肝切除术中肝缺血再灌注损伤麻醉管理的研究进展
Research Progress on Anesthesia Management of Liver Ischemia-Reperfusion Injury during Liver Resection Surgery
DOI: 10.12677/acm.2025.152488, PDF, HTML, XML,    国家自然科学基金支持
作者: 杨馥瑞, 陈 莹, 张 蕾, 欧阳杰, 思永玉*:昆明医科大学第二附属医院麻醉科,云南 昆明
关键词: 肝缺血再灌注损伤围术期麻醉药物Liver Ischemia-Reperfusion Injury Perioperative Period Anesthetic Drugs
摘要: 肝脏缺血再灌注损伤(HIRI)是肝切除手术过程中肝损伤的重要原因,是导致手术不成功的重要原因之一,严重影响患者预后。引起HIRI的机制很多,包括炎症反应、氧化应激、细胞凋亡与自噬、线粒体损伤和钙超载等。近年来越来越多的研究表明,围术期的麻醉管理可以减轻炎症、抑制细胞凋亡、缓解氧化应激、防止线粒体损伤,从而改善HIRI。本文总结了近年来国内外针对围术期防治HIRI相关麻醉药物的研究进展,旨在总结HIRI主要病理机制和麻醉药物的作用机制,为未来进一步的临床治疗提供依据。
Abstract: Liver ischemia-reperfusion injury (HIRI) is an important cause of liver injury during liver resection surgery and one of the major reasons for unsuccessful surgery, seriously affecting the prognosis of patients. There are many mechanisms that can cause HIRI, including inflammatory response, oxidative stress, cell apoptosis and autophagy, mitochondrial damage, and calcium overload. In recent years, an increasing number of studies have shown that perioperative anesthesia management can reduce inflammation, inhibit cell apoptosis, alleviate oxidative stress, prevent mitochondrial damage, and thus improve HIRI. This article summarizes the research progress of anesthesia drugs for the prevention and treatment of HIRI during the perioperative period at home and abroad in recent years, aiming to summarize the main pathological mechanisms of HIRI and the mechanisms of action of anesthesia drugs, and provide a basis for further clinical treatment in the future.
文章引用:杨馥瑞, 陈莹, 张蕾, 欧阳杰, 思永玉. 肝切除术中肝缺血再灌注损伤麻醉管理的研究进展[J]. 临床医学进展, 2025, 15(2): 1392-1398. https://doi.org/10.12677/acm.2025.152488

1. 引言

肝脏是人体最大的内脏器官,具有解毒、代谢、合成等多种生理功能,肝切除术被认为是治疗肝脏良性(包括肝血管瘤、肝腺瘤、肝局灶性结节增生、肝内胆管结石)或者恶性(包括肝细胞癌、肝内胆管癌)疾病的常规方法,也是治疗肝脏疾病的重要手段。肝脏也是人体重要的储藏血液的器官,肝细胞对缺血、缺氧很敏感,使得肝切除术非常具有挑战性。在过去的几年里,外科医生在肝切除术患者中使用了有效的肝门阻断减少出血量,但是当肝门阻断被释放时,会发生缺血再灌注损伤(I/R)。肝缺血再灌注损伤(liver ischemia-reperfusion injury, HIRI)是指缺氧的肝脏细胞损伤在恢复血流灌注后损伤加重的现象,其特点是缺血期缺氧诱导的细胞损伤和血流恢复后的免疫炎症[1],有两个阶段的病理生理过程:缺血损伤使肝细胞之间产生炎症反应、ATP耗竭、线粒体损伤以及细胞氧化应激,均导致肝细胞损伤或死亡。在随后的再灌注损伤中,肝脏代谢受到干扰,引起相互关联的炎症级联反应,从而进一步加重肝细胞损伤[1]。随着对HIRI了解的深入,很多研究证明了在手术过程中的部分麻醉药物不仅使用方便、不干扰手术进程,而且还能有效减轻HIRI [2] [3],更好的麻醉管理可以减少HIRI的不良反应,改善肝手术的预后,增加肝切除术成功康复的患者数量。

