[1]
|
Yaghoubi, S., Zekiy, A.O., Krutova, M., Gholami, M., Kouhsari, E., Sholeh, M., et al. (2021) Tigecycline Antibacterial Activity, Clinical Effectiveness, and Mechanisms and Epidemiology of Resistance: Narrative Review. European Journal of Clinical Microbiology & Infectious Diseases, 41, 1003-1022. https://doi.org/10.1007/s10096-020-04121-1
|
[2]
|
Kounatidis, D., Dalamaga, M., Grivakou, E., Karampela, I., Koufopoulos, P., Dalopoulos, V., et al. (2024) Third-Generation Tetracyclines: Current Knowledge and Therapeutic Potential. Biomolecules, 14, Article 783. https://doi.org/10.3390/biom14070783
|
[3]
|
Pournaras, S., Koumaki, V., Spanakis, N., Gennimata, V. and Tsakris, A. (2016) Current Perspectives on Tigecycline Resistance in Enterobacteriaceae: Susceptibility Testing Issues and Mechanisms of Resistance. International Journal of Antimicrobial Agents, 48, 11-18. https://doi.org/10.1016/j.ijantimicag.2016.04.017
|
[4]
|
Blair, J.M.A., Bavro, V.N., Ricci, V., Modi, N., Cacciotto, P., Kleinekathӧfer, U., et al. (2015) AcrB Drug-Binding Pocket Substitution Confers Clinically Relevant Resistance and Altered Substrate Specificity. Proceedings of the National Academy of Sciences, 112, 3511-3516. https://doi.org/10.1073/pnas.1419939112
|
[5]
|
Chirabhundhu, N., Luk-In, S., Phuadraksa, T., Wichit, S., Chatsuwan, T., Wannigama, D.L., et al. (2024) Occurrence and Mechanisms of Tigecycline Resistance in Carbapenem-and Colistin-Resistant Klebsiella pneumoniae in Thailand. Scientific Reports, 14, Article No. 5215. https://doi.org/10.1038/s41598-024-55705-2
|
[6]
|
Xu, Q., Sheng, Z., Hao, M., Jiang, J., Ye, M., Chen, Y., et al. (2021) RamA Upregulates Multidrug Resistance Efflux Pumps AcrAB and OqxAB in Klebsiella pneumoniae. International Journal of Antimicrobial Agents, 57, Article 106251. https://doi.org/10.1016/j.ijantimicag.2020.106251
|
[7]
|
Wan Nur Ismah, W.A.K., Takebayashi, Y., Findlay, J., Heesom, K.J. and Avison, M.B. (2018) Impact of OqxR Loss of Function on the Envelope Proteome of Klebsiella pneumoniae and Susceptibility to Antimicrobials. Journal of Antimicrobial Chemotherapy, 73, 2990-2996. https://doi.org/10.1093/jac/dky293
|
[8]
|
Zheng, J., Lin, Z., Sun, X., Lin, W., Chen, Z., Wu, Y., et al. (2018) Overexpression of OqxAB and MacAB Efflux Pumps Contributes to Eravacycline Resistance and Heteroresistance in Clinical Isolates of Klebsiella pneumoniae. Emerging Microbes & Infections, 7, 1-11. https://doi.org/10.1038/s41426-018-0141-y
|
[9]
|
Liao, J., Huang, J., Xia, P., Yang, B., Dang, Z., Luo, S., et al. (2024) Molecular Epidemiology and Resistance Mechanisms of Tigecycline-Non-Susceptible Acinetobacter baumannii Isolated from a Tertiary Care Hospital in Chongqing, China. European Journal of Clinical Microbiology & Infectious Diseases. https://doi.org/10.1007/s10096-024-04832-9
|
[10]
|
Modarresi, F., Azizi, O., Shakibaie, M.R., Motamedifar, M., Valibeigi, B. and Mansouri, S. (2015) Effect of Iron on Expression of Efflux Pump (adeABC) and Quorum Sensing (luxI, luxR) Genes in Clinical Isolates of Acinetobacter baumannii. APMIS, 123, 959-968. https://doi.org/10.1111/apm.12455
|
[11]
|
Blanco, P., Corona, F. and Martinez, J.L. (2019) Mechanisms and Phenotypic Consequences of Acquisition of Tigecycline Resistance by Stenotrophomonas maltophilia. Journal of Antimicrobial Chemotherapy, 74, 3221-3230. https://doi.org/10.1093/jac/dkz326
|
[12]
|
Nielsen, S.M., Penstoft, L.N. and Nørskov-Lauritsen, N. (2019) Motility, Biofilm Formation and Antimicrobial Efflux of Sessile and Planktonic Cells of Achromobacter xylosoxidans. Pathogens, 8, 14. https://doi.org/10.3390/pathogens8010014
|
[13]
|
