革兰阴性杆菌对替加环素耐药机制研究进展
Research Progress on the Mechanisms of Resistance to Tigecycline in Gram-Negative Bacilli
摘要: 多重耐药(MDR)的革兰阴性杆菌的出现和传播严重损害了其治疗疗效。目前用于治疗多重耐药菌感染的抗菌素主要有替加环素、头孢他啶–阿维巴坦和多黏菌素。然而,它们面临头孢他啶–阿维巴坦无法抑制KPC酶变异体活性的限制,以及质粒介导的多黏菌素耐药基因mcr的传播。因此,替加环素(TGC)依然是目前应对多重耐药菌感染的首选。本文探讨了TGC耐药的革兰阴性杆菌的耐药机制,为该菌的预防与控制提供参考。
Abstract: The emergence and spread of multidrug-resistant (MDR) gram-negative bacteria seriously impacts its therapeutic efficacy. At present, tigecycline, ceftazidime-avibactam, and polymyxins are the main antimicrobials used in the treatment of multidrug-resistant infections. However, they face the limitations of the inability of ceftazidime-avibactam to inhibit the activity of KPC enzyme variants, as well as the plasmid-mediated spread of the mcr poly colistin resistance gene. As a result, tigecycline (TGC) remains the preferred treatment for multi-drug resistant infections. In this paper, the mechanism of TGC-resistant gram-negative bacteria was discussed to provide a reference for the prevention and control of the bacteria.to the Hans standard, which illustrates all the formats.
文章引用:李雨琼, 夏云. 革兰阴性杆菌对替加环素耐药机制研究进展[J]. 临床医学进展, 2025, 15(2): 1356-1362. https://doi.org/10.12677/acm.2025.152483

1. 引言

由于抗生素的不合理使用、住院病人之间的交叉感染以及耐药基因的传播,多重耐药(MDR)和广泛耐药(XDR)细菌病原体的发生率显著增加,这导致了长期住院、发病率和死亡率的上升,从而给公共卫生系统带来了沉重的负担[1]。替加环素(Tigecycline,一种四环素衍生物)和粘菌素(Polymyxin,一种多粘菌素)近些年通常被视为对抗多重耐药(MDR)革兰氏阴性菌感染的“最后防线”。然而,这些药物的耐药性的出现引发了广泛的关注与担忧。

2. 替加环素的抗菌机制及临床应用效果

四环素类抗生素是广谱抑菌药,对常见的革兰氏菌以及厌氧菌均有良好的抑菌活性,也对多数衣原体、支原体、螺旋体等均有效。天然四环素自1940年起用于医疗,随后发展出多西环素和米诺环素等第二代半合成衍生物,以及新一代的第三代半合成衍生物替加环素。此外,近期还开发了新的半合成衍生物Omadacycline和完全合成的Eravacycline。替加环素是首个甘氨酰环素类抗生素,具有广泛的抗菌谱。它通过可逆结合细菌的30S核糖体亚基,尤其是H34螺旋区域,从而阻碍氨基酰-tRNA分子进入A位点,抑制肽链延伸,进而干扰细菌的蛋白质合成,限制其生长和繁殖[2]。由于在第9位存在大取代基,替加环素形成了较大的空间位阻,这使它能够克服由核糖体保护蛋白和活性外排泵引起的四环素耐药的困境[3]。替加环素具有广谱抗菌活性,适用于治疗多重耐药菌引起的复杂性腹腔内感染、皮肤感染及社区获得性肺炎。

3. 革兰氏阴性菌对替加环素的耐药机制

3.1. 与外排泵和调节基因相关的耐药机制

RND外排泵(耐药结节分化家族)主要在革兰氏阴性菌中存在,是属于细胞膜上的一类泵,可以通过能量依赖性转运,加速药物的排出,导致细菌细胞内抗生素浓度下降,从而降低药物的疗效。

