|
[1]
|
Wang, Y., Jia, R., Liang, J., Li, J., Qian, S., Li, J., et al. (2019) Dementia in China (2015-2050) Estimated Using the 1% Population Sampling Survey in 2015. Geriatrics & Gerontology International, 19, 1096-1100. [Google Scholar] [CrossRef] [PubMed]
|
|
[2]
|
VanGuilder, H.D. and Freeman, W.M. (2011) The Hippocampal Neuroproteome with Aging and Cognitive Decline: Past Progress and Future Directions. Frontiers in Aging Neuroscience, 3, Article 8. [Google Scholar] [CrossRef] [PubMed]
|
|
[3]
|
Jia, L., Du, Y., Chu, L., Zhang, Z., Li, F., Lyu, D., et al. (2020) Prevalence, Risk Factors, and Management of Dementia and Mild Cognitive Impairment in Adults Aged 60 Years or Older in China: A Cross-Sectional Study. The Lancet Public Health, 5, e661-e671. [Google Scholar] [CrossRef] [PubMed]
|
|
[4]
|
Langa, K.M. and Levine, D.A. (2014) The Diagnosis and Management of Mild Cognitive Impairment: A Clinical Review. JAMA, 312, 2551-2561. [Google Scholar] [CrossRef] [PubMed]
|
|
[5]
|
Park, D.C. and Reuter-Lorenz, P. (2009) The Adaptive Brain: Aging and Neurocognitive Scaffolding. Annual Review of Psychology, 60, 173-196. [Google Scholar] [CrossRef] [PubMed]
|
|
[6]
|
Satoh, A., Imai, S. and Guarente, L. (2017) The Brain, Sirtuins, and Ageing. Nature Reviews Neuroscience, 18, 362-374. [Google Scholar] [CrossRef] [PubMed]
|
|
[7]
|
Cahill, S. (2019) Who’s Global Action Plan on the Public Health Response to Dementia: Some Challenges and Opportunities. Aging & Mental Health, 24, 197-199. [Google Scholar] [CrossRef] [PubMed]
|
|
[8]
|
Shwe, T., Pratchayasakul, W., Chattipakorn, N. and Chattipakorn, S.C. (2018) Role of D-Galactose-Induced Brain Aging and Its Potential Used for Therapeutic Interventions. Experimental Gerontology, 101, 13-36. [Google Scholar] [CrossRef] [PubMed]
|
|
[9]
|
Dang, M., Sang, F., Long, S. and Chen, Y. (2023) The Aging Patterns of Brain Structure, Function, and Energy Metabolism. In: Zhang, Z., Ed., Cognitive Aging and Brain Health, Springer Nature, 85-97. [Google Scholar] [CrossRef] [PubMed]
|
|
[10]
|
Juan, S.M.A. and Adlard, P.A. (2019) Ageing and Cognition. In: Harris, J. and Korolchuk, V., Eds., Biochemistry and Cell Biology of Ageing: Part II Clinical Science, Springer, 107-122. [Google Scholar] [CrossRef] [PubMed]
|
|
[11]
|
Cohen, R.A., Marsiske, M.M. and Smith, G.E. (2019) Neuropsychology of Aging. Handbook of Clinical Neurology, 167, 149-180. [Google Scholar] [CrossRef] [PubMed]
|
|
[12]
|
Alchalabi, T. and Prather, C. (2021) Brain Health. Clinics in Geriatric Medicine, 37, 593-604. [Google Scholar] [CrossRef] [PubMed]
|
|
[13]
|
Darowski, E.S., Helder, E., Zacks, R.T., Hasher, L. and Hambrick, D.Z. (2008) Age-Related Differences in Cognition: The Role of Distraction Control. Neuropsychology, 22, 638-644. [Google Scholar] [CrossRef] [PubMed]
|
|
[14]
|
Harada, C.N., Natelson Love, M.C. and Triebel, K.L. (2013) Normal Cognitive Aging. Clinics in Geriatric Medicine, 29, 737-752. [Google Scholar] [CrossRef] [PubMed]
|
|
[15]
|
