[1]
|
Koivisto, V.A., Stevens, I.K., Mattock, M., Ebeling, P., Muggeo, M., Stephenson, J., et al. (1996) Cardiovascular Disease and Its Risk Factors in IDDM in Europe. Diabetes Care, 19, 689-697. https://doi.org/10.2337/diacare.19.7.689
|
[2]
|
Soedamah-Muthu, S.S., Fuller, J.H., Mulnier, H.E., Raleigh, V.S., Lawrenson, R.A. and Colhoun, H.M. (2006) High Risk of Cardiovascular Disease in Patients with Type 1 Diabetes in the UK: A Cohort Study Using the General Practice Research Database. Diabetes Care, 29, 798-804. https://doi.org/10.2337/diacare.29.04.06.dc05-1433
|
[3]
|
Rawshani, A., Sattar, N., Franzén, S., Rawshani, A., Hattersley, A.T., Svensson, A., et al. (2018) Excess Mortality and Cardiovascular Disease in Young Adults with Type 1 Diabetes in Relation to Age at Onset: A Nationwide, Register-Based Cohort Study. The Lancet, 392, 477-486. https://doi.org/10.1016/s0140-6736(18)31506-x
|
[4]
|
Gow, M.L., Varley, B.J., Nasir, R.F., Skilton, M.R. and Craig, M.E. (2022) Aortic Intima Media Thickness in Children and Adolescents with Type 1 Diabetes: A Systematic Review. Pediatric Diabetes, 23, 489-498. https://doi.org/10.1111/pedi.13322
|
[5]
|
Cao, L., Hou, M., Zhou, W., Sun, L., Shen, J., Chen, Y., et al. (2021) Decreased Flow-Mediated Dilatation in Children with Type 1 Diabetes: A Systematic Review and Meta-Analysis. Angiology, 72, 908-915. https://doi.org/10.1177/00033197211010096
|
[6]
|
Helleputte, S., Van Bortel, L., Verbeke, F., Opt Roodt, J., Calders, P., Lapauw, B., et al. (2022) Arterial Stiffness in Patients with Type 1 Diabetes and Its Comparison to Cardiovascular Risk Evaluation Tools. Cardiovascular Diabetology, 21, Article No. 97. https://doi.org/10.1186/s12933-022-01537-1
|
[7]
|
Miller, R.G., Costacou, T. and Orchard, T.J. (2018) Risk Factor Modeling for Cardiovascular Disease in Type 1 Diabetes in the Pittsburgh Epidemiology of Diabetes Complications (EDC) Study: A Comparison with the Diabetes Control and Complications Trial/Epidemiology of Diabetes Interventions and Complications Study (DCCT/EDIC). Diabetes, 68, 409-419. https://doi.org/10.2337/db18-0515
|
[8]
|
Lachin, J.M. (2016) Risk Factors for Cardiovascular Disease in Type 1 Diabetes. Diabetes, 65, 1370-1379. https://doi.org/10.2337/db15-1517
|
[9]
|
Orchard, T.J., Forrest, K.Y., Kuller, L.H. and Becker, D.J. (2001) Lipid and Blood Pressure Treatment Goals for Type 1 Diabetes: 10-Year Incidence Data from the Pittsburgh Epidemiology of Diabetes Complications Study. Diabetes Care, 24, 1053-1059. https://doi.org/10.2337/diacare.24.6.1053
|
[10]
|
Vistisen, D., Andersen, G.S., Hansen, C.S., Hulman, A., Henriksen, J.E., Bech-Nielsen, H., et al. (2016) Prediction of First Cardiovascular Disease Event in Type 1 Diabetes Mellitus: The Steno Type 1 Risk Engine. Circulation, 133, 1058-1066. https://doi.org/10.1161/circulationaha.115.018844
|
[11]
|
Cederholm, J., Eeg-Olofsson, K., Eliasson, B., Zethelius, B. and Gudbjörnsdottir, S. (2011) A New Model for 5-Year Risk of Cardiovascular Disease in Type 1 Diabetes; From the Swedish National Diabetes Register (NDR). Diabetic Medicine, 28, 1213-1220. https://doi.org/10.1111/j.1464-5491.2011.03342.x
|
[12]
|
Gubitosi-Klug, R., Gao, X., Pop-Busui, R., de Boer, I.H., White, N., Aiello, L.P., et al. (2021) Associations of Microvascular Complications with the Risk of Cardiovascular Disease in Type 1 Diabetes. Diabetes Care, 44, 1499-1505. https://doi.org/10.2337/dc20-3104