3.1.1. AcrAB-TolC

AcrAB-TolC由AcrB、AcrA和TolC组成,是肠杆菌科细菌中最关键的RND外排泵,主要负责将多种抗生素和有害物质有效排出细胞外,具有强大的转运能力,能够识别并排出多种抗生素[4]。AcrAB基因的表达受局部阻遏蛋白AcrR的影响。AcrR是一种位于AcrAB下游的局部抑制剂,突变时可诱导替加环素耐药。AraC家族的全球转录调控因子RamA、MarA、SoxS、RobA和RarA在细菌中通过激活外排泵,调节抗药性基因的表达,从而增强对替加环素的耐药性[5]。AcrAB-TolC的过表达往往与tet(A)基因突变协同作用,导致细菌对替加环素表现出更高的耐药性。

3.1.2. OqxAB

OqxAB多药外排泵最早在大肠杆菌的质粒中发现。RarA和RamA在阴沟肠杆菌中起转录激活剂的作用,而RamR是RamA阻遏物[6]-[8]。Zheng等人通过对依瓦环素和替加环素异质性耐药的肺炎克雷菌,通过qRT-PCR检测各外排泵及转录调控因子的表达证明在依瓦环素和替加环素异质性耐药的肺炎克雷菌中正调控因子RamA介导的OqxAB和MacAB起主导作用[8]

3.1.3. Ade系列

已经证明鲍曼不动杆菌有三种RND外排泵可以导致替加环素的耐药,分别是AdeABC、AdeIJK和AdeFGH [9]。双组分系统AdeRS的有义突变可能导致表达量增加,有研究报道ISAba-1插入导致生成截短的AdeS蛋白,进而产生替加环素耐药性。除了转录调节因子的调节外,AdeABC在低铁环境中也会过表达,表明铁可能对外排泵有额外的调节作用[10]。相比之下,LysR型转录调节因子AdeL参与AdeFGH的过表达,而AdeIJK外排泵受TetR转录调节因子AdeN调节。

3.1.4. 其他RND外排泵

粘质沙雷氏菌中有三种内源性的RND外排泵,即SdeAB、SdeCDE和SdeXY。2019年,相继发现了其他细菌中的耐药机制,如嗜麦芽窄食单胞菌中的SmeDEF的过表达,木氧化无色杆菌中的AxyEF-OprN过表达[11] [12]

3.1.5. MFS外排泵

除了RND外排泵外,还有其他的外排泵可以导致四环素类抗菌剂敏感性降低,比如说主要易化子超家族外排泵tet(A),它能特异性识别四环素并将其排出周质外,通常认为该泵无法识别替加环素[13]。然而,有研究发现在沙门氏菌中,tet(A)基因的有义突变会导致替加环素敏感性下降,主要集中在第201、202和203位密码子处,形成双重移码突变。这些突变改变了转运蛋白的底物特异性,降低了细菌对替加环素的敏感性。研究人员通过克隆实验确认了四种tet(A)突变体,这些突变体均表现出低水平的替加环素耐药性[14]。研究通过质粒互补实验对比野生型和突变型细菌,发现ramR缺失和tet(A)突变是主要导致替加环素耐药性的机制。RamR作为转录抑制因子,其缺失提高了耐药基因的表达,使细菌在替加环素存在的环境中存活能力增强。与此同时,tet(A)突变则削弱了四环素外排泵的功能,进一步降低了细菌对替加环素的敏感性。这两种机制的共同作用显著提高了细菌的耐药性[15]。弯曲杆菌属中tet(L)变体的过表达使最小抑菌浓度增加了4倍。该变体位于基因组岛上,可能通过水平基因转移传播进而增加抗药性传播的潜在风险[16]

3.1.6. 可移动的RND外排泵

MexXY-OprM系统的存在和活性是导致铜绿假单胞菌感染治疗失效的重要原因之一,可排泄四环素类、氟喹诺酮类和头孢菌素类等多种抗菌剂。MexXY-OprM由MexY和MexX组成,通过OprM将抗生素及有害物质从细胞内部排出,从而降低其在细胞内的浓度。