2. HIRI的发生机制

2.1. 炎症反应

HIRI的炎症反应涉及细胞因子、补体、中性粒细胞和巨噬细胞等。在缺血期间,激活肝脏的巨噬细胞,即Kupffer细胞主要通过活性氧(ROS)的产生诱导氧化应激,在再灌注后6~24小时,使中性粒细胞释放炎症介质,直接导致组织损伤。Kupffer细胞在HIRI的病理生理机制中起着核心作用。活化的Kupffer细胞同时释放ROS和细胞因子,包括肿瘤坏死因子α (TNF-α)、白细胞介素-1 (IL-1)和白细胞介素-6 (IL-6),导致中性粒细胞在窦腔内积聚,引起微循环紊乱[4],此外,补体系统和细胞因子也是参与HIRI的重要体液因子。在补体成分中,C5a是最有效的炎症介质,可释放促炎因子,包括TNF-α、IL-1和IL-6,进一步损害肝脏缺血组织的血流[5]

2.2. 氧化应激

氧化应激在HIRI中起着至关重要的作用。氧化应激是指人体在受到有害刺激时,产生过量的活性氧(reactive oxygen species, ROS),ROS的生成和去除之间的平衡会被破坏,从而导致细胞氧化应激,造成组织损伤[6]。ROS作为正常有氧代谢的副产物,是HIRI引起肝损伤的最重要因素之一,主要由I/R过程中的Kupffer细胞和线粒体产生[4]。然而,肝脏I/R会导致ROS过度积累,破坏氧化还原稳态,导致氧化应激,使缺血肝脏进一步损伤。过多的ROS可导致钙超载、细胞凋亡、细胞因子上调以及直接导致DNA和蛋白质的改变[7],阻断酶活性,加重肝脏缺血再灌注损伤。ROS产生和消除的不平衡被认为与氧化应激有关,进一步导致线粒体功能障碍。

2.3. 细胞凋亡与自噬

HIRI中Kupffer细胞和巨噬细胞的激活除了产生ROS和诱导炎症外,还可以引发细胞凋亡和自噬。凋亡,即细胞程序性死亡,细胞死亡通过清除多余和不需要的细胞,在维持机体平衡中起着至关重要的作用,称为细胞凋亡[8]。细胞凋亡是细胞质中自噬体和自溶酶体的积累,自噬是一个保守的过程,它将细胞质的成分传递给溶酶体进行降解。自噬是机体在应激条件下发生的一种自我消化过程,是很多疾病的发生机制。近年来,越来越多肝脏疾病研究把重点放在了自噬与HIRI上[9]-[12],Ge等人[13]发现,当HIRI发生时,mTOR的表达和活性降低,并诱导自噬。在他们的研究中,自噬在HIRI的发展中起双向调节作用,在早期具有保护作用,在长期缺血期间具有不利作用。尽管自噬作为一种生存机制发挥着重要作用,然而,受损细胞内过度的自噬会相反地诱导细胞死亡。同样氧化应激可导致自噬,当细胞处于持续应激状态时,持续的自噬也可导致细胞死亡,这就可能在围术期加重肝脏的缺血再灌注损伤[14]

2.4. 线粒体功能障碍

线粒体是HIRI的病理触发因子、介质和效应因子[15]。mtDNA位于线粒体基质中,使其特别容易被电子传递链中的ROS氧化,从而导致mtDNA突变。HIRI的发生与mtDNA的破坏有着不可分割的联系。基因突变或缺乏mtDNA会破坏呼吸链,影响线粒体能量代谢致功能障碍,使得线粒体数量和mtDNA含量均下降,最终导致严重的肝损伤。病理性I/R中的功能障碍是由线粒体通透性过渡(MPT)开孔引起的,MPT在HIRI的发病机制中起着关键作用,MPT导致线粒体膜电位的崩溃,氧化磷酸化的失败,以及引起线粒体释放细胞色素c,引发细胞凋亡[16] [17]

2.5. 钙超载

细胞内钙稳态是由Na+/K+和H+/Ca2+交换系统维持的。在I/R过程中,ATP耗竭导致细胞膜中依赖ATP的Na+/K+ATP酶活性降低。这导致细胞内Na+浓度增加,导致钙离子向内流动[18]。此外,缺血诱导的细胞膜通透性增加导致钙离子进一步进入细胞,大量钙离子从内质网和受损的线粒体中释放出来。导致细胞内钙超载,进而干扰细胞代谢途径。

