的关键参与者[24] [37]

TGF-β1似乎是腹膜间皮细胞中FAO的重要上游调节剂。TGF-β1是许多器官(包括腹膜)纤维化的公认主要驱动因素[38] [39]。TGF-β1也被证明可以刺激腹膜中的糖酵解[7]。长期PD患者流出物和实验PD小鼠腹膜组织中TGF-β1水平持续升高[40]-[42]。有研究表明,原代小鼠的间皮细胞和人MeT-5A细胞与TGF-β1的长时间孵育下调了关键FAO酶(包括CPT1A)的表达,损害了FAO并诱导这些细胞中的促纤维化反应。这些TGF-β1诱导的有害变化可能受CPT1A调节,因为挽救间皮细胞中CPT1A表达可特异性改善FAO并防止促纤维化反应。间皮细胞中CPT1A下调的细胞内TGF-β1信号传导归因于SMAD3的激活,SMAD3的激活降低了已知可调节CPT1A基因转录的PGC1α的表达[13] [37] [43]。有研究表明,人Met-5A细胞在TGF-β1孵育24h降低了PPARγ共激活因子-1α (PGC1α)的蛋白水平,而PGC1α是调节CPT1A基因表达的转录因子[44]。在间皮细胞中敲除PGC1α,12,21,22的转录调节因子Smad3可逆转TGF-β1降低PGC-1α和CPT1A表达的能力。同时,敲低PGC-1α也降低了CPT1A表达,而PGC-1α的过表达挽救了TGF-β1诱导的CPT1A下调[37]。通过进一步研究显示,PGC-1α的过表达还能增强间皮细胞中CPT1A启动子的活性。因此,促纤维化诱导剂TGF-β1减少FAO在很大程度上是通过SMAD3/PGC-1α途径介导的[24]。该信号通路的中断纠正了TGF-β1间皮细胞CPT1A的减少[24]。因此,PD期间TGF-β1产生的增加会损害CPT1A驱动的FAO,从而促进腹膜纤维化。

为了进一步证实腹膜纤维化与FAO的缺陷有关,有研究人员测试了CPT1的特异性抑制剂etomoxir的作用。注射依托莫昔的小鼠在PD液体治疗后出现更严重的腹膜损伤,其特征是细胞外基质的腹膜表达明显升高和腹膜功能较差。结果一致表明,PD液体处理小鼠中对CPT1A的抑制会使FAO失调,从而导致该PD小鼠模型中的腹膜纤维化[24]

4. 总结与展望

综上所述,腹膜纤维化过程中,间皮细胞经历一系列的脂质代谢重编程过程,包括脂肪酸氧化、脂质摄取在内的多种脂质代谢途径发生紊乱,导致脂质沉积并诱导脂质肾毒性,TEC发生能量供应障碍、内质网应激、程序性死亡等多种不良结果,进而加重肾间质纤维化进展。靶向逆转TEC的脂质代谢紊乱,特别是恢复脂肪酸氧化及调控CPT1A的表达可以有效改善间皮细胞的能量代谢异常,减轻细胞脂质肾毒性反应,延缓肾间质纤维化进展。虽然目前尚无靶向调控TEC脂质代谢的药物进入临床,但是,越来越多的证据表明,TEC损伤与腹膜纤维化进展密切相关;以脂质代谢为治疗靶点,早期恢复TEC的脂质代谢紊乱,可能是今后防治纤维化的新策略。

从另一个方面来说,PD中间皮组织的破坏会导致间皮细胞的代谢重编程,从而导致纤维化表型的发展。通过遗传和药理学手段恢复FAO可逆转间皮细胞的纤维化反应,并保护腹膜不发生纤维化。因此,维持适当程度的FAO是预防PD患者腹膜纤维化的潜在治疗目标。CPT1A可能是一个潜在的治疗靶点,通过基因过表达或药物激活CPT1A可能是防治腹膜纤维化发生发展的有希望的治疗手段。