质粒编码的tmexCD1-torpJ1首次在克雷伯菌属中发现,可以通过接合实验转移到大肠埃希菌和肺炎克雷伯菌中,但在大肠埃希菌中出现因适应性代价而影响生长的情况[17]。同时,研究者对替加环素耐药的肺炎克雷伯菌进行接合实验验证了该菌株携带有可转移的替加环素耐药基因簇,并通过质粒序列分析和重组质粒构建验证了mexCD1-toprJ1对四环素、头孢类等抗菌剂的作用[17]tmexCD1-torpJ1基因的主要载体可能是杂合型质粒IncFIB(Mar)/IncHI1B,该质粒具有严格的窄宿主范围和特定的插入位点,这一特性限定了其在其他细菌中的传播,使其更具针对性[18]-[21]。而其他的tmexCD-toprJ突变体往往有着更为广泛的宿主菌范围的质粒,这大大增加了耐药性传播的潜在风险[22] [23]

野生型MexCD-OprJ蛋白通常表达量低,然而消毒剂和染料可以诱导上游阻遏蛋白NfxB突变,从而使MexCD-OprJ过表达。对于tmexCD-toprJ阳性菌株,调节子tnfxB和功能基因簇tmexCD-toprJ的突变对菌株毒力以及适应性代价的影响仍未研究透彻[24]

3.2. 与抗生素变性相关的耐药机制

1991年,研究人员首次发现了黄素依赖性单加氧酶tet(X),该酶能够催化替加环素的降解。其对四环素类抗生素的灭活作用需要NADPH、Mg2+和O2的参与[25] [26]。动物源和环境源的tet(X)及突变体较人类检出率多,这可能与四环素类药物在兽医中使用有关。迄今已鉴定的tet(X)基因包括tet(X)及tet(X1-X15)和tet(X18-X47) [27]。一项大型的回溯性流行病学研究发现,tet(X)突变体的传播已覆盖五大洲,可转移性的tet(X)突变体的传播与扩散大大增加了临床治疗的有效性[26]

3.3. 与抗生素结合相关的耐药机制

3.3.1. 核糖体相关基因的突变

S10蛋白由rpsJ基因编码的53~60个氨基酸残基组成,该区域靠近替加环素靶位点,在维持替加环素结合位点的正常结构方面起着重要作用。在大肠杆菌中,相应突变的过表达表明,大多数氨基酸替代(如V57L、V57D和V57I)会导致替加环素的最低抑菌浓度(MIC)适度升高,其中V57L的过表达表现出最明显的增加[28] [29]。然而,这些突变对替加环素敏感性的影响不如其他耐药决定因素(如外排泵)明显。这表明,rpsJ突变与其他耐药突变或决定因素的结合在介导高水平的替加环素耐药中是不可或缺的。

rrf基因编码核糖体再循环因子RRF,对蛋白质合成起重要作用。既往的研究发现,耐替加环素的鲍曼不动杆菌存在rrf基因的突变,通过western blotting和核糖体分析发现rrf突变影响了rrf解离和循环结合替加环素的核糖体的功能,同时降低了替加环素与核糖体a位点的结合亲和力,导致替加环素敏感性降低[30]

除了之前讨论的两种核糖体相关蛋白突变外,关于嗜麦芽葡萄球菌中替加环素耐药的研究还表明,编码rpsU基因的30S核糖体蛋白S21和编码rpsA基因的核糖体蛋白S1的突变也可能是其潜在因素[31]

3.3.2. 核糖体保护蛋白的突变

早期替加环素通过在D环的C-9位进行化学修饰来避免丝氨酸插入核糖体保护蛋白。然而,核糖体保护蛋白tet(M)在结构域IV功能区的环III发生突变,可能导致致病菌对替加环素的最小抑菌浓度(MIC)显著增加[32]