|
[13]
|
Orchard, T.J. and Costacou, T. (2016) Cardiovascular Complications of Type 1 Diabetes: Update on the Renal Link. Acta Diabetologica, 54, 325-334. https://doi.org/10.1007/s00592-016-0949-7
|
[14]
|
Sun, H., Saeedi, P., Karuranga, S., Pinkepank, M., Ogurtsova, K., Duncan, B.B., et al. (2022) IDF Diabetes Atlas: Global, Regional and Country-Level Diabetes Prevalence Estimates for 2021 and Projections for 2045. Diabetes Research and Clinical Practice, 183, Article ID: 109119. https://doi.org/10.1016/j.diabres.2021.109119
|
[15]
|
Kodama, S., Fujihara, K., Horikawa, C., Sato, T., Iwanaga, M., Yamada, T., et al. (2020) Diabetes Mellitus and Risk of New‐Onset and Recurrent Heart Failure: A Systematic Review and Meta‐Analysis. ESC Heart Failure, 7, 2146-2174. https://doi.org/10.1002/ehf2.12782
|
[16]
|
Juhaeri, J., Gao, S. and Dai, W.S. (2009) Incidence Rates of Heart Failure, Stroke, and Acute Myocardial Infarction among Type 2 Diabetic Patients Using Insulin Glargine and Other Insulin. Pharmacoepidemiology and Drug Safety, 18, 497-503. https://doi.org/10.1002/pds.1741
|
[17]
|
Preiss, D., Zetterstrand, S., McMurray, J.J.V., Östergren, J., Michelson, E.L., Granger, C.B., et al. (2009) Predictors of Development of Diabetes in Patients with Chronic Heart Failure in the Candesartan in Heart Failure Assessment of Reduction in Mortality and Morbidity (CHARM) Program. Diabetes Care, 32, 915-920. https://doi.org/10.2337/dc08-1709
|
[18]
|
Geiss, L.S., Wang, J., Cheng, Y.J., Thompson, T.J., Barker, L., Li, Y., et al. (2014) Prevalence and Incidence Trends for Diagnosed Diabetes among Adults Aged 20 to 79 Years, United States, 1980-2012. JAMA, 312, 1218-1226. https://doi.org/10.1001/jama.2014.11494
|
[19]
|
MacDonald, M.R., Petrie, M.C., Varyani, F., Ostergren, J., Michelson, E.L., Young, J.B., et al. (2008) Impact of Diabetes on Outcomes in Patients with Low and Preserved Ejection Fraction Heart Failure: An Analysis of the Candesartan in Heart Failure: Assessment of Reduction in Mortality and Morbidity (CHARM) Programme. European Heart Journal, 29, 1377-1385. https://doi.org/10.1093/eurheartj/ehn153
|
[20]
|
Shindler, D.M., Kostis, J.B., Yusuf, S., Quinones, M.A., Pitt, B., Stewart, D., et al. (1996) Diabetes Mellitus, a Predictor of Morbidity and Mortality in the Studies of Left Ventricular Dysfunction (SOLVD) Trials and Registry. The American Journal of Cardiology, 77, 1017-1020. https://doi.org/10.1016/s0002-9149(97)89163-1
|
[21]
|
Bertoni, A.G., Hundley, W.G., Massing, M.W., Bonds, D.E., Burke, G.L. and Goff, D.C. (2004) Heart Failure Prevalence, Incidence, and Mortality in the Elderly with Diabetes. Diabetes Care, 27, 699-703. https://doi.org/10.2337/diacare.27.3.699
|
[22]
|
The Emerging Risk Factors Collaboration, (2010) Diabetes Mellitus, Fasting Blood Glucose Concentration, and Risk of Vascular Disease: A Collaborative Meta-Analysis of 102 Prospective Studies. The Lancet, 375, 2215-2222. https://doi.org/10.1016/s0140-6736(10)60484-9
|
[23]
|
Cui, Y., Hao, K., Takahashi, J., Miyata, S., Shindo, T., Nishimiya, K., et al. (2017) Age-Specific Trends in the Incidence and In-Hospital Mortality of Acute Myocardial Infarction over 30 Years in Japan—Report from the Miyagi AMI Registry Study. Circulation Journal, 81, 520-528. https://doi.org/10.1253/circj.cj-16-0799