3. 围术期麻醉药物对HIRI的保护作用

许多麻醉药物在HIRI的防治中体现出了独特优势,主要包括七氟烷、右美托咪定、丙泊酚、咪达唑仑、氯胺酮、舒芬太尼、瑞芬太尼。这些麻醉药物在各项试验研究中均被证实可通过多种机制减轻HIRI,参与肝功能保护[2] [3] [19]-[22]

3.1. 七氟烷

七氟烷作为一种吸入性的麻醉药物,由于其起效快、排出快、可控性高的优点,在全身麻醉中具有重要的作用,并且在临床手术中广泛使用。一项动物实验研究表明[2]七氟醚可能通过降低多形核白细胞的毒性来保护肝细胞免受I/R损伤,多形核白细胞在包括肝脏在内的许多器官的I/R损伤中起重要作用。同时,本研究还发现七氟醚预处理可以保护肝细胞免受I/R损伤引起的炎症,可减少内皮糖萼脱落和肝细胞坏死。多项研究都发现,七氟醚预处理和后处理均可降低术后血清转氨酶的升高,减少术后并发症的发生[23] [24]。在这些阳性研究中,受试者在缺血前后30分钟的间隔时间内暴露于七氟醚,其余麻醉时间使用丙泊酚。相反,与丙泊酚相比,在整个麻醉过程中持续吸入七氟醚未能降低术后转氨酶的升高[25]。这些结果强烈提示,在缺血前后给药七氟醚对减少术后肝细胞损伤至关重要。早在1996年,Imai [26]等人通过大鼠实验发现所有麻醉剂均减少了肝脏耗氧量并增加了净乳酸产量。挥发性麻醉剂还显着减弱再灌注过程中乳酸脱氢酶的释放。即使在再灌注期间给予异氟醚,也观察到乳酸脱氢酶释放的抑制。近年来的一些研究也表明七氟烷对I/R损伤的保护作用,例如七氟醚通过阻断了KLF5介导的ITGB2转录激活减轻IR损伤[27];通过miR-218-5p/GAB2/PI3K/AKT、通路抑制细胞凋亡、缓解氧化应激和炎症反应[28]

3.2. 右美托咪定

右美托咪定是一种高选择性α2受体激动剂,由于其令人满意的镇静效果和对呼吸循环影响较小的特点,已被广泛应用于临床麻醉中。一项研究表明右美托咪定对I/R具有保护作用,右美托咪定可以降低血清、肝脏和其他主要器官的炎症反应[19] [20]。Wang等人发现右美托咪定可以减少炎症反应,围手术期给予右美托咪定可减轻接受肝切除术的患者因血流阻塞的肠道和肝脏损伤,且没有任何潜在风险[19]。Zhang等[29]研究结果显示对照组血清IL-6、TNF-α水平均显著高于右美托咪定组,认为右美托咪定在肝切除术后24 h,无论是否有血流阻塞,都能降低IL-6和TNF-α浓度。这项研究也显示右美托咪定能通过降低肝切除术后2 h和24 h的ALT和AST水平,血清AST、ALT、LDH也是肝损伤的重要指标,异常高水平客观反映HIRI程度。

3.3. 丙泊酚

丙泊酚作为麻醉过程中最常见的静脉麻醉药,能平稳、快速地诱导麻醉,其麻醉效果易于控制、体内代谢快、无毒副作用等优点被广泛应用于临床实践。有研究表明丙泊酚通过调节HOXA11-AS/PTBP1/HDAC4轴途径[21]保护肝脏。Ma [30]的研究发现Bnip3参与了肝脏再灌注损伤,丙泊酚可促进下调细胞质Bni3p的表达,上调Bcl-2水平,siBnip3逆转了HIRI对肝细胞的作用,丙泊酚通过抑制Bnip3介导的氧化应激对肝脏缺血再灌注损伤发挥保护作用,此外,在肝细胞中,丙泊酚可促进细胞活力,下调TNF-α、IL-6等炎性因子的水平,减少活性氧的生成。也有研究表明丙泊酚是对线粒体损伤最具保护作用的药物[3],另外丙泊酚静脉麻醉患者的ALT和AST水平明显低于其他麻醉药物组[31],这也证实了丙泊酚可用于麻醉手术以保护肝细胞并减少HIRI。