基金项目

陕西省重点研发项目(项目编号:S2023-YBSF-478)。

NOTES

*通讯作者。

参考文献

[1] Cho, Y., Bello, A.K., Levin, A., Lunney, M., Osman, M.A., Ye, F., et al. (2021) Peritoneal Dialysis Use and Practice Patterns: An International Survey Study. American Journal of Kidney Diseases, 77, 315-325.
https://doi.org/10.1053/j.ajkd.2020.05.032
[2] Teitelbaum, I. (2021) Peritoneal Dialysis. New England Journal of Medicine, 385, 1786-1795.
https://doi.org/10.1056/nejmra2100152
[3] Himmelfarb, J., Vanholder, R., Mehrotra, R. and Tonelli, M. (2020) The Current and Future Landscape of Dialysis. Nature Reviews Nephrology, 16, 573-585.
https://doi.org/10.1038/s41581-020-0315-4
[4] Cho, Y. and Johnson, D.W. (2018) PD Solutions and Peritoneal Health. Clinical Journal of the American Society of Nephrology, 13, 1455-1457.
https://doi.org/10.2215/cjn.09590818
[5] Brimble, K.S., Walker, M., Margetts, P.J., Kundhal, K.K. and Rabbat, C.G. (2006) Meta-Analysis: Peritoneal Membrane Transport, Mortality, and Technique Failure in Peritoneal Dialysis. Journal of the American Society of Nephrology, 17, 2591-2598.
https://doi.org/10.1681/asn.2006030194
[6] Devuyst, O., Margetts, P.J. and Topley, N. (2010) The Pathophysiology of the Peritoneal Membrane. Journal of the American Society of Nephrology, 21, 1077-1085.
https://doi.org/10.1681/asn.2009070694
[7] Si, M., Wang, Q., Li, Y., Lin, H., Luo, D., Zhao, W., et al. (2019) Inhibition of Hyperglycolysis in Mesothelial Cells Prevents Peritoneal Fibrosis. Science Translational Medicine, 11, eaav5341.
https://doi.org/10.1126/scitranslmed.aav5341
[8] Yáñez-Mó, M., Lara-Pezzi, E., Selgas, R., Ramírez-Huesca, M., Domínguez-Jiménez, C., Jiménez-Heffernan, J.A., et al. (2003) Peritoneal Dialysis and Epithelial-to-Mesenchymal Transition of Mesothelial Cells. New England Journal of Medicine, 348, 403-413.
https://doi.org/10.1056/nejmoa020809
[9] Helmke, A., Nordlohne, J., Balzer, M.S., Dong, L., Rong, S., Hiss, M., et al. (2019) CX3CL1-CX3CR1 Interaction Mediates Macrophage-Mesothelial Cross Talk and Promotes Peritoneal Fibrosis. Kidney International, 95, 1405-1417.
https://doi.org/10.1016/j.kint.2018.12.030
[10] Zhou, Q., Bajo, M., del Peso, G., Yu, X. and Selgas, R. (2016) Preventing Peritoneal Membrane Fibrosis in Peritoneal Dialysis Patients. Kidney International, 90, 515-524.
https://doi.org/10.1016/j.kint.2016.03.040
[11] Ramil-Gómez, O., Rodríguez-Carmona, A., Fernández-Rodríguez, J.A., Pérez-Fontán, M., Ferreiro-Hermida, T., López-Pardo, M., et al. (2021) Mitochondrial Dysfunction Plays a Relevant Role in Pathophysiology of Peritoneal Membrane Damage Induced by Peritoneal Dialysis. Antioxidants, 10, Article 447.
https://doi.org/10.3390/antiox10030447
[12] Busnadiego, O., Loureiro-Álvarez, J., Sandoval, P., Lagares, D., Dotor, J., Pérez-Lozano, M.L., et al. (2015) A Pathogenetic Role for Endothelin-1 in Peritoneal Dialysis-Associated Fibrosis. Journal of the American Society of Nephrology, 26, 173-182.