Working Party of the International Psychogeriatric Association in Collaboration with the World Health Organization (1994) Aging-Associated Cognitive Decline. International Psychogeriatrics, 6, 63-68. [Google Scholar] [CrossRef] [PubMed]
|
|
[16]
|
Cai, X., Xu, H. and Lu, Y. (2011) C-Peptide and Diabetic Encephalopathy. Chinese Medical Sciences Journal, 26, 119-125. [Google Scholar] [CrossRef] [PubMed]
|
|
[17]
|
Jia, X., Wang, Z., Huang, F., Su, C., Du, W., Jiang, H., et al. (2021) A Comparison of the Mini-Mental State Examination (MMSE) with the Montreal Cognitive Assessment (MoCA) for Mild Cognitive Impairment Screening in Chinese Middle-Aged and Older Population: A Cross-Sectional Study. BMC Psychiatry, 21, Article No. 485. [Google Scholar] [CrossRef] [PubMed]
|
|
[18]
|
Hawkins, M.A.W., Gathright, E.C., Gunstad, J., Dolansky, M.A., Redle, J.D., Josephson, R., et al. (2014) The MoCA and MMSE as Screeners for Cognitive Impairment in a Heart Failure Population: A Study with Comprehensive Neuropsychological Testing. Heart & Lung, 43, 462-468. [Google Scholar] [CrossRef] [PubMed]
|
|
[19]
|
Lim, M.Y.L. and Loo, J.H.Y. (2018) Screening an Elderly Hearing Impaired Population for Mild Cognitive Impairment Using Mini‐Mental State Examination (MMSE) and Montreal Cognitive Assessment (MoCA). International Journal of Geriatric Psychiatry, 33, 972-979. [Google Scholar] [CrossRef] [PubMed]
|
|
[20]
|
Breton, A., Casey, D. and Arnaoutoglou, N.A. (2018) Cognitive Tests for the Detection of Mild Cognitive Impairment (MCI), the Prodromal Stage of Dementia: Meta‐Analysis of Diagnostic Accuracy Studies. International Journal of Geriatric Psychiatry, 34, 233-242. [Google Scholar] [CrossRef] [PubMed]
|
|
[21]
|
Pinto, T.C.C., Machado, L., Bulgacov, T.M., Rodrigues-Júnior, A.L., Costa, M.L.G., Ximenes, R.C.C., et al. (2019) Is the Montreal Cognitive Assessment (MoCA) Screening Superior to the Mini-Mental State Examination (MMSE) in the Detection of Mild Cognitive Impairment (MCI) and Alzheimer’s Disease (AD) in the Elderly? International Psychogeriatrics, 31, 491-504. [Google Scholar] [CrossRef] [PubMed]
|
|
[22]
|
Ciesielska, N., Sokołowski, R., Mazur, E., Podhorecka, M., Polak-Szabela, A. and Kędziora-Kornatowska, K. (2016) Is the Montreal Cognitive Assessment (MoCA) Test Better Suited than the Mini-Mental State Examination (MMSE) in Mild Cognitive Impairment (MCI) Detection among People Aged over 60? Meta-Analysis. Psychiatria Polska, 50, 1039-1052. [Google Scholar] [CrossRef] [PubMed]
|
|
[23]
|
Julayanont, P. and Nasreddine, Z.S. (2017) Montreal Cognitive Assessment (MoCA): Concept and Clinical Review. In: Julayanont, P. and Nasreddine, Z.S., Eds., Montreal Cognitive Assessment (MoCA): Concept and Clinical Review, Springer International Publishing, 139-195. [Google Scholar] [CrossRef]
|
|
[24]
|
Harman, D. (1956) Aging: A Theory Based on Free Radical and Radiation Chemistry. Journal of Gerontology, 11, 298-300. [Google Scholar] [CrossRef] [PubMed]
|
|
[25]
|
Merry, T.L. and Ristow, M. (2016) Mitohormesis in Exercise Training. Free Radical Biology and Medicine, 98, 123-130. [Google Scholar] [CrossRef] [PubMed]
|
|
[26]
|