3.4. 咪达唑仑

咪达唑仑与苯二氮卓受体结合,在各种临床情况下发挥镇静作用,如对于术前焦虑的患者能起到很好的抗焦虑作用,能辅助麻醉诱导过程的顺利。Harman [3]的研究表明咪达唑仑可以通过防止脂质过氧化和线粒体损伤,对I/R模型的胎鼠大脑提供强大的神经保护作用,间充质干细胞(MSCs)最初来源于骨[32],由于其多潜能性、自我更新和免疫调节能力活跃而广泛应用于临床。间充质干细胞在缺血再灌注损伤和肝脏疾病中是有益处的,Feng [32]等人的动物实验发现咪达唑仑可提高人脑–间充质干细胞(hBM-MSCs)的疗效缓解HIRI的能力,hBM-MSCs减轻了HIRI,潜在机制可能是咪达唑仑可以改善hBM-MSCs的旁分泌和迁移能力。

3.5. 氯胺酮

HIRI是一个复杂的病理生理过程,受多因素相互作用的影响。LI动物实验表明氯胺酮通过抑制大鼠Kupffer cells的活化和炎症反应,来减轻肝脏移植后的HIRI [22]。Gundogdu研究表明氯胺酮通过NF-κB抑制来抑制细胞因子的产生和白细胞的反应性可以改善大鼠的肝损伤[33]

3.6. 舒芬太尼

舒芬太尼其镇痛效力是芬太尼的8倍,目前已知最有效的阿片类激动剂,其有镇痛作用强、半衰期长等优点被用于全麻插管前的诱导,炎症会导致疼痛,而舒芬太尼能有效缓解全麻插管时、手术过程中以及手术后的疼痛刺激。而近年来有研究表明舒芬太尼对HIRI的保护作用源于抑制p38/ERK1/2/JNK/NF-kB-p65/cox2信号通路,减少HIF-1α、TNF-α、IL-1b、IL-6等炎症因子,增加了HIRI细胞活性,减少了凋亡[34]。Zhou试验[35]发现舒芬太尼可以抑制ATF4表达并进一步抑制TP53BP2表达,保护肝脏免受HIRI引起的炎症和细胞凋亡的损害,证实了舒芬太尼对HIRI的保护作用。

3.7. 瑞芬太尼

瑞芬太尼是一种超短效阿片受体激动剂。研究证实了瑞芬太尼的多器官I/R损伤的保护作用,β-arrestin2是一种众所周知的μ阿片受体脱敏剂,Yang [36]等人发现瑞芬太尼可以通过上调β-arrestin2的表达,同时瑞芬太尼预处理可以下调Toll样受体4 (TLR4)表达减轻HIRI。Liu [37]发现瑞芬太尼可以显著降低血清转氨酶水平,显著减轻肝组织损伤。在肝切除术后发生肝功能衰竭的患者中,会发现白细胞介素(IL)-18水平升高,肝I/R损伤也会使肝脏白细胞介素(IL)-18和白细胞介素(IL)-18BP的表达升高。瑞芬太尼预处理能在mRNA和蛋白水平上显著降低IL-18表达。瑞芬太尼也能显著降低I/R损伤时肝脏干扰素-γ、肿瘤坏死因子-α和IL-1β表达升高以及中性粒细胞浸润,发挥瑞芬太尼的保肝作用,另外还发现临床相关剂量(0.4或2 μg (kg∙min)1)或更大剂量(10 μg (kg∙min)1)的瑞芬太尼对中度肝I/R损伤产生类似的保护作用,这表明并不是瑞芬太尼的使用剂量越大对HIRI的保护作用就越大,关于瑞芬太尼护肝作用的最佳剂量还需研究进一步证实。

4. 总结与展望

HIRI是一个复杂的病理生理事件,在临床实践中,是导致术后肝功能衰竭发病率和死亡率的主要原因。考虑到该类肝脏手术中I/R损伤的必然性,减轻I/R损伤对患者的危害成为关键。虽然其病理生理涉及多种相互作用和介质,但氧化应激和炎症反应是其主要机制。优先使用减少氧化应激和炎症反应的麻醉药物可能会导致更好的临床结果和更少的术后并发症。因此丙泊酚、舒芬太尼、氯胺酮可以作为临床中的首选麻醉诱导药物。另外在术中使用七氟烷进行麻醉维持,同样可以减少HIRI的发生并加快术后恢复速度。总的来说,了解HIRI主要病理机制和麻醉药物的作用机制,可能有助于部分肝切除术中的肝脏保护,为未来进一步的临床治疗提供依据,改善行肝切除术的患者预后,减少患者痛苦。