|
[24]
|
Harding, J.L., Pavkov, M.E., Magliano, D.J., Shaw, J.E. and Gregg, E.W. (2018) Global Trends in Diabetes Complications: A Review of Current Evidence. Diabetologia, 62, 3-16. https://doi.org/10.1007/s00125-018-4711-2
|
[25]
|
Gregg, E.W., Li, Y., Wang, J., Rios Burrows, N., Ali, M.K., Rolka, D., et al. (2014) Changes in Diabetes-Related Complications in the United States, 1990-2010. New England Journal of Medicine, 370, 1514-1523. https://doi.org/10.1056/nejmoa1310799
|
[26]
|
Khunti, K., Charbonnel, B., Chen, H., Cherney, D.Z., Cooper, A., Fenici, P., et al. (2021) Prevalence and Progression of Chronic Kidney Disease among Patients with Type 2 Diabetes: Insights from the Discover Study. Diabetes, Obesity and Metabolism, 23, 1956-1960. https://doi.org/10.1111/dom.14401
|
[27]
|
Chi, Z.S., Lee, E.T., Lu, M., Keen, H. and Bennett, P.H. (2001) Vascular Disease Prevalence in Diabetic Patients in China: Standardised Comparison with the 14 Centres in the WHO Multinational Study of Vascular Disease in Diabetes. Diabetologia, 44, S82-S86. https://doi.org/10.1007/pl00002944
|
[28]
|
Lee, E.T., Keen, H., Bennett, P.H., Fuller, J.H. and Lu, M. (2001) Follow-up of the WHO Multinational Study of Vascular Disease in Diabetes: General Description and Morbidity. Diabetologia, 44, S3-S13. https://doi.org/10.1007/pl00002936
|
[29]
|
Lee, E.T., Lu, M., Bennett, P.H. and Keen, H. (2001) Vascular Disease in Younger-Onset Diabetes: Comparison of European, Asian and American Indian Cohorts of the WHO Multinational Study of Vascular Disease in Diabetes. Diabetologia, 44, S78-S81. https://doi.org/10.1007/pl00002943
|
[30]
|
Parving, H., Lewis, J.B., Ravid, M., Remuzzi, G. and Hunsicker, L.G. (2006) Prevalence and Risk Factors for Microalbuminuria in a Referred Cohort of Type II Diabetic Patients: A Global Perspective. Kidney International, 69, 2057-2063. https://doi.org/10.1038/sj.ki.5000377
|
[31]
|
Premaratne, E., Verma, S., Ekinci, E.I., Theverkalam, G., Jerums, G. and MacIsaac, R.J. (2015) The Impact of Hyperfiltration on the Diabetic Kidney. Diabetes & Metabolism, 41, 5-17. https://doi.org/10.1016/j.diabet.2014.10.003
|
[32]
|
Jefferson, J.A., Shankland, S.J. and Pichler, R.H. (2008) Proteinuria in Diabetic Kidney Disease: A Mechanistic Viewpoint. Kidney International, 74, 22-36. https://doi.org/10.1038/ki.2008.128
|
[33]
|
Thomas, M.C., Brownlee, M., Susztak, K., Sharma, K., Jandeleit-Dahm, K.A.M., Zoungas, S., et al. (2015) Correction: Diabetic Kidney Disease. Nature Reviews Disease Primers, 1, Article No. 15018. https://doi.org/10.1038/nrdp.2015.70
|
[34]
|
Vallon, V. (2011) The Proximal Tubule in the Pathophysiology of the Diabetic Kidney. American Journal of Physiology-Regulatory, Integrative and Comparative Physiology, 300, R1009-R1022. https://doi.org/10.1152/ajpregu.00809.2010
|
[35]
|
Jankowski, J., Floege, J., Fliser, D., Böhm, M. and Marx, N. (2021) Cardiovascular Disease in Chronic Kidney Disease: Pathophysiological Insights and Therapeutic Options. Circulation, 143, 1157-1172. https://doi.org/10.1161/circulationaha.120.050686
|
[36]
|
Levey, A.S., de Jong, P.E., Coresh, J., El Nahas, M., Astor, B.C., Matsushita, K., et al. (2011) The Definition, Classification, and Prognosis of Chronic Kidney Disease: A KDIGO Controversies Conference Report. Kidney International, 80, 17-28. https://doi.org/10.1038/ki.2010.483