Peng, K., Wang, Q., Li, Y., Wang, M., Kurekci, C., Li, R., et al. (2022) Molecular Mechanisms and Genomic Basis of Tigecycline-Resistant Enterobacterales from Swine Slaughterhouses. Microbiological Research, 264, Article 127151. https://doi.org/10.1016/j.micres.2022.127151
|
[14]
|
Yu, R., Li, L., Zou, C., Chen, Z., Schwarz, S., Chen, S., et al. (2023) Emergence of High-Level Tigecycline Resistance Due to the Amplification of a tet(A) Gene Variant in Clinical Carbapenem-Resistant Klebsiella pneumoniae. Clinical Microbiology and Infection, 29, 1452.e1-1452.e7. https://doi.org/10.1016/j.cmi.2023.07.030
|
[15]
|
Chiu, S., Huang, L., Chen, H., Tsai, Y., Liou, C., Lin, J., et al. (2017) Roles of ramR and tet(A) Mutations in Conferring Tigecycline Resistance in Carbapenem-Resistant Klebsiella pneumoniae Clinical Isolates. Antimicrobial Agents and Chemotherapy, 61. https://doi.org/10.1128/aac.00391-17
|
[16]
|
Yao, H., Jiao, D., Zhao, W., Li, A., Li, R. and Du, X. (2020) Emergence of a Novel tet(L) Variant in campylobacter spp. of Chicken Origin in China. Antimicrobial Agents and Chemotherapy, 65. https://doi.org/10.1128/aac.01622-20
|
[17]
|
Lv, L., Wan, M., Wang, C., Gao, X., Yang, Q., Partridge, S.R., et al. (2020) Emergence of a Plasmid-Encoded Resistance-Nodulation-Division Efflux Pump Conferring Resistance to Multiple Drugs, Including Tigecycline, in Klebsiella pneumoniae. mBio, 11, e02930-19. https://doi.org/10.1128/mbio.02930-19
|
[18]
|
Liu, C., Wu, Y., Fang, Y., Sang, Z., Huang, L., Dong, N., et al. (2022) Emergence of an ST1326 (CG258) Multi-Drug Resistant Klebsiella pneumoniae Co-Harboring mcr-8.2, ESBL Genes, and the Resistance-Nodulation-Division Efflux Pump Gene Cluster TmexCD1-ToprJ1 in China. Frontiers in Microbiology, 13, Article 800993. https://doi.org/10.3389/fmicb.2022.800993
|
[19]
|
Wang, X., Sun, N., Liu, X., Li, F., Sun, J., Huang, J., et al. (2022) Small Clone Dissemination of tmexCD1-ToprJ1—Carrying Klebsiella pneumoniae Isolates in a Chicken Farm. Journal of Global Antimicrobial Resistance, 29, 105-112. https://doi.org/10.1016/j.jgar.2022.02.012
|
[20]
|
Xu, L., Wan, F., Fu, H., Tang, B., Ruan, Z., Xiao, Y., et al. (2022) Emergence of Colistin Resistance Gene mcr-10 in Enterobacterales Isolates Recovered from Fecal Samples of Chickens, Slaughterhouse Workers, and a Nearby Resident. Microbiology Spectrum, 10, e00418-22. https://doi.org/10.1128/spectrum.00418-22
|
[21]
|
Peng, K., Wang, Q., Yin, Y., Li, Y., Liu, Y., Wang, M., et al. (2021) Plasmids Shape the Current Prevalence of tmexCD1-ToprJ1 among Klebsiella pneumoniae in Food Production Chains. mSystems, vol. 6. https://doi.org/10.1128/msystems.00702-21
|
[22]
|
Hirabayashi, A., Dao, T.D., Takemura, T., Hasebe, F., Trang, L.T., Thanh, N.H., et al. (2021) A Transferable IncC-IncX3 Hybrid Plasmid Cocarrying blaNDM-4, tet(X), and tmexCD3-ToprJ3 Confers Resistance to Carbapenem and Tigecycline. mSphere, 6. https://doi.org/10.1128/msphere.00592-21
|
[23]
|
Gao, X., Wang, C., Lv, L., He, X., Cai, Z., He, W., et al. (2022) Emergence of a Novel Plasmid-Mediated Tigecycline Resistance Gene Cluster, tmexCD4-ToprJ4, in Klebsiella quasipneumoniae and Enterobacter roggenkampii. Microbiology Spectrum, 10, e01094-22. https://doi.org/10.1128/spectrum.01094-22
|
[24]
|
Guo, H., Li, L., Zhang, Y., Zhang, Y., Song, C., Wu, Y., et al. (2024) Global Genomic Epidemiology and Transmission Dynamics of Plasmid-Borne TmexCD-ToprJ-Carrying Klebsiella pneumoniae in a One Health Context. Science of The Total Environment, 953, Article 176065. https://doi.org/10.1016/j.scitotenv.2024.176065
|
[25]
|