基金项目

国家自然科学基金(82460240)。

NOTES

*通讯作者。

参考文献

[1] Hirao, H., Nakamura, K. and Kupiec-Weglinski, J.W. (2021) Liver Ischaemia-Reperfusion Injury: A New Understanding of the Role of Innate Immunity. Nature Reviews Gastroenterology & Hepatology, 19, 239-256.
https://doi.org/10.1038/s41575-021-00549-8
[2] Li, J., Yuan, T., Zhao, X., Lv, G. and Liu, H. (2016) Protective Effects of Sevoflurane in Hepatic Ischemia-Reperfusion Injury. International Journal of Immunopathology and Pharmacology, 29, 300-307.
https://doi.org/10.1177/0394632016638346
[3] Harman, F., Hasturk, A.E., Yaman, M., Arca, T., Kilinc, K., Sargon, M.F., et al. (2012) Neuroprotective Effects of Propofol, Thiopental, Etomidate, and Midazolam in Fetal Rat Brain in Ischemia-Reperfusion Model. Child’s Nervous System, 28, 1055-1062.
https://doi.org/10.1007/s00381-012-1782-0
[4] Vollmar, B., Glasz, J., Leiderer, R., et al. (1994) Hepatic Microcirculatory Perfusion Failure Is a Determinant of Liver Dysfunction in Warm Ischemia-Reperfusion. The American Journal of Pathology, 145, 1421-1431.
[5] Montalvo-Jave, E.E., Escalante-Tattersfield, T., Ortega-Salgado, J.A., Piña, E. and Geller, D.A. (2008) Factors in the Pathophysiology of the Liver Ischemia-Reperfusion Injury. Journal of Surgical Research, 147, 153-159.
https://doi.org/10.1016/j.jss.2007.06.015
[6] George, J., Lu, Y., Tsuchishima, M. and Tsutsumi, M. (2024) Cellular and Molecular Mechanisms of Hepatic Ischemia-Reperfusion Injury: The Role of Oxidative Stress and Therapeutic Approaches. Redox Biology, 75, Article 103258.
https://doi.org/10.1016/j.redox.2024.103258
[7] Cadenas, S. (2018) ROS and Redox Signaling in Myocardial Ischemia-Reperfusion Injury and Cardioprotection. Free Radical Biology and Medicine, 117, 76-89.
https://doi.org/10.1016/j.freeradbiomed.2018.01.024
[8] Denton, D. and Kumar, S. (2018) Autophagy-Dependent Cell Death. Cell Death & Differentiation, 26, 605-616.
https://doi.org/10.1038/s41418-018-0252-y
[9] Matsumoto, N., Ezaki, J., Komatsu, M., Takahashi, K., Mineki, R., Taka, H., et al. (2008) Comprehensive Proteomics Analysis of Autophagy-Deficient Mouse Liver. Biochemical and Biophysical Research Communications, 368, 643-649.
https://doi.org/10.1016/j.bbrc.2008.01.112
[10] Zou, H., Zhuo, L., Han, T., Hu, D., Yang, X., Wang, Y., et al. (2015) Autophagy and Gap Junctional Intercellular Communication Inhibition Are Involved in Cadmium-Induced Apoptosis in Rat Liver Cells. Biochemical and Biophysical Research Communications, 459, 713-719.
https://doi.org/10.1016/j.bbrc.2015.03.027
[11] Yang, J., Wang, Y., Sui, M., Liu, F., Fu, Z. and Wang, Q. (2015) Tri-Iodothyronine Preconditioning Protects against Liver Ischemia Reperfusion Injury through the Regulation of Autophagy by the MEK/ERK/mTORC1 Axis. Biochemical and Biophysical Research Communications, 467, 704-710.
https://doi.org/10.1016/j.bbrc.2015.10.080
[12] Cursio, R., Colosetti, P. and Gugenheim, J. (2015) Autophagy and Liver Ischemia-Reperfusion Injury. BioMed Research International, 2015, Article 417590.
https://doi.org/10.1155/2015/417590
[13] Ge, Y., Zhang, Q., Jiao, Z., Li, H., Bai, G. and Wang, H. (2018) Adipose-Derived Stem Cells Reduce Liver Oxidative Stress and Autophagy Induced by Ischemia-Reperfusion and Hepatectomy Injury in Swine. Life Sciences, 214, 62-69.