|
[37]
|
Kottgen, A., Russell, S.D., Loehr, L.R., Crainiceanu, C.M., Rosamond, W.D., Chang, P.P., et al. (2007) Reduced Kidney Function as a Risk Factor for Incident Heart Failure: The Atherosclerosis Risk in Communities (ARIC) Study. Journal of the American Society of Nephrology, 18, 1307-1315. https://doi.org/10.1681/asn.2006101159
|
[38]
|
Denker, M., Boyle, S., Anderson, A.H., Appel, L.J., Chen, J., Fink, J.C., et al. (2015) Chronic Renal Insufficiency Cohort Study (CRIC): Overview and Summary of Selected Findings. Clinical Journal of the American Society of Nephrology, 10, 2073-2083. https://doi.org/10.2215/cjn.04260415
|
[39]
|
Tanaka, K., Watanabe, T., Takeuchi, A., Ohashi, Y., Nitta, K., Akizawa, T., et al. (2017) Cardiovascular Events and Death in Japanese Patients with Chronic Kidney Disease. Kidney International, 91, 227-234. https://doi.org/10.1016/j.kint.2016.09.015
|
[40]
|
Ronco, C., Haapio, M., House, A.A., Anavekar, N. and Bellomo, R. (2008) Cardiorenal Syndrome. Journal of the American College of Cardiology, 52, 1527-1539. https://doi.org/10.1016/j.jacc.2008.07.051
|
[41]
|
Braam, B., Joles, J.A., Danishwar, A.H. and Gaillard, C.A. (2013) Cardiorenal Syndrome—Current Understanding and Future Perspectives. Nature Reviews Nephrology, 10, 48-55. https://doi.org/10.1038/nrneph.2013.250
|
[42]
|
Miller, R.G., Orchard, T.J. and Costacou, T. (2021) 30-year Cardiovascular Disease in Type 1 Diabetes: Risk and Risk Factors Differ by Long-Term Patterns of Glycemic Control. Diabetes Care, 45, 142-150. https://doi.org/10.2337/dc21-1381
|
[43]
|
Harjutsalo, V., Barlovic, D.P., Gordin, D., Forsblom, C., King, G. and Groop, P. (2021) Presence and Determinants of Cardiovascular Disease and Mortality in Individuals with Type 1 Diabetes of Long Duration: The Finndiane 50 Years of Diabetes Study. Diabetes Care, 44, 1885-1893. https://doi.org/10.2337/dc20-2816
|
[44]
|
Senior, P.A. (2021) Glucose as a Modifiable Cause of Atherosclerotic Cardiovascular Disease: Insights from Type 1 Diabetes and Transplantation. Atherosclerosis, 335, 16-22. https://doi.org/10.1016/j.atherosclerosis.2021.09.001
|
[45]
|
Brownlee, M. (2001) Biochemistry and Molecular Cell Biology of Diabetic Complications. Nature, 414, 813-820. https://doi.org/10.1038/414813a
|
[46]
|
Koike, N., Takamura, T. and Kaneko, S. (2007) Induction of Reactive Oxygen Species from Isolated Rat Glomeruli by Protein Kinase C Activation and TNF-α Stimulation, and Effects of a Phosphodiesterase Inhibitor. Life Sciences, 80, 1721-1728. https://doi.org/10.1016/j.lfs.2007.02.001
|
[47]
|
Vlassara, H., Fuh, H., Makita, Z., Krungkrai, S., Cerami, A. and Bucala, R. (1992) Exogenous Advanced Glycosylation End Products Induce Complex Vascular Dysfunction in Normal Animals: A Model for Diabetic and Aging Complications. Proceedings of the National Academy of Sciences, 89, 12043-12047. https://doi.org/10.1073/pnas.89.24.12043
|
[48]
|
Schleicher, E. and Friess, U. (2007) Oxidative Stress, AGE, and Atherosclerosis. Kidney International, 72, S17-S26. https://doi.org/10.1038/sj.ki.5002382
|
[49]
|
Forbes, J.M. and Cooper, M.E. (2013) Mechanisms of Diabetic Complications. Physiological Reviews, 93, 137-188. https://doi.org/10.1152/physrev.00045.2011
|
[50]
|
Jia, G., DeMarco, V.G. and Sowers, J.R. (2015) Insulin Resistance and Hyperinsulinaemia in Diabetic Cardiomyopathy. Nature Reviews Endocrinology, 12, 144-153. https://doi.org/10.1038/nrendo.2015.216