https://doi.org/10.1681/asn.2013070799
[13] Lopaschuk, G.D., Karwi, Q.G., Tian, R., Wende, A.R. and Abel, E.D. (2021) Cardiac Energy Metabolism in Heart Failure. Circulation Research, 128, 1487-1513.
https://doi.org/10.1161/circresaha.121.318241
[14] Cortassa, S., Sollott, S.J. and Aon, M.A. (2017) Mitochondrial Respiration and ROS Emission during β-Oxidation in the Heart: An Experimental-Computational Study. PLOS Computational Biology, 13, e1005588.
https://doi.org/10.1371/journal.pcbi.1005588
[15] Pike, L.S., Smift, A.L., Croteau, N.J., Ferrick, D.A. and Wu, M. (2011) Inhibition of Fatty Acid Oxidation by Etomoxir Impairs NADPH Production and Increases Reactive Oxygen Species Resulting in ATP Depletion and Cell Death in Human Glioblastoma Cells. Biochimica et Biophysica Acta (BBA)-Bioenergetics, 1807, 726-734.
https://doi.org/10.1016/j.bbabio.2010.10.022
[16] Schlaepfer, I.R. and Joshi, M. (2020) CPT1A-Mediated Fat Oxidation, Mechanisms, and Therapeutic Potential. Endocrinology, 161, bqz046.
https://doi.org/10.1210/endocr/bqz046
[17] Lundsgaard, A., Fritzen, A.M. and Kiens, B. (2018) Molecular Regulation of Fatty Acid Oxidation in Skeletal Muscle during Aerobic Exercise. Trends in Endocrinology & Metabolism, 29, 18-30.
https://doi.org/10.1016/j.tem.2017.10.011
[18] Schönfeld, P. and Wojtczak, L. (2016) Short-and Medium-Chain Fatty Acids in Energy Metabolism: The Cellular Perspective. Journal of Lipid Research, 57, 943-954.
https://doi.org/10.1194/jlr.r067629
[19] He, W., Li, Q. and Li, X. (2023) Acetyl-CoA Regulates Lipid Metabolism and Histone Acetylation Modification in Cancer. Biochimica et Biophysica Acta (BBA)-Reviews on Cancer, 1878, Article 188837.
https://doi.org/10.1016/j.bbcan.2022.188837
[20] Gu, L., Surolia, R., Larson-Casey, J.L., He, C., Davis, D., Kang, J., et al. (2021) Targeting CPT1A-BCL-2 Interaction Modulates Apoptosis Resistance and Fibrotic Remodeling. Cell Death & Differentiation, 29, 118-132.
https://doi.org/10.1038/s41418-021-00840-w
[21] Xiao, Q., Yu, X., Yu, X., Liu, S., Jiang, J., Cheng, Y., et al. (2022) An Integrated Network Pharmacology and Cell Metabolomics Approach to Reveal the Role of Rhein, a Novel PPARα Agonist, against Renal Fibrosis by Activating the PPARα-CPT1A Axis. Phytomedicine, 102, Article 154147.
https://doi.org/10.1016/j.phymed.2022.154147
[22] Miguel, V., Tituaña, J., Herrero, J.I., Herrero, L., Serra, D., Cuevas, P., et al. (2021) Renal Tubule CPT1A Overexpression Protects from Kidney Fibrosis by Restoring Mitochondrial Homeostasis. Journal of Clinical Investigation, 131, e140695.
https://doi.org/10.1172/jci140695
[23] Cheng, S., Lu, Y., Li, Y., Gao, L., Shen, H. and Song, K. (2018) Hydrogen Sulfide Inhibits Epithelial-Mesenchymal Transition in Peritoneal Mesothelial Cells. Scientific Reports, 8, Article No. 5863.