https://doi.org/10.1016/j.lfs.2018.10.054
[14] Bolisetty, S., Traylor, A.M., Kim, J., Joseph, R., Ricart, K., Landar, A., et al. (2010) Heme Oxygenase-1 Inhibits Renal Tubular Macroautophagy in Acute Kidney Injury. Journal of the American Society of Nephrology, 21, 1702-1712.
https://doi.org/10.1681/asn.2010030238
[15] Camara, A.K.S., Bienengraeber, M. and Stowe, D.F. (2011) Mitochondrial Approaches to Protect against Cardiac Ischemia and Reperfusion Injury. Frontiers in Physiology, 2, Article 13.
https://doi.org/10.3389/fphys.2011.00013
[16] Kim, J., He, L. and Lemasters, J.J. (2003) Mitochondrial Permeability Transition: A Common Pathway to Necrosis and Apoptosis. Biochemical and Biophysical Research Communications, 304, 463-470.
https://doi.org/10.1016/s0006-291x(03)00618-1
[17] Kantrow, S.P., Tatro, L.G. and Piantadosi, C.A. (2000) Oxidative Stress and Adenine Nucleotide Control of Mitochondrial Permeability Transition. Free Radical Biology and Medicine, 28, 251-260.
https://doi.org/10.1016/s0891-5849(99)00238-5
[18] Li, J., Li, R.J., Lv, G.Y., et al. (2015) The Mechanisms and Strategies to Protect from Hepatic Ischemia-Reperfusion Injury. European Review for Medical and Pharmacological Sciences, 19, 2036-2047.
[19] Wang, Z.X., Huang, C.Y., Hua, Y.P., Huang, W.Q., Deng, L.H. and Liu, K.X. (2014) Dexmedetomidine Reduces Intestinal and Hepatic Injury after Hepatectomy with Inflow Occlusion under General Anaesthesia: A Randomized Controlled Trial. British Journal of Anaesthesia, 112, 1055-1064.
https://doi.org/10.1093/bja/aeu132
[20] Şahin, T., Begeç, Z., Toprak, H.İ., Polat, A., Vardi, N., Yücel, A., et al. (2013) The Effects of Dexmedetomidine on Liver Ischemia-Reperfusion Injury in Rats. Journal of Surgical Research, 183, 385-390.
https://doi.org/10.1016/j.jss.2012.11.034
[21] Luo, J., Liu, J., Mou, Y., Luo, F., Liao, Q. and Liao, Y. (2023) Propofol Improves Ischemia Reperfusion-Induced Liver Fibrosis by Regulating lncRNA HOXA11-AS. The Journal of Toxicological Sciences, 48, 345-354.
https://doi.org/10.2131/jts.48.345
[22] Li, X., Wang, J., Song, X., Wu, H., Guo, P., Jin, Z., et al. (2018) Ketamine Ameliorates Ischemia-Reperfusion Injury after Liver Autotransplantation by Suppressing Activation of Kupffer Cells in Rats. Canadian Journal of Physiology and Pharmacology, 96, 886-892.
https://doi.org/10.1139/cjpp-2018-0046
[23] Beck-Schimmer, B., Breitenstein, S., Urech, S., De Conno, E., Wittlinger, M., Puhan, M., et al. (2008) A Randomized Controlled Trial on Pharmacological Preconditioning in Liver Surgery Using a Volatile Anesthetic. Annals of Surgery, 248, 909-918.
https://doi.org/10.1097/sla.0b013e31818f3dda
[24] Eichler, K., Urner, M., Twerenbold, C., Kern, S., Brügger, U., Spahn, D.R., et al. (2017) Economic Evaluation of Pharmacologic Pre-and Postconditioning with Sevoflurane Compared with Total Intravenous Anesthesia in Liver Surgery: A Cost Analysis. Anesthesia & Analgesia, 124, 925-933.
https://doi.org/10.1213/ane.0000000000001814
[25] Song, J.C., Sun, Y.M., Yang, L.Q., Zhang, M.Z., Lu, Z.J. and Yu, W.F. (2010) A Comparison of Liver Function after Hepatectomy with Inflow Occlusion between Sevoflurane and Propofol Anesthesia. Anesthesia & Analgesia, 111, 1036-1041.
https://doi.org/10.1213/ane.0b013e3181effda8