Anyanwu, M.U., Nwobi, O.C., Okpala, C.O.R. and Ezeonu, I.M. (2022) Mobile Tigecycline Resistance: An Emerging Health Catastrophe Requiring Urgent One Health Global Intervention. Frontiers in Microbiology, 13, Article 808744. https://doi.org/10.3389/fmicb.2022.808744
|
[26]
|
Fang, L., Chen, C., Cui, C., Li, X., Zhang, Y., Liao, X., et al. (2020) Emerging High‐Level Tigecycline Resistance: Novel Tetracycline Destructases Spread via the Mobile tet(x). BioEssays, 42, Article ID: 2000014. https://doi.org/10.1002/bies.202000014
|
[27]
|
Cui, C., Chen, Q., He, Q., Chen, C., Zhang, R., Feng, Y., et al. (2021) Transferability of Tigecycline Resistance: Characterization of the Expanding tet(x) Family. WIREs Mechanisms of Disease, 14, e1538. https://doi.org/10.1002/wsbm.1538
|
[28]
|
Izghirean, N., Waidacher, C., Kittinger, C., Chyba, M., Koraimann, G., Pertschy, B., et al. (2021) Effects of Ribosomal Protein S10 Flexible Loop Mutations on Tetracycline and Tigecycline Susceptibility of Escherichia Coli. Frontiers in Microbiology, 12, Article 663835. https://doi.org/10.3389/fmicb.2021.663835
|
[29]
|
Beabout, K., Hammerstrom, T.G., Perez, A.M., Magalhães, B.F., Prater, A.G., Clements, T.P., et al. (2015) The Ribosomal S10 Protein Is a General Target for Decreased Tigecycline Susceptibility. Antimicrobial Agents and Chemotherapy, 59, 5561-5566. https://doi.org/10.1128/aac.00547-15
|
[30]
|
Hua, X., He, J., Wang, J., Zhang, L., Zhang, L., Xu, Q., et al. (2021) Novel Tigecycline Resistance Mechanisms in Acinetobacter baumannii Mediated by Mutations in adeS, rpoB and rrf. Emerging Microbes & Infections, 10, 1404-1417. https://doi.org/10.1080/22221751.2021.1948804
|
[31]
|
Hammerstrom, T.G., Beabout, K., Clements, T.P., Saxer, G. and Shamoo, Y. (2015) Acinetobacter baumannii Repeatedly Evolves a Hypermutator Phenotype in Response to Tigecycline That Effectively Surveys Evolutionary Trajectories to Resistance. PLOS ONE, 10, e0140489. https://doi.org/10.1371/journal.pone.0140489
|
[32]
|
Linkevicius, M., Sandegren, L. and Andersson, D.I. (2016) Potential of Tetracycline Resistance Proteins to Evolve Tigecycline Resistance. Antimicrobial Agents and Chemotherapy, 60, 789-796. https://doi.org/10.1128/aac.02465-15
|
[33]
|
Chen, Q., Li, X., Zhou, H., Jiang, Y., Chen, Y., Hua, X., et al. (2013) Decreased Susceptibility to Tigecycline in Acinetobacter baumannii Mediated by a Mutation in trm Encoding SAM-Dependent Methyltransferase. Journal of Antimicrobial Chemotherapy, 69, 72-76. https://doi.org/10.1093/jac/dkt319
|
[34]
|
Li, X., Liu, L., Ji, J., Chen, Q., Hua, X., Jiang, Y., et al. (2014) Tigecycline Resistance in Acinetobacter baumannii Mediated by Frameshift Mutation in plsC, Encoding 1-Acyl-sn-glycerol-3-Phosphate Acyltransferase. European Journal of Clinical Microbiology & Infectious Diseases, 34, 625-631. https://doi.org/10.1007/s10096-014-2272-y
|
[35]
|
Li, X., Quan, J., Yang, Y., Ji, J., Liu, L., Fu, Y., et al. (2016) Abrp, a New Gene, Confers Reduced Susceptibility to Tetracycline, Glycylcine, Chloramphenicol and Fosfomycin Classes in Acinetobacter baumannii. European Journal of Clinical Microbiology & Infectious Diseases, 35, 1371-1375. https://doi.org/10.1007/s10096-016-2674-0
|
[36]
|
He, F., Xu, J., Wang, J., Chen, Q., Hua, X., Fu, Y., et al. (2016) Decreased Susceptibility to Tigecycline Mediated by a Mutation in mlaa in Escherichia Coli Strains. Antimicrobial Agents and Chemotherapy, 60, 7530-7531. https://doi.org/10.1128/aac.01603-16
|
[37]
|
Ajiboye, T.O., Skiebe, E. and Wilharm, G. (2018) Contributions of RecA and RecBCD DNA Repair Pathways to the Oxidative Stress Response and Sensitivity of Acinetobacter baumannii to Antibiotics. International Journal of Antimicrobial Agents, 52, 629-636. https://doi.org/10.1016/j.ijantimicag.2018.07.022
|