甲基转移酶可以识别并修饰自身DNA,抵御外源DNA干扰,在调控表观遗传和抗生素耐药性方面具有重要作用。一项关于鲍曼不动杆菌在抗生素压力下对替加环素耐药性进行筛选的研究发现,s-腺苷甲硫氨酸(SAM)依赖的甲基转移酶编码基因trm由于缺失突变而发生移框,导致该蛋白截短,降低了敏感性[33]。研究人员提出,trm突变可能通过影响核糖体蛋白的甲基化而促进替加环素耐药性的出现。

华等人发现,rpoB基因在替加环素耐药的鲍曼不动杆菌中存在G136D氨基酸取代。其中trm基因及编码AcrR/TetR调节蛋白的基因表达降低,提示rpoB突变可能通过调节trm和其他转录调控基因来赋予耐药性[30]

3.4. 与膜相关的阻力机制

3.4.1. 膜通透性相关突变

在抗生素应激下筛选出的替加环素耐药鲍曼不动杆菌分离株中,Li等人发现plsC基因(编码甘油-3-磷酸酰基转移酶)发生移码突变,导致蛋白质截短并影响膜通透性,降低了替加环素的敏感性。流式细胞术进一步证实,plsC可以通过改变磷脂合成和膜的渗透屏障功能介导了对替加环素的耐药[34]

Li等人还发现编码C13家族肽酶的abrp基因突变,abrp敲除显著增加了鲍曼不动杆菌对替加环素的耐受性和细胞膜通透性,野生型abrp的互补恢复了敏感性和降低了通透性,这表明abrp通过改变细胞膜通透性介导了对替加环素的耐药性[35]

敲除型和野生型大肠杆菌中的mlaA基因突变可能增强了磷脂的转移,从而加强外膜屏障并导致替加环素的耐药性。同时,mlaA突变伴随有marRrpsJ基因突变,表明在耐药性的发展过程中可能涉及多种机制[36]

3.4.2. 膜结构相关突变

在研究鲍曼不动杆菌抗生素压力诱导的替加环素耐药性时,Hammerstrom等人发现耐药菌株中编码UDP-N-乙酰氨基葡萄糖脱氢酶的gna基因和ABC转运蛋白msbA的突变,并推测这些突变与耐药性有关。Gna基因位于K基序内,编码细胞外多糖生物合成酶,突变可能导致蛋白质失活,进而影响荚膜多糖或脂寡糖(LOS)的结构,改变替加环素的扩散速率。MsbA则功能为转运蛋白,突变主要集中在底物识别和跨膜区域,可能增强脂质A的特异性转运,从而促进替加环素的外排[31]

此外,研究人员还在鲍曼不动杆菌中发现TolC 样外膜蛋白AbuO的失活与替加环素耐药性相关。在abuO敲除菌株中,外排泵基因acrD和调节基因 baeR的表达水平显著升高,替加环素的最小抑菌浓度(MIC)显著降低[11]

在对嗜麦芽葡萄球菌替加环素耐药性的研究中,发现了与脂多糖(LPS)和磷脂酸合成相关的酶突变。这些酶包括磷酸乙醇胺转移酶、脂质A生物合成的月桂酰转移酶(htrB)UDP-葡萄糖脱氢酶以及甘油二酰激酶。研究者认为,这些突变可能影响磷脂和LPS的合成,进而改变细菌外膜,导致替加环素的摄取受阻,从而提高耐药性[11]

3.5. 与DNA修复相关的耐药机制

抗生素可以诱导羟基自由基的生成,引发细胞死亡。RecA是参与DNA损伤修复的同源重组酶的主要酶,而RecBCD则参与DNA双链断裂修复。Ajiboye等人发现,RecA和RecBCD失活的鲍曼不动杆菌对包括替加环素在内的多种抗生素敏感性增加,进而验证这两个修复途径可能保护细菌免受抗菌药物的杀伤,从而促进耐药性[37]