https://doi.org/10.1038/s41598-018-21807-x
[24] Su, W., Hu, Z., Zhong, X., Cong, A., Zhang, Y., Zhou, Z., et al. (2023) Restoration of CPT1A-Mediated Fatty Acid Oxidation in Mesothelial Cells Protects against Peritoneal Fibrosis. Theranostics, 13, 4482-4496.
https://doi.org/10.7150/thno.84921
[25] Hung, K., Liu, S., Yang, T., Liao, T. and Kao, S. (2014) High-Dialysate-Glucose-Induced Oxidative Stress and Mitochondrial-Mediated Apoptosis in Human Peritoneal Mesothelial Cells. Oxidative Medicine and Cellular Longevity, 2014, Article ID: 642793.
https://doi.org/10.1155/2014/642793
[26] Xie, X., Wang, J., Xiang, S., Chen, Z., Zhang, X. and Chen, J. (2019) Dialysate Cell-Free Mitochondrial DNA Fragments as a Marker of Intraperitoneal Inflammation and Peritoneal Solute Transport Rate in Peritoneal Dialysis. BMC Nephrology, 20, Article No. 128.
https://doi.org/10.1186/s12882-019-1284-3
[27] Wu, J., Li, J., Feng, B., Bi, Z., Zhu, G., Zhang, Y., et al. (2022) Activation of AMPK-PGC-1α Pathway Ameliorates Peritoneal Dialysis Related Peritoneal Fibrosis in Mice by Enhancing Mitochondrial Biogenesis. Renal Failure, 44, 1546-1558.
https://doi.org/10.1080/0886022x.2022.2126789
[28] Lu, H., Chen, W., Liu, W., Si, Y., Zhao, T., Lai, X., et al. (2020) Molecular Hydrogen Regulates PTEN‐AKT‐mTOR Signaling via ROS to Alleviate Peritoneal Dialysis‐Related Peritoneal Fibrosis. The FASEB Journal, 34, 4134-4146.
https://doi.org/10.1096/fj.201901981r
[29] Carracedo, A., Cantley, L.C. and Pandolfi, P.P. (2013) Cancer Metabolism: Fatty Acid Oxidation in the Limelight. Nature Reviews Cancer, 13, 227-232.
https://doi.org/10.1038/nrc3483
[30] Li, X., Wang, Z., Zheng, Y., Guan, Y., Yang, P., Chen, X., et al. (2018) Nuclear Receptor Nur77 Facilitates Melanoma Cell Survival under Metabolic Stress by Protecting Fatty Acid Oxidation. Molecular Cell, 69, 480-492.E7.
https://doi.org/10.1016/j.molcel.2018.01.001
[31] Cardanho-Ramos, C. and Morais, V.A. (2021) Mitochondrial Biogenesis in Neurons: How and Where. International Journal of Molecular Sciences, 22, Article 13059.
https://doi.org/10.3390/ijms222313059
[32] Carracedo, A., Weiss, D., Leliaert, A.K., Bhasin, M., de Boer, V.C.J., Laurent, G., et al. (2012) A Metabolic Prosurvival Role for PML in Breast Cancer. Journal of Clinical Investigation, 122, 3088-3100.
https://doi.org/10.1172/jci62129
[33] Jiang, J., Wang, K., Chen, Y., Chen, H., Nice, E.C. and Huang, C. (2017) Redox Regulation in Tumor Cell Epithelial-Mesenchymal Transition: Molecular Basis and Therapeutic Strategy. Signal Transduction and Targeted Therapy, 2, Article No. 17036.
https://doi.org/10.1038/sigtrans.2017.36
[34] Zhao, M., Wang, Y., Li, L., Liu, S., Wang, C., Yuan, Y., et al. (2021) Mitochondrial ROS Promote Mitochondrial Dysfunction and Inflammation in Ischemic Acute Kidney Injury by Disrupting TFAM-Mediated mtDNA Maintenance. Theranostics, 11, 1845-1863.