|
[51]
|
Yamamoto, Y., Kato, I., Doi, T., Yonekura, H., Ohashi, S., Takeuchi, M., et al. (2001) Development and Prevention of Advanced Diabetic Nephropathy in Rage-Overexpressing Mice. Journal of Clinical Investigation, 108, 261-268. https://doi.org/10.1172/jci11771
|
[52]
|
Hanssen, N.M.J., Scheijen, J.L.J.M., Jorsal, A., Parving, H., Tarnow, L., Rossing, P., et al. (2017) Higher Plasma Methylglyoxal Levels Are Associated with Incident Cardiovascular Disease in Individuals with Type 1 Diabetes: A 12-Year Follow-Up Study. Diabetes, 66, 2278-2283. https://doi.org/10.2337/db16-1578
|
[53]
|
van Eupen, M.G., Schram, M.T., Colhoun, H.M., Scheijen, J.L., Stehouwer, C.D. and Schalkwijk, C.G. (2013) Plasma Levels of Advanced Glycation Endproducts Are Associated with Type 1 Diabetes and Coronary Artery Calcification. Cardiovascular Diabetology, 12, Article No. 149. https://doi.org/10.1186/1475-2840-12-149
|
[54]
|
Khunti, K., Davies, M., Majeed, A., Thorsted, B.L., Wolden, M.L. and Paul, S.K. (2014) Hypoglycemia and Risk of Cardiovascular Disease and All-Cause Mortality in Insulin-Treated People with Type 1 and Type 2 Diabetes: A Cohort Study. Diabetes Care, 38, 316-322. https://doi.org/10.2337/dc14-0920
|
[55]
|
Giménez, M., López, J.J., Castell, C. and Conget, I. (2012) Hypoglycaemia and Cardiovascular Disease in Type 1 Diabetes. Results from the Catalan National Public Health Registry on Insulin Pump Therapy. Diabetes Research and Clinical Practice, 96, e23-e25. https://doi.org/10.1016/j.diabres.2012.01.014
|
[56]
|
Giménez, M., Gilabert, R., Monteagudo, J., Alonso, A., Casamitjana, R., Paré, C., et al. (2010) Repeated Episodes of Hypoglycemia as a Potential Aggravating Factor for Preclinical Atherosclerosis in Subjects with Type 1 Diabetes. Diabetes Care, 34, 198-203. https://doi.org/10.2337/dc10-1371
|
[57]
|
Gogitidze Joy, N., Hedrington, M.S., Briscoe, V.J., Tate, D.B., Ertl, A.C. and Davis, S.N. (2010) Effects of Acute Hypoglycemia on Inflammatory and Pro-Atherothrombotic Biomarkers in Individuals with Type 1 Diabetes and Healthy Individuals. Diabetes Care, 33, 1529-1535. https://doi.org/10.2337/dc09-0354
|
[58]
|
Joy, N.G., Tate, D.B., Younk, L.M. and Davis, S.N. (2015) Effects of Acute and Antecedent Hypoglycemia on Endothelial Function and Markers of Atherothrombotic Balance in Healthy Humans. Diabetes, 64, 2571-2580. https://doi.org/10.2337/db14-1729
|
[59]
|
Yu, J.H., Han, K., Park, S., Lee, D.Y., Nam, G.E., Seo, J.A., et al. (2019) Effects of Long-Term Glycemic Variability on Incident Cardiovascular Disease and Mortality in Subjects without Diabetes: A Nationwide Population-Based Study. Medicine, 98, e16317. https://doi.org/10.1097/md.0000000000016317
|
[60]
|
Benalia, M., Zeller, M., Mouhat, B., Guenancia, C., Yameogo, V., Greco, C., et al. (2019) Glycaemic Variability Is Associated with Severity of Coronary Artery Disease in Patients with Poorly Controlled Type 2 Diabetes and Acute Myocardial Infarction. Diabetes & Metabolism, 45, 446-452. https://doi.org/10.1016/j.diabet.2019.01.012
|
[61]
|
Monnier, L., Mas, E., Ginet, C., Michel, F., Villon, L., Cristol, J., et al. (2006) Activation of Oxidative Stress by Acute Glucose Fluctuations Compared with Sustained Chronic Hyperglycemia in Patients with Type 2 Diabetes. JAMA, 295, 1681-1687. https://doi.org/10.1001/jama.295.14.1681