4. 总结与展望

近年来,随着细菌对广谱抗菌药物耐药性的增加,替加环素的使用比例显著上升,成为控制感染的最后防线。上述关于革兰阴性杆菌对替加环素耐药机制的研究,能够为临床应对耐药菌株提供重要的参考价值。新型抗生素的研发无法跟上细菌耐药性的增长,因此合理使用抗生素尤为重要。针对外排泵导致的替加环素耐药,通过长期的研究已经发现数个外排泵抑制剂,如非甾体消炎药苄达明以及抗糖尿病药物二甲双胍,这类药物能够通过破坏细菌质子动力从而增加替加环素在细菌体内的积累。根据药敏测试结果制定个体化用药方案,并加强无菌意识,是应对这一挑战的关键。临床医师应减少有创操作,并加强手卫生,以防止院内交叉感染。随着研究和临床调查的深入,将推动针对性治疗和公共卫生策略的发展,从而改善患者的预后,降低因耐药细菌感染引起的死亡率和并发症发生率。

NOTES

*通讯作者。

参考文献

[1] Yaghoubi, S., Zekiy, A.O., Krutova, M., Gholami, M., Kouhsari, E., Sholeh, M., et al. (2021) Tigecycline Antibacterial Activity, Clinical Effectiveness, and Mechanisms and Epidemiology of Resistance: Narrative Review. European Journal of Clinical Microbiology & Infectious Diseases, 41, 1003-1022.
https://doi.org/10.1007/s10096-020-04121-1
[2] Kounatidis, D., Dalamaga, M., Grivakou, E., Karampela, I., Koufopoulos, P., Dalopoulos, V., et al. (2024) Third-Generation Tetracyclines: Current Knowledge and Therapeutic Potential. Biomolecules, 14, Article 783.
https://doi.org/10.3390/biom14070783
[3] Pournaras, S., Koumaki, V., Spanakis, N., Gennimata, V. and Tsakris, A. (2016) Current Perspectives on Tigecycline Resistance in Enterobacteriaceae: Susceptibility Testing Issues and Mechanisms of Resistance. International Journal of Antimicrobial Agents, 48, 11-18.
https://doi.org/10.1016/j.ijantimicag.2016.04.017
[4] Blair, J.M.A., Bavro, V.N., Ricci, V., Modi, N., Cacciotto, P., Kleinekathӧfer, U., et al. (2015) AcrB Drug-Binding Pocket Substitution Confers Clinically Relevant Resistance and Altered Substrate Specificity. Proceedings of the National Academy of Sciences, 112, 3511-3516.
https://doi.org/10.1073/pnas.1419939112
[5] Chirabhundhu, N., Luk-In, S., Phuadraksa, T., Wichit, S., Chatsuwan, T., Wannigama, D.L., et al. (2024) Occurrence and Mechanisms of Tigecycline Resistance in Carbapenem-and Colistin-Resistant Klebsiella pneumoniae in Thailand. Scientific Reports, 14, Article No. 5215.
https://doi.org/10.1038/s41598-024-55705-2
[6] Xu, Q., Sheng, Z., Hao, M., Jiang, J., Ye, M., Chen, Y., et al. (2021) RamA Upregulates Multidrug Resistance Efflux Pumps AcrAB and OqxAB in Klebsiella pneumoniae. International Journal of Antimicrobial Agents, 57, Article 106251.
https://doi.org/10.1016/j.ijantimicag.2020.106251
[7] Wan Nur Ismah, W.A.K., Takebayashi, Y., Findlay, J., Heesom, K.J. and Avison, M.B. (2018) Impact of OqxR Loss of Function on the Envelope Proteome of Klebsiella pneumoniae and Susceptibility to Antimicrobials. Journal of Antimicrobial Chemotherapy, 73, 2990-2996.
https://doi.org/10.1093/jac/dky293
[8] Zheng, J., Lin, Z., Sun, X., Lin, W., Chen, Z., Wu, Y., et al. (2018) Overexpression of OqxAB and MacAB Efflux Pumps Contributes to Eravacycline Resistance and Heteroresistance in Clinical Isolates of Klebsiella pneumoniae. Emerging Microbes & Infections, 7, 1-11.
https://doi.org/10.1038/s41426-018-0141-y