https://doi.org/10.7150/thno.50905
[35] Yang, L., Besschetnova, T.Y., Brooks, C.R., Shah, J.V. and Bonventre, J.V. (2010) Epithelial Cell Cycle Arrest in G2/M Mediates Kidney Fibrosis after Injury. Nature Medicine, 16, 535-543.
https://doi.org/10.1038/nm.2144
[36] Si, M., Wang, Q., Li, Y., Lin, H., Luo, D., Zhao, W., et al. (2019) Inhibition of Hyperglycolysis in Mesothelial Cells Prevents Peritoneal Fibrosis. Science Translational Medicine, 11, eaav5341.
https://doi.org/10.1126/scitranslmed.aav5341
[37] Ko, Y., Mohtat, D., Suzuki, M., Park, A.S.D., Izquierdo, M.C., Han, S.Y., et al. (2013) Cytosine Methylation Changes in Enhancer Regions of Core Pro-Fibrotic Genes Characterize Kidney Fibrosis Development. Genome Biology, 14, Article No. R108.
https://doi.org/10.1186/gb-2013-14-10-r108
[38] Margetts, P.J., Bonniaud, P., Liu, L., Hoff, C.M., Holmes, C.J., West-Mays, J.A., et al. (2005) Transient Overexpression of TGF-β1 Induces Epithelial Mesenchymal Transition in the Rodent Peritoneum. Journal of the American Society of Nephrology, 16, 425-436.
https://doi.org/10.1681/asn.2004060436
[39] Guo, H., Leung, J.C.K., Lam, M.F., Chan, L.Y.Y., Tsang, A.W.L., Lan, H.Y., et al. (2007) Smad7 Transgene Attenuates Peritoneal Fibrosis in Uremic Rats Treated with Peritoneal Dialysis. Journal of the American Society of Nephrology, 18, 2689-2703.
https://doi.org/10.1681/asn.2007010121
[40] Shi, Y., Tao, M., Wang, Y., Zang, X., Ma, X., Qiu, A., et al. (2019) Genetic or Pharmacologic Blockade of Enhancer of Zeste Homolog 2 Inhibits the Progression of Peritoneal Fibrosis. The Journal of Pathology, 250, 79-94.
https://doi.org/10.1002/path.5352
[41] Ferrantelli, E., Liappas, G., Vila Cuenca, M., Keuning, E.D., Foster, T.L., Vervloet, M.G., et al. (2016) The Dipeptide Alanyl-Glutamine Ameliorates Peritoneal Fibrosis and Attenuates IL-17 Dependent Pathways during Peritoneal Dialysis. Kidney International, 89, 625-635.
https://doi.org/10.1016/j.kint.2015.12.005
[42] Guo, Y., Wang, L., Gou, R., Wang, Y., Shi, X., Pang, X., et al. (2020) SIRT1-Modified Human Umbilical Cord Mesenchymal Stem Cells Ameliorate Experimental Peritoneal Fibrosis by Inhibiting the TGF-β/Smad3 Pathway. Stem Cell Research & Therapy, 11, Article No. 362.
https://doi.org/10.1186/s13287-020-01878-2
[43] Kim, S.W., Yoon, S., Chuong, E., Oyolu, C., Wills, A.E., Gupta, R., et al. (2011) Chromatin and Transcriptional Signatures for Nodal Signaling during Endoderm Formation in hESCs. Developmental Biology, 357, 492-504.
https://doi.org/10.1016/j.ydbio.2011.06.009
[44] Kang, H.M., Ahn, S.H., Choi, P., Ko, Y., Han, S.H., Chinga, F., et al. (2014) Defective Fatty Acid Oxidation in Renal Tubular Epithelial Cells Has a Key Role in Kidney Fibrosis Development. Nature Medicine, 21, 37-46.
https://doi.org/10.1038/nm.3762