[26] Imai, M., Kon, S. and Inaba, H. (1996) Effects of Halothane, Isoflurane and Sevoflurane on Ischemiareperfusion Injury in the Perfused Liver of Fasted Rats. Acta Anaesthesiologica Scandinavica, 40, 1242-1248.
https://doi.org/10.1111/j.1399-6576.1996.tb05558.x
[27] Li, Y., Gao, W., Lei, S., Wu, X., Yuan, T., Ma, K., et al. (2024) Sevoflurane Blocks KLF5‐Mediated Transcriptional Activation of ITGB2 to Inhibit Macrophage Infiltration in Hepatic Ischemia/Reperfusion Injury. The Journal of Gene Medicine, 26, e3692.
https://doi.org/10.1002/jgm.3692
[28] Ji, H., Li, H., Zhang, H. and Cheng, Z. (2021) Role of MicroRNA-218-5p in Sevoflurane-Induced Protective Effects in Hepatic Ischemia/Reperfusion Injury Mice by Regulating GAB2/PI3K/AKT Pathway. Molecular Medicine Reports, 25, Article No. 1.
https://doi.org/10.3892/mmr.2021.12517
[29] Zhang, Y., Liu, M., Yang, Y., Cao, J. and Mi, W. (2020) Dexmedetomidine Exerts a Protective Effect on Ischemia-Reperfusion Injury after Hepatectomy: A Prospective, Randomized, Controlled Study. Journal of Clinical Anesthesia, 61, Article 109631.
https://doi.org/10.1016/j.jclinane.2019.109631
[30] Ma, H., Liu, Y., Li, Z., Yu, L., Gao, Y., Ye, X., et al. (2021) Propofol Protects against Hepatic Ischemia Reperfusion Injury via Inhibiting Bnip3-Mediated Oxidative Stress. Inflammation, 44, 1288-1301.
https://doi.org/10.1007/s10753-021-01416-z
[31] Lotz, C., Stumpner, J. and Smul, T.M. (2020) Sevoflurane as Opposed to Propofol Anesthesia Preserves Mitochondrial Function and Alleviates Myocardial Ischemia/Reperfusion Injury. Biomedicine & Pharmacotherapy, 129, Article 110417.
https://doi.org/10.1016/j.biopha.2020.110417
[32] Feng, J., Yao, W., Zhang, Y., Xiang, A.P., Yuan, D. and Hei, Z. (2018) Intravenous Anesthetics Enhance the Ability of Human Bone Marrow-Derived Mesenchymal Stem Cells to Alleviate Hepatic Ischemia-Reperfusion Injury in a Receptor-Dependent Manner. Cellular Physiology and Biochemistry, 47, 556-566.
https://doi.org/10.1159/000489989
[33] Gundogdu, Z., Demirel, I., Bayar, M.K., et al. (2016) Dose-Dependent Anti-Inflammatory Effect of Ketamine in Liver Ischemia-Reperfusion Injury. Middle East Journal of Anesthesiology, 23, 655-663.
[34] Lian, Y., Fang, J., Zhou, H., Jiang, H. and Xie, K. (2019) Sufentanil Preconditioning Protects against Hepatic Ischemia-Reperfusion Injury by Suppressing Inflammation. Medical Science Monitor, 25, 2265-2273.
https://doi.org/10.12659/msm.913145
[35] Zhou, L., Yang, X., Shu, S., Wang, S., Guo, F., Yin, Y., et al. (2021) Sufentanil Protects the Liver from Ischemia/Reperfusion-Induced Inflammation and Apoptosis by Inhibiting ATF4-Induced TP53BP2 Expression. Inflammation, 44, 1160-1174.
https://doi.org/10.1007/s10753-020-01410-x
[36] Yang, Y., Chen, C., Cui, C., Jiao, Y., Li, P., Zhu, L., et al. (2019) Indispensable Role of β-Arrestin2 in the Protection of Remifentanil Preconditioning against Hepatic Ischemic Reperfusion Injury. Scientific Reports, 9, Article No. 2087.
https://doi.org/10.1038/s41598-018-38456-9
[37] Liu, X., Pan, Z., Su, D., Yang, Z., Zheng, B., Wang, X., et al. (2015) Remifentanil Ameliorates Liver Ischemia-Reperfusion Injury through Inhibition of Interleukin-18 Signaling. Transplantation, 99, 2109-2117.
https://doi.org/10.1097/tp.0000000000000737