[9] Liao, J., Huang, J., Xia, P., Yang, B., Dang, Z., Luo, S., et al. (2024) Molecular Epidemiology and Resistance Mechanisms of Tigecycline-Non-Susceptible Acinetobacter baumannii Isolated from a Tertiary Care Hospital in Chongqing, China. European Journal of Clinical Microbiology & Infectious Diseases.
https://doi.org/10.1007/s10096-024-04832-9
[10] Modarresi, F., Azizi, O., Shakibaie, M.R., Motamedifar, M., Valibeigi, B. and Mansouri, S. (2015) Effect of Iron on Expression of Efflux Pump (adeABC) and Quorum Sensing (luxI, luxR) Genes in Clinical Isolates of Acinetobacter baumannii. APMIS, 123, 959-968.
https://doi.org/10.1111/apm.12455
[11] Blanco, P., Corona, F. and Martinez, J.L. (2019) Mechanisms and Phenotypic Consequences of Acquisition of Tigecycline Resistance by Stenotrophomonas maltophilia. Journal of Antimicrobial Chemotherapy, 74, 3221-3230.
https://doi.org/10.1093/jac/dkz326
[12] Nielsen, S.M., Penstoft, L.N. and Nørskov-Lauritsen, N. (2019) Motility, Biofilm Formation and Antimicrobial Efflux of Sessile and Planktonic Cells of Achromobacter xylosoxidans. Pathogens, 8, 14.
https://doi.org/10.3390/pathogens8010014
[13] Peng, K., Wang, Q., Li, Y., Wang, M., Kurekci, C., Li, R., et al. (2022) Molecular Mechanisms and Genomic Basis of Tigecycline-Resistant Enterobacterales from Swine Slaughterhouses. Microbiological Research, 264, Article 127151.
https://doi.org/10.1016/j.micres.2022.127151
[14] Yu, R., Li, L., Zou, C., Chen, Z., Schwarz, S., Chen, S., et al. (2023) Emergence of High-Level Tigecycline Resistance Due to the Amplification of a tet(A) Gene Variant in Clinical Carbapenem-Resistant Klebsiella pneumoniae. Clinical Microbiology and Infection, 29, 1452.e1-1452.e7.
https://doi.org/10.1016/j.cmi.2023.07.030
[15] Chiu, S., Huang, L., Chen, H., Tsai, Y., Liou, C., Lin, J., et al. (2017) Roles of ramR and tet(A) Mutations in Conferring Tigecycline Resistance in Carbapenem-Resistant Klebsiella pneumoniae Clinical Isolates. Antimicrobial Agents and Chemotherapy, 61.
https://doi.org/10.1128/aac.00391-17
[16] Yao, H., Jiao, D., Zhao, W., Li, A., Li, R. and Du, X. (2020) Emergence of a Novel tet(L) Variant in campylobacter spp. of Chicken Origin in China. Antimicrobial Agents and Chemotherapy, 65.
https://doi.org/10.1128/aac.01622-20
[17] Lv, L., Wan, M., Wang, C., Gao, X., Yang, Q., Partridge, S.R., et al. (2020) Emergence of a Plasmid-Encoded Resistance-Nodulation-Division Efflux Pump Conferring Resistance to Multiple Drugs, Including Tigecycline, in Klebsiella pneumoniae. mBio, 11, e02930-19.
https://doi.org/10.1128/mbio.02930-19
[18] Liu, C., Wu, Y., Fang, Y., Sang, Z., Huang, L., Dong, N., et al. (2022) Emergence of an ST1326 (CG258) Multi-Drug Resistant Klebsiella pneumoniae Co-Harboring mcr-8.2, ESBL Genes, and the Resistance-Nodulation-Division Efflux Pump Gene Cluster TmexCD1-ToprJ1 in China. Frontiers in Microbiology, 13, Article 800993.