Phaniendra, A., Jestadi, D.B. and Periyasamy, L. (2014) Free Radicals: Properties, Sources, Targets, and Their Implication in Various Diseases. Indian Journal of Clinical Biochemistry, 30, 11-26. [Google Scholar] [CrossRef] [PubMed]
|
|
[27]
|
Araki, E. and Nishikawa, T. (2010) Oxidative Stress: A Cause and Therapeutic Target of Diabetic Complications. Journal of Diabetes Investigation, 1, 90-96. [Google Scholar] [CrossRef] [PubMed]
|
|
[28]
|
Zhao, Y. and Zhao, B. (2013) Oxidative Stress and the Pathogenesis of Alzheimer’s Disease. Oxidative Medicine and Cellular Longevity, 2013, Article ID: 316523. [Google Scholar] [CrossRef] [PubMed]
|
|
[29]
|
Gandhi, S. and Abramov, A.Y. (2012) Mechanism of Oxidative Stress in Neurodegeneration. Oxidative Medicine and Cellular Longevity, 2012, Article ID: 428010. [Google Scholar] [CrossRef] [PubMed]
|
|
[30]
|
Radi, E., Formichi, P., Battisti, C. and Federico, A. (2014) Apoptosis and Oxidative Stress in Neurodegenerative Diseases. Journal of Alzheimer’s Disease, 42, S125-S152. [Google Scholar] [CrossRef] [PubMed]
|
|
[31]
|
Indo, H.P., Yen, H., Nakanishi, I., Matsumoto, K., Tamura, M., Nagano, Y., et al. (2015) A Mitochondrial Superoxide Theory for Oxidative Stress Diseases and Aging. Journal of Clinical Biochemistry and Nutrition, 56, 1-7. [Google Scholar] [CrossRef] [PubMed]
|
|
[32]
|
Barja, G. (2014) The Mitochondrial Free Radical Theory of Aging. Progress in Molecular Biology and Translational Science, 127, 1-27. [Google Scholar] [CrossRef] [PubMed]
|
|
[33]
|
López-Lluch, G., Santos-Ocaña, C., Sánchez-Alcázar, J.A., Fernández-Ayala, D.J.M., Asencio-Salcedo, C., Rodríguez-Aguilera, J.C., et al. (2015) Mitochondrial Responsibility in Ageing Process: Innocent, Suspect or Guilty. Biogerontology, 16, 599-620. [Google Scholar] [CrossRef] [PubMed]
|
|
[34]
|
Bouzid, M.A., Filaire, E., McCall, A. and Fabre, C. (2015) Radical Oxygen Species, Exercise and Aging: An Update. Sports Medicine, 45, 1245-1261. [Google Scholar] [CrossRef] [PubMed]
|
|
[35]
|
Kwon, M., Lee, K., Lee, H., Kim, J. and Kim, T. (2015) SOD3 Variant, R213G, Altered SOD3 Function, Leading to ROS-Mediated Inflammation and Damage in Multiple Organs of Premature Aging Mice. Antioxidants & Redox Signaling, 23, 985-999. [Google Scholar] [CrossRef] [PubMed]
|
|
[36]
|
Bjelakovic, G., Nikolova, D. and Gluud, C. (2013) Antioxidant Supplements and Mortality. Current Opinion in Clinical Nutrition and Metabolic Care, 17, 40-44. [Google Scholar] [CrossRef] [PubMed]
|
|
[37]
|
Sierra, F. and Kohanski, R. (2017) Geroscience and the Trans-NIH Geroscience Interest Group, GSIG. GeroScience, 39, 1-5. [Google Scholar] [CrossRef] [PubMed]
|
|
[38]
|
Franceschi, C., Bonafè, M., Valensin, S., Olivieri, F., De Luca, M., Ottaviani, E., et al. (2000) Inflamm‐Aging: An Evolutionary Perspective on Immunosenescence. Annals of the New York Academy of Sciences, 908, 244-254. [Google Scholar] [CrossRef] [PubMed]
|
|
[39]
|
Fulop, T., Witkowski, J.M., Olivieri, F. and Larbi, A. (2018) The Integration of Inflammaging in Age-Related Diseases. Seminars in Immunology, 40, 17-35. [Google Scholar] [CrossRef] [PubMed]
|
|
[40]
|