|
[62]
|
Ceriello, A., Esposito, K., Piconi, L., Ihnat, M.A., Thorpe, J.E., Testa, R., et al. (2008) Oscillating Glucose Is More Deleterious to Endothelial Function and Oxidative Stress than Mean Glucose in Normal and Type 2 Diabetic Patients. Diabetes, 57, 1349-1354. https://doi.org/10.2337/db08-0063
|
[63]
|
Kapellen, T.M., Gausche, R., Dost, A., Wiegand, S., Flechtner-Mors, M., Keller, E., et al. (2014) Children and Adolescents with Type 1 Diabetes in Germany Are More Overweight than Healthy Controls: Results Comparing DPV Database and CrescNet Database. Journal of Pediatric Endocrinology and Metabolism, 27, 209-214. https://doi.org/10.1515/jpem-2013-0381
|
[64]
|
Maffeis, C., Birkebaek, N.H., Konstantinova, M., Schwandt, A., Vazeou, A., Casteels, K., et al. (2018) Prevalence of Underweight, Overweight, and Obesity in Children and Adolescents with Type 1 Diabetes: Data from the International SWEET Registry. Pediatric Diabetes, 19, 1211-1220. https://doi.org/10.1111/pedi.12730
|
[65]
|
Chillarón, J.J., Flores Le-Roux, J.A., Benaiges, D. and Pedro-Botet, J. (2014) Type 1 Diabetes, Metabolic Syndrome and Cardiovascular Risk. Metabolism, 63, 181-187. https://doi.org/10.1016/j.metabol.2013.10.002
|
[66]
|
Thorn, L.M., Forsblom, C., Wadén, J., Saraheimo, M., Tolonen, N., Hietala, K., et al. (2009) Metabolic Syndrome as a Risk Factor for Cardiovascular Disease, Mortality, and Progression of Diabetic Nephropathy in Type 1 Diabetes. Diabetes Care, 32, 950-952. https://doi.org/10.2337/dc08-2022
|
[67]
|
Reaven, G. (2002) Metabolic Syndrome: Pathophysiology and Implications for Management of Cardiovascular Disease. Circulation, 106, 286-288. https://doi.org/10.1161/01.cir.0000019884.36724.d9
|
[68]
|
Ganjali, S., Dallinga-Thie, G.M., Simental-Mendía, L.E., Banach, M., Pirro, M. and Sahebkar, A. (2017) HDL Functionality in Type 1 Diabetes. Atherosclerosis, 267, 99-109. https://doi.org/10.1016/j.atherosclerosis.2017.10.018
|
[69]
|
Vergès, B. (2020) Dyslipidemia in Type 1 Diabetes: A Masked Danger. Trends in Endocrinology & Metabolism, 31, 422-434. https://doi.org/10.1016/j.tem.2020.01.015
|
[70]
|
Bagdade, J.D., Knight‐Gibson, C., Simpson, N., Gerkin, R., Alaupovic, P. and Reardon, C. (2012) CETP‐Mediated Cholesteryl Ester Enrichment of APOB Subclasses in Type 1 Diabetes. European Journal of Clinical Investigation, 42, 709-716. https://doi.org/10.1111/j.1365-2362.2011.02636.x
|
[71]
|
Tsikas, D., Bollenbach, A., Hanff, E. and Kayacelebi, A.A. (2018) Asymmetric Dimethylarginine (ADMA), Symmetric Dimethylarginine (SDMA) and Homoarginine (hArg): The ADMA, SDMA and hArg Paradoxes. Cardiovascular Diabetology, 17, Article No. 1. https://doi.org/10.1186/s12933-017-0656-x
|
[72]
|
Manjunatha, S., Distelmaier, K., Dasari, S., Carter, R.E., Kudva, Y.C. and Nair, K.S. (2016) Functional and Proteomic Alterations of Plasma High Density Lipoproteins in Type 1 Diabetes Mellitus. Metabolism, 65, 1421-1431. https://doi.org/10.1016/j.metabol.2016.06.008
|
[73]
|
Perségol, L., Foissac, M., Lagrost, L., Athias, A., Gambert, P., Vergès, B., et al. (2007) HDL Particles from Type 1 Diabetic Patients Are Unable to Reverse the Inhibitory Effect of Oxidised LDL on Endothelium-Dependent Vasorelaxation. Diabetologia, 50, 2384-2387. https://doi.org/10.1007/s00125-007-0808-8
|
[74]
|
