[1]
|
Hirao, H., Nakamura, K. and Kupiec-Weglinski, J.W. (2021) Liver Ischaemia-Reperfusion Injury: A New Understanding of the Role of Innate Immunity. Nature Reviews Gastroenterology & Hepatology, 19, 239-256. https://doi.org/10.1038/s41575-021-00549-8
|
[2]
|
Li, J., Yuan, T., Zhao, X., Lv, G. and Liu, H. (2016) Protective Effects of Sevoflurane in Hepatic Ischemia-Reperfusion Injury. International Journal of Immunopathology and Pharmacology, 29, 300-307. https://doi.org/10.1177/0394632016638346
|
[3]
|
Harman, F., Hasturk, A.E., Yaman, M., Arca, T., Kilinc, K., Sargon, M.F., et al. (2012) Neuroprotective Effects of Propofol, Thiopental, Etomidate, and Midazolam in Fetal Rat Brain in Ischemia-Reperfusion Model. Child’s Nervous System, 28, 1055-1062. https://doi.org/10.1007/s00381-012-1782-0
|
[4]
|
Vollmar, B., Glasz, J., Leiderer, R., et al. (1994) Hepatic Microcirculatory Perfusion Failure Is a Determinant of Liver Dysfunction in Warm Ischemia-Reperfusion. The American Journal of Pathology, 145, 1421-1431.
|
[5]
|
Montalvo-Jave, E.E., Escalante-Tattersfield, T., Ortega-Salgado, J.A., Piña, E. and Geller, D.A. (2008) Factors in the Pathophysiology of the Liver Ischemia-Reperfusion Injury. Journal of Surgical Research, 147, 153-159. https://doi.org/10.1016/j.jss.2007.06.015
|
[6]
|
George, J., Lu, Y., Tsuchishima, M. and Tsutsumi, M. (2024) Cellular and Molecular Mechanisms of Hepatic Ischemia-Reperfusion Injury: The Role of Oxidative Stress and Therapeutic Approaches. Redox Biology, 75, Article 103258. https://doi.org/10.1016/j.redox.2024.103258
|
[7]
|
Cadenas, S. (2018) ROS and Redox Signaling in Myocardial Ischemia-Reperfusion Injury and Cardioprotection. Free Radical Biology and Medicine, 117, 76-89. https://doi.org/10.1016/j.freeradbiomed.2018.01.024
|
[8]
|
Denton, D. and Kumar, S. (2018) Autophagy-Dependent Cell Death. Cell Death & Differentiation, 26, 605-616. https://doi.org/10.1038/s41418-018-0252-y
|
[9]
|
Matsumoto, N., Ezaki, J., Komatsu, M., Takahashi, K., Mineki, R., Taka, H., et al. (2008) Comprehensive Proteomics Analysis of Autophagy-Deficient Mouse Liver. Biochemical and Biophysical Research Communications, 368, 643-649. https://doi.org/10.1016/j.bbrc.2008.01.112
|
[10]
|
Zou, H., Zhuo, L., Han, T., Hu, D., Yang, X., Wang, Y., et al. (2015) Autophagy and Gap Junctional Intercellular Communication Inhibition Are Involved in Cadmium-Induced Apoptosis in Rat Liver Cells. Biochemical and Biophysical Research Communications, 459, 713-719. https://doi.org/10.1016/j.bbrc.2015.03.027
|
[11]
|
Yang, J., Wang, Y., Sui, M., Liu, F., Fu, Z. and Wang, Q. (2015) Tri-Iodothyronine Preconditioning Protects against Liver Ischemia Reperfusion Injury through the Regulation of Autophagy by the MEK/ERK/mTORC1 Axis. Biochemical and Biophysical Research Communications, 467, 704-710. https://doi.org/10.1016/j.bbrc.2015.10.080
|
[12]
|
Cursio, R., Colosetti, P. and Gugenheim, J. (2015) Autophagy and Liver Ischemia-Reperfusion Injury. BioMed Research International, 2015, Article 417590. https://doi.org/10.1155/2015/417590
|
[13]
|
Ge, Y., Zhang, Q., Jiao, Z., Li, H., Bai, G. and Wang, H. (2018) Adipose-Derived Stem Cells Reduce Liver Oxidative Stress and Autophagy Induced by Ischemia-Reperfusion and Hepatectomy Injury in Swine. Life Sciences, 214, 62-69. https://doi.org/10.1016/j.lfs.2018.10.054