Barbé-Tuana, F., Funchal, G., Schmitz, C.R.R., Maurmann, R.M. and Bauer, M.E. (2020) The Interplay between Immunosenescence and Age-Related Diseases. Seminars in Immunopathology, 42, 545-557. [Google Scholar] [CrossRef] [PubMed]
|
|
[41]
|
Mészáros, Á., Molnár, K., Nógrádi, B., Hernádi, Z., Nyúl-Tóth, Á., Wilhelm, I., et al. (2020) Neurovascular Inflammaging in Health and Disease. Cells, 9, Article 1614. [Google Scholar] [CrossRef] [PubMed]
|
|
[42]
|
Trollor, J.N., Smith, E., Baune, B.T., Kochan, N.A., Campbell, L., Samaras, K., et al. (2010) Systemic Inflammation Is Associated with MCI and Its Subtypes: The Sydney Memory and Aging Study. Dementia and Geriatric Cognitive Disorders, 30, 569-578. [Google Scholar] [CrossRef] [PubMed]
|
|
[43]
|
Yaffe, K., Lindquist, K., Penninx, B.W., Simonsick, E.M., Pahor, M., Kritchevsky, S., et al. (2003) Inflammatory Markers and Cognition in Well-Functioning African-American and White Elders. Neurology, 61, 76-80. [Google Scholar] [CrossRef] [PubMed]
|
|
[44]
|
Varatharaj, A. and Galea, I. (2017) The Blood-Brain Barrier in Systemic Inflammation. Brain, Behavior, and Immunity, 60, 1-12. [Google Scholar] [CrossRef] [PubMed]
|
|
[45]
|
Frank-Cannon, T.C., Alto, L.T., McAlpine, F.E. and Tansey, M.G. (2009) Does Neuroinflammation Fan the Flame in Neurodegenerative Diseases? Molecular Neurodegeneration, 4, Article No. 47. [Google Scholar] [CrossRef] [PubMed]
|
|
[46]
|
Reichenberg, A., Yirmiya, R., Schuld, A., Kraus, T., Haack, M., Morag, A., et al. (2001) Cytokine-Associated Emotional and Cognitive Disturbances in Humans. Archives of General Psychiatry, 58, 445-452. [Google Scholar] [CrossRef] [PubMed]
|
|
[47]
|
Habbas, S., Santello, M., Becker, D., Stubbe, H., Zappia, G., Liaudet, N., et al. (2015) Neuroinflammatory TNFα Impairs Memory via Astrocyte Signaling. Cell, 163, 1730-1741. [Google Scholar] [CrossRef] [PubMed]
|
|
[48]
|
Sun, J., Zhang, S., Zhang, X., Zhang, X., Dong, H. and Qian, Y. (2015) IL-17A Is Implicated in Lipopolysaccharide-Induced Neuroinflammation and Cognitive Impairment in Aged Rats via Microglial Activation. Journal of Neuroinflammation, 12, Article No. 165. [Google Scholar] [CrossRef] [PubMed]
|
|
[49]
|
Moon, M., Kim, H.G., Choi, J.G., Oh, H., Lee, P.K., Ha, S.K., et al. (2014) 6-Shogaol, an Active Constituent of Ginger, Attenuates Neuroinflammation and Cognitive Deficits in Animal Models of Dementia. Biochemical and Biophysical Research Communications, 449, 8-13. [Google Scholar] [CrossRef] [PubMed]
|
|
[50]
|
Magee, J.C. and Grienberger, C. (2020) Synaptic Plasticity Forms and Functions. Annual Review of Neuroscience, 43, 95-117. [Google Scholar] [CrossRef] [PubMed]
|
|
[51]
|
Burke, S.N. and Barnes, C.A. (2006) Neural Plasticity in the Ageing Brain. Nature Reviews Neuroscience, 7, 30-40. [Google Scholar] [CrossRef] [PubMed]
|
|
[52]
|
Morrison, J.H. and Baxter, M.G. (2012) The Ageing Cortical Synapse: Hallmarks and Implications for Cognitive Decline. Nature Reviews Neuroscience, 13, 240-250. [Google Scholar] [CrossRef] [PubMed]
|
|
[53]
|