https://doi.org/10.3389/fmicb.2022.800993
[19] Wang, X., Sun, N., Liu, X., Li, F., Sun, J., Huang, J., et al. (2022) Small Clone Dissemination of tmexCD1-ToprJ1—Carrying Klebsiella pneumoniae Isolates in a Chicken Farm. Journal of Global Antimicrobial Resistance, 29, 105-112.
https://doi.org/10.1016/j.jgar.2022.02.012
[20] Xu, L., Wan, F., Fu, H., Tang, B., Ruan, Z., Xiao, Y., et al. (2022) Emergence of Colistin Resistance Gene mcr-10 in Enterobacterales Isolates Recovered from Fecal Samples of Chickens, Slaughterhouse Workers, and a Nearby Resident. Microbiology Spectrum, 10, e00418-22.
https://doi.org/10.1128/spectrum.00418-22
[21] Peng, K., Wang, Q., Yin, Y., Li, Y., Liu, Y., Wang, M., et al. (2021) Plasmids Shape the Current Prevalence of tmexCD1-ToprJ1 among Klebsiella pneumoniae in Food Production Chains. mSystems, vol. 6.
https://doi.org/10.1128/msystems.00702-21
[22] Hirabayashi, A., Dao, T.D., Takemura, T., Hasebe, F., Trang, L.T., Thanh, N.H., et al. (2021) A Transferable IncC-IncX3 Hybrid Plasmid Cocarrying blaNDM-4, tet(X), and tmexCD3-ToprJ3 Confers Resistance to Carbapenem and Tigecycline. mSphere, 6.
https://doi.org/10.1128/msphere.00592-21
[23] Gao, X., Wang, C., Lv, L., He, X., Cai, Z., He, W., et al. (2022) Emergence of a Novel Plasmid-Mediated Tigecycline Resistance Gene Cluster, tmexCD4-ToprJ4, in Klebsiella quasipneumoniae and Enterobacter roggenkampii. Microbiology Spectrum, 10, e01094-22.
https://doi.org/10.1128/spectrum.01094-22
[24] Guo, H., Li, L., Zhang, Y., Zhang, Y., Song, C., Wu, Y., et al. (2024) Global Genomic Epidemiology and Transmission Dynamics of Plasmid-Borne TmexCD-ToprJ-Carrying Klebsiella pneumoniae in a One Health Context. Science of The Total Environment, 953, Article 176065.
https://doi.org/10.1016/j.scitotenv.2024.176065
[25] Anyanwu, M.U., Nwobi, O.C., Okpala, C.O.R. and Ezeonu, I.M. (2022) Mobile Tigecycline Resistance: An Emerging Health Catastrophe Requiring Urgent One Health Global Intervention. Frontiers in Microbiology, 13, Article 808744.
https://doi.org/10.3389/fmicb.2022.808744
[26] Fang, L., Chen, C., Cui, C., Li, X., Zhang, Y., Liao, X., et al. (2020) Emerging High‐Level Tigecycline Resistance: Novel Tetracycline Destructases Spread via the Mobile tet(x). BioEssays, 42, Article ID: 2000014.
https://doi.org/10.1002/bies.202000014
[27] Cui, C., Chen, Q., He, Q., Chen, C., Zhang, R., Feng, Y., et al. (2021) Transferability of Tigecycline Resistance: Characterization of the Expanding tet(x) Family. WIREs Mechanisms of Disease, 14, e1538.
https://doi.org/10.1002/wsbm.1538
[28] Izghirean, N., Waidacher, C., Kittinger, C., Chyba, M., Koraimann, G., Pertschy, B., et al. (2021) Effects of Ribosomal Protein S10 Flexible Loop Mutations on Tetracycline and Tigecycline Susceptibility of Escherichia Coli. Frontiers in Microbiology, 12, Article 663835.