|
[14]
|
Bolisetty, S., Traylor, A.M., Kim, J., Joseph, R., Ricart, K., Landar, A., et al. (2010) Heme Oxygenase-1 Inhibits Renal Tubular Macroautophagy in Acute Kidney Injury. Journal of the American Society of Nephrology, 21, 1702-1712. https://doi.org/10.1681/asn.2010030238
|
[15]
|
Camara, A.K.S., Bienengraeber, M. and Stowe, D.F. (2011) Mitochondrial Approaches to Protect against Cardiac Ischemia and Reperfusion Injury. Frontiers in Physiology, 2, Article 13. https://doi.org/10.3389/fphys.2011.00013
|
[16]
|
Kim, J., He, L. and Lemasters, J.J. (2003) Mitochondrial Permeability Transition: A Common Pathway to Necrosis and Apoptosis. Biochemical and Biophysical Research Communications, 304, 463-470. https://doi.org/10.1016/s0006-291x(03)00618-1
|
[17]
|
Kantrow, S.P., Tatro, L.G. and Piantadosi, C.A. (2000) Oxidative Stress and Adenine Nucleotide Control of Mitochondrial Permeability Transition. Free Radical Biology and Medicine, 28, 251-260. https://doi.org/10.1016/s0891-5849(99)00238-5
|
[18]
|
Li, J., Li, R.J., Lv, G.Y., et al. (2015) The Mechanisms and Strategies to Protect from Hepatic Ischemia-Reperfusion Injury. European Review for Medical and Pharmacological Sciences, 19, 2036-2047.
|
[19]
|
Wang, Z.X., Huang, C.Y., Hua, Y.P., Huang, W.Q., Deng, L.H. and Liu, K.X. (2014) Dexmedetomidine Reduces Intestinal and Hepatic Injury after Hepatectomy with Inflow Occlusion under General Anaesthesia: A Randomized Controlled Trial. British Journal of Anaesthesia, 112, 1055-1064. https://doi.org/10.1093/bja/aeu132
|
[20]
|
Şahin, T., Begeç, Z., Toprak, H.İ., Polat, A., Vardi, N., Yücel, A., et al. (2013) The Effects of Dexmedetomidine on Liver Ischemia-Reperfusion Injury in Rats. Journal of Surgical Research, 183, 385-390. https://doi.org/10.1016/j.jss.2012.11.034
|
[21]
|
Luo, J., Liu, J., Mou, Y., Luo, F., Liao, Q. and Liao, Y. (2023) Propofol Improves Ischemia Reperfusion-Induced Liver Fibrosis by Regulating lncRNA HOXA11-AS. The Journal of Toxicological Sciences, 48, 345-354. https://doi.org/10.2131/jts.48.345
|
[22]
|
Li, X., Wang, J., Song, X., Wu, H., Guo, P., Jin, Z., et al. (2018) Ketamine Ameliorates Ischemia-Reperfusion Injury after Liver Autotransplantation by Suppressing Activation of Kupffer Cells in Rats. Canadian Journal of Physiology and Pharmacology, 96, 886-892. https://doi.org/10.1139/cjpp-2018-0046
|
[23]
|
Beck-Schimmer, B., Breitenstein, S., Urech, S., De Conno, E., Wittlinger, M., Puhan, M., et al. (2008) A Randomized Controlled Trial on Pharmacological Preconditioning in Liver Surgery Using a Volatile Anesthetic. Annals of Surgery, 248, 909-918. https://doi.org/10.1097/sla.0b013e31818f3dda
|
[24]
|
Eichler, K., Urner, M., Twerenbold, C., Kern, S., Brügger, U., Spahn, D.R., et al. (2017) Economic Evaluation of Pharmacologic Pre-and Postconditioning with Sevoflurane Compared with Total Intravenous Anesthesia in Liver Surgery: A Cost Analysis. Anesthesia & Analgesia, 124, 925-933. https://doi.org/10.1213/ane.0000000000001814
|
[25]
|
Song, J.C., Sun, Y.M., Yang, L.Q., Zhang, M.Z., Lu, Z.J. and Yu, W.F. (2010) A Comparison of Liver Function after Hepatectomy with Inflow Occlusion between Sevoflurane and Propofol Anesthesia. Anesthesia & Analgesia, 111, 1036-1041. https://doi.org/10.1213/ane.0b013e3181effda8
|
[26]
|