Barnes, C. (2000) LTP Induction Threshold Change in Old Rats at Theperforant Path-Granule Cell Synapse. Neurobiology of Aging, 21, 613-620. [Google Scholar] [CrossRef] [PubMed]
|
|
[54]
|
Barnes, C.A., Rao, G. and Orr, G. (2000) Age‐Related Decrease in the Schaffer Collateral‐Evoked EPSP in Awake, Freely, Behaving Rats. Neural Plasticity, 7, 167-178. [Google Scholar] [CrossRef] [PubMed]
|
|
[55]
|
Dieguez, D. and Barea‐Rodriguez, E.J. (2004) Aging Impairs the Late Phase of Long‐Term Potentiation at the Medial Perforant Path‐CA3 Synapse in Awake Rats. Synapse, 52, 53-61. [Google Scholar] [CrossRef] [PubMed]
|
|
[56]
|
Norris, C.M., Korol, D.L. and Foster, T.C. (1996) Increased Susceptibility to Induction of Long-Term Depression and Long-Term Potentiation Reversal during Aging. The Journal of Neuroscience, 16, 5382-5392. [Google Scholar] [CrossRef] [PubMed]
|
|
[57]
|
O’Riordan, K.J., Hu, N. and Rowan, M.J. (2018) Aß Facilitates LTD at Schaffer Collateral Synapses Preferentially in the Left Hippocampus. Cell Reports, 22, 2053-2065. [Google Scholar] [CrossRef] [PubMed]
|
|
[58]
|
Jurado, S. (2018) AMPA Receptor Trafficking in Natural and Pathological Aging. Frontiers in Molecular Neuroscience, 10, Article 446. [Google Scholar] [CrossRef] [PubMed]
|
|
[59]
|
Mishra, S., Raval, M., Kachhawaha, A.S., Tiwari, B.S. and Tiwari, A.K. (2023) Aging: Epigenetic Modifications. Progress in Molecular Biology and Translational Science, 197, 171-209. [Google Scholar] [CrossRef] [PubMed]
|
|
[60]
|
Adhikari, S. and Curtis, P.D. (2016) DNA Methyltransferases and Epigenetic Regulation in Bacteria. FEMS Microbiology Reviews, 40, 575-591. [Google Scholar] [CrossRef] [PubMed]
|
|
[61]
|
Sailani, M.R., Halling, J.F., Møller, H.D., Lee, H., Plomgaard, P., Pilegaard, H., et al. (2019) Lifelong Physical Activity Is Associated with Promoter Hypomethylation of Genes Involved in Metabolism, Myogenesis, Contractile Properties and Oxidative Stress Resistance in Aged Human Skeletal Muscle. Scientific Reports, 9, Article No. 3272. [Google Scholar] [CrossRef] [PubMed]
|
|
[62]
|
Zhang, Z., Lu, R., Wang, P., Yu, Y., Chen, D., Gao, L., et al. (2018) Structural Basis for DNMT3A-Mediated de novo DNA Methylation. Nature, 554, 387-391. [Google Scholar] [CrossRef] [PubMed]
|
|
[63]
|
Yagi, M., Kabata, M., Tanaka, A., Ukai, T., Ohta, S., Nakabayashi, K., et al. (2020) Identification of Distinct Loci for de novo DNA Methylation by DNMT3A and DNMT3B during Mammalian Development. Nature Communications, 11, Article No. 3199. [Google Scholar] [CrossRef] [PubMed]
|
|
[64]
|
Kouzarides, T. (2007) Chromatin Modifications and Their Function. Cell, 128, 693-705. [Google Scholar] [CrossRef] [PubMed]
|
|
[65]
|
Sidler, C., Kovalchuk, O. and Kovalchuk, I. (2017) Epigenetic Regulation of Cellular Senescence and Aging. Frontiers in Genetics, 8, Article 138. [Google Scholar] [CrossRef] [PubMed]
|
|
[66]
|
ElSharawy, A., Keller, A., Flachsbart, F., Wendschlag, A., Jacobs, G., Kefer, N., et al. (2012) Genome‐Wide miRNA Signatures of Human Longevity. Aging Cell, 11, 607-616. [Google Scholar] [CrossRef] [PubMed]
|
|
[67]
|