https://doi.org/10.3389/fmicb.2021.663835
[29] Beabout, K., Hammerstrom, T.G., Perez, A.M., Magalhães, B.F., Prater, A.G., Clements, T.P., et al. (2015) The Ribosomal S10 Protein Is a General Target for Decreased Tigecycline Susceptibility. Antimicrobial Agents and Chemotherapy, 59, 5561-5566.
https://doi.org/10.1128/aac.00547-15
[30] Hua, X., He, J., Wang, J., Zhang, L., Zhang, L., Xu, Q., et al. (2021) Novel Tigecycline Resistance Mechanisms in Acinetobacter baumannii Mediated by Mutations in adeS, rpoB and rrf. Emerging Microbes & Infections, 10, 1404-1417.
https://doi.org/10.1080/22221751.2021.1948804
[31] Hammerstrom, T.G., Beabout, K., Clements, T.P., Saxer, G. and Shamoo, Y. (2015) Acinetobacter baumannii Repeatedly Evolves a Hypermutator Phenotype in Response to Tigecycline That Effectively Surveys Evolutionary Trajectories to Resistance. PLOS ONE, 10, e0140489.
https://doi.org/10.1371/journal.pone.0140489
[32] Linkevicius, M., Sandegren, L. and Andersson, D.I. (2016) Potential of Tetracycline Resistance Proteins to Evolve Tigecycline Resistance. Antimicrobial Agents and Chemotherapy, 60, 789-796.
https://doi.org/10.1128/aac.02465-15
[33] Chen, Q., Li, X., Zhou, H., Jiang, Y., Chen, Y., Hua, X., et al. (2013) Decreased Susceptibility to Tigecycline in Acinetobacter baumannii Mediated by a Mutation in trm Encoding SAM-Dependent Methyltransferase. Journal of Antimicrobial Chemotherapy, 69, 72-76.
https://doi.org/10.1093/jac/dkt319
[34] Li, X., Liu, L., Ji, J., Chen, Q., Hua, X., Jiang, Y., et al. (2014) Tigecycline Resistance in Acinetobacter baumannii Mediated by Frameshift Mutation in plsC, Encoding 1-Acyl-sn-glycerol-3-Phosphate Acyltransferase. European Journal of Clinical Microbiology & Infectious Diseases, 34, 625-631.
https://doi.org/10.1007/s10096-014-2272-y
[35] Li, X., Quan, J., Yang, Y., Ji, J., Liu, L., Fu, Y., et al. (2016) Abrp, a New Gene, Confers Reduced Susceptibility to Tetracycline, Glycylcine, Chloramphenicol and Fosfomycin Classes in Acinetobacter baumannii. European Journal of Clinical Microbiology & Infectious Diseases, 35, 1371-1375.
https://doi.org/10.1007/s10096-016-2674-0
[36] He, F., Xu, J., Wang, J., Chen, Q., Hua, X., Fu, Y., et al. (2016) Decreased Susceptibility to Tigecycline Mediated by a Mutation in mlaa in Escherichia Coli Strains. Antimicrobial Agents and Chemotherapy, 60, 7530-7531.
https://doi.org/10.1128/aac.01603-16
[37] Ajiboye, T.O., Skiebe, E. and Wilharm, G. (2018) Contributions of RecA and RecBCD DNA Repair Pathways to the Oxidative Stress Response and Sensitivity of Acinetobacter baumannii to Antibiotics. International Journal of Antimicrobial Agents, 52, 629-636.
https://doi.org/10.1016/j.ijantimicag.2018.07.022