Imai, M., Kon, S. and Inaba, H. (1996) Effects of Halothane, Isoflurane and Sevoflurane on Ischemiareperfusion Injury in the Perfused Liver of Fasted Rats. Acta Anaesthesiologica Scandinavica, 40, 1242-1248. https://doi.org/10.1111/j.1399-6576.1996.tb05558.x
|
[27]
|
Li, Y., Gao, W., Lei, S., Wu, X., Yuan, T., Ma, K., et al. (2024) Sevoflurane Blocks KLF5‐Mediated Transcriptional Activation of ITGB2 to Inhibit Macrophage Infiltration in Hepatic Ischemia/Reperfusion Injury. The Journal of Gene Medicine, 26, e3692. https://doi.org/10.1002/jgm.3692
|
[28]
|
Ji, H., Li, H., Zhang, H. and Cheng, Z. (2021) Role of MicroRNA-218-5p in Sevoflurane-Induced Protective Effects in Hepatic Ischemia/Reperfusion Injury Mice by Regulating GAB2/PI3K/AKT Pathway. Molecular Medicine Reports, 25, Article No. 1. https://doi.org/10.3892/mmr.2021.12517
|
[29]
|
Zhang, Y., Liu, M., Yang, Y., Cao, J. and Mi, W. (2020) Dexmedetomidine Exerts a Protective Effect on Ischemia-Reperfusion Injury after Hepatectomy: A Prospective, Randomized, Controlled Study. Journal of Clinical Anesthesia, 61, Article 109631. https://doi.org/10.1016/j.jclinane.2019.109631
|
[30]
|
Ma, H., Liu, Y., Li, Z., Yu, L., Gao, Y., Ye, X., et al. (2021) Propofol Protects against Hepatic Ischemia Reperfusion Injury via Inhibiting Bnip3-Mediated Oxidative Stress. Inflammation, 44, 1288-1301. https://doi.org/10.1007/s10753-021-01416-z
|
[31]
|
Lotz, C., Stumpner, J. and Smul, T.M. (2020) Sevoflurane as Opposed to Propofol Anesthesia Preserves Mitochondrial Function and Alleviates Myocardial Ischemia/Reperfusion Injury. Biomedicine & Pharmacotherapy, 129, Article 110417. https://doi.org/10.1016/j.biopha.2020.110417
|
[32]
|
Feng, J., Yao, W., Zhang, Y., Xiang, A.P., Yuan, D. and Hei, Z. (2018) Intravenous Anesthetics Enhance the Ability of Human Bone Marrow-Derived Mesenchymal Stem Cells to Alleviate Hepatic Ischemia-Reperfusion Injury in a Receptor-Dependent Manner. Cellular Physiology and Biochemistry, 47, 556-566. https://doi.org/10.1159/000489989
|
[33]
|
Gundogdu, Z., Demirel, I., Bayar, M.K., et al. (2016) Dose-Dependent Anti-Inflammatory Effect of Ketamine in Liver Ischemia-Reperfusion Injury. Middle East Journal of Anesthesiology, 23, 655-663.
|
[34]
|
Lian, Y., Fang, J., Zhou, H., Jiang, H. and Xie, K. (2019) Sufentanil Preconditioning Protects against Hepatic Ischemia-Reperfusion Injury by Suppressing Inflammation. Medical Science Monitor, 25, 2265-2273. https://doi.org/10.12659/msm.913145
|
[35]
|
Zhou, L., Yang, X., Shu, S., Wang, S., Guo, F., Yin, Y., et al. (2021) Sufentanil Protects the Liver from Ischemia/Reperfusion-Induced Inflammation and Apoptosis by Inhibiting ATF4-Induced TP53BP2 Expression. Inflammation, 44, 1160-1174. https://doi.org/10.1007/s10753-020-01410-x
|
[36]
|
Yang, Y., Chen, C., Cui, C., Jiao, Y., Li, P., Zhu, L., et al. (2019) Indispensable Role of β-Arrestin2 in the Protection of Remifentanil Preconditioning against Hepatic Ischemic Reperfusion Injury. Scientific Reports, 9, Article No. 2087. https://doi.org/10.1038/s41598-018-38456-9
|
[37]
|
Liu, X., Pan, Z., Su, D., Yang, Z., Zheng, B., Wang, X., et al. (2015) Remifentanil Ameliorates Liver Ischemia-Reperfusion Injury through Inhibition of Interleukin-18 Signaling. Transplantation, 99, 2109-2117. https://doi.org/10.1097/tp.0000000000000737
|