Boehm, M. and Slack, F. (2005) A Developmental Timing MicroRNA and Its Target Regulate Life Span in C. elegans. Science, 310, 1954-1957. [Google Scholar] [CrossRef] [PubMed]
|
|
[68]
|
Livingston, G., Huntley, J., Sommerlad, A., Ames, D., Ballard, C., Banerjee, S., et al. (2020) Dementia Prevention, Intervention, and Care: 2020 Report of the Lancet Commission. The Lancet, 396, 413-446. [Google Scholar] [CrossRef] [PubMed]
|
|
[69]
|
Yu, J., Xu, W., Tan, C., Andrieu, S., Suckling, J., Evangelou, E., et al. (2020) Evidence-Based Prevention of Alzheimer’s Disease: Systematic Review and Meta-Analysis of 243 Observational Prospective Studies and 153 Randomised Controlled Trials. Journal of Neurology, Neurosurgery & Psychiatry, 91, 1201-1209. [Google Scholar] [CrossRef] [PubMed]
|
|
[70]
|
Luo, J., Thomassen, J.Q., Bellenguez, C., Grenier-Boley, B., de Rojas, I., Castillo, A., et al. (2023) Genetic Associations between Modifiable Risk Factors and Alzheimer Disease. JAMA Network Open, 6, e2313734. [Google Scholar] [CrossRef] [PubMed]
|
|
[71]
|
Korabecny, J., Spilovska, K., Mezeiova, E., Benek, O., Juza, R., Kaping, D., et al. (2019) A Systematic Review on Donepezil-Based Derivatives as Potential Cholinesterase Inhibitors for Alzheimer’s Disease. Current Medicinal Chemistry, 26, 5625-5648. [Google Scholar] [CrossRef] [PubMed]
|
|
[72]
|
Uddin, M.S., Al Mamun, A., Kabir, M.T., Ashraf, G.M., Bin-Jumah, M.N. and Abdel-Daim, M.M. (2020) Multi-Target Drug Candidates for Multifactorial Alzheimer’s Disease: Ache and NMDAR as Molecular Targets. Molecular Neurobiology, 58, 281-303. [Google Scholar] [CrossRef] [PubMed]
|
|
[73]
|
Remya, C., Dileep, K.V., Koti Reddy, E., Mantosh, K., Lakshmi, K., Sarah Jacob, R., et al. (2021) Neuroprotective Derivatives of Tacrine That Target NMDA Receptor and Acetyl Cholinesterase—Design, Synthesis and Biological Evaluation. Computational and Structural Biotechnology Journal, 19, 4517-4537. [Google Scholar] [CrossRef] [PubMed]
|
|
[74]
|
Saeedi, M. and Mehranfar, F. (2022) Challenges and Approaches of Drugs Such as Memantine, Donepezil, Rivastigmine, and Aducanumab in the Treatment, Control and Management of Alzheimer’s Disease. Recent Patents on Biotechnology, 16, 102-121. [Google Scholar] [CrossRef] [PubMed]
|
|
[75]
|
Colangeli, S., Boccia, M., Verde, P., Guariglia, P., Bianchini, F. and Piccardi, L. (2016) Cognitive Reserve in Healthy Aging and Alzheimer’s Disease: A Meta-Analysis of fMRI Studies. American Journal of Alzheimer’s Disease & Other Dementias®, 31, 443-449. [Google Scholar] [CrossRef] [PubMed]
|
|
[76]
|
Erickson, K.I., Voss, M.W., Prakash, R.S., Basak, C., Szabo, A., Chaddock, L., et al. (2011) Exercise Training Increases Size of Hippocampus and Improves Memory. Proceedings of the National Academy of Sciences, 108, 3017-3022. [Google Scholar] [CrossRef] [PubMed]
|
|
[77]
|
Kujach, S., Olek, R.A., Byun, K., Suwabe, K., Sitek, E.J., Ziemann, E., et al. (2020) Acute Sprint Interval Exercise Increases Both Cognitive Functions and Peripheral Neurotrophic Factors in Humans: The Possible Involvement of Lactate. Frontiers in Neuroscience, 13, Article 1455. [Google Scholar] [CrossRef] [PubMed]
|