Denimal, D., Pais de Barros, J., Petit, J., Bouillet, B., Vergès, B. and Duvillard, L. (2015) Significant Abnormalities of the HDL Phosphosphingolipidome in Type 1 Diabetes Despite Normal HDL Cholesterol Concentration. Atherosclerosis, 241, 752-760. https://doi.org/10.1016/j.atherosclerosis.2015.06.040
|
[75]
|
Conrad, N., Verbeke, G., Molenberghs, G., Goetschalckx, L., Callender, T., Cambridge, G., et al. (2022) Autoimmune Diseases and Cardiovascular Risk: A Population-Based Study on 19 Autoimmune Diseases and 12 Cardiovascular Diseases in 22 Million Individuals in the UK. The Lancet, 400, 733-743. https://doi.org/10.1016/s0140-6736(22)01349-6
|
[76]
|
Gottumukkala, R.V.S.R.K., Lv, H., Cornivelli, L., Wagers, A.J., Kwong, R.Y., Bronson, R., et al. (2012) Myocardial Infarction Triggers Chronic Cardiac Autoimmunity in Type 1 Diabetes. Science Translational Medicine, 4, 138ra180. https://doi.org/10.1126/scitranslmed.3003551
|
[77]
|
Sousa, G.R., Pober, D., Galderisi, A., Lv, H., Yu, L., Pereira, A.C., et al. (2019) Glycemic Control, Cardiac Autoimmunity, and Long-Term Risk of Cardiovascular Disease in Type 1 Diabetes Mellitus. Circulation, 139, 730-743. https://doi.org/10.1161/circulationaha.118.036068
|
[78]
|
Sousa, G.R., Kosiborod, M., Bluemke, D.A. and Lipes, M.A. (2020) Cardiac Autoimmunity Is Associated with Subclinical Myocardial Dysfunction in Patients with Type 1 Diabetes Mellitus. Circulation, 141, 1107-1109. https://doi.org/10.1161/circulationaha.119.044539
|
[79]
|
Maack, C., Lehrke, M., Backs, J., Heinzel, F.R., Hulot, J., Marx, N., et al. (2018) Heart Failure and Diabetes: Metabolic Alterations and Therapeutic Interventions: A State-of-the-Art Review from the Translational Research Committee of the Heart Failure Association-European Society of Cardiology. European Heart Journal, 39, 4243-4254. https://doi.org/10.1093/eurheartj/ehy596
|
[80]
|
Kadowaki, T., Maegawa, H., Watada, H., Yabe, D., Node, K., Murohara, T., et al. (2022) Interconnection between Cardiovascular, Renal and Metabolic Disorders: A Narrative Review with a Focus on Japan. Diabetes, Obesity and Metabolism, 24, 2283-2296. https://doi.org/10.1111/dom.14829
|
[81]
|
Dei Cas, A., Khan, S.S., Butler, J., Mentz, R.J., Bonow, R.O., Avogaro, A., et al. (2015) Impact of Diabetes on Epidemiology, Treatment, and Outcomes of Patients with Heart Failure. JACC: Heart Failure, 3, 136-145. https://doi.org/10.1016/j.jchf.2014.08.004
|
[82]
|
Li, Y., Liu, B., Li, Y., Jing, X., Deng, S., Yan, Y., et al. (2019) Epicardial Fat Tissue in Patients with Diabetes Mellitus: A Systematic Review and Meta-Analysis. Cardiovascular Diabetology, 18, Article No. 3. https://doi.org/10.1186/s12933-019-0807-3
|
[83]
|
Iacobellis, G. (2013) Epicardial Adipose Tissue in Endocrine and Metabolic Diseases. Endocrine, 46, 8-15. https://doi.org/10.1007/s12020-013-0099-4
|
[84]
|
Iacobellis, G. and Bianco, A.C. (2011) Epicardial Adipose Tissue: Emerging Physiological, Pathophysiological and Clinical Features. Trends in Endocrinology & Metabolism, 22, 450-457. https://doi.org/10.1016/j.tem.2011.07.003
|
[85]
|
Christensen, R.H., von Scholten, B.J., Lehrskov, L.L., Rossing, P. and Jørgensen, P.G. (2020) Epicardial Adipose Tissue: An Emerging Biomarker of Cardiovascular Complications in Type 2 Diabetes? Therapeutic Advances in Endocrinology and Metabolism, 11. https://doi.org/10.1177/2042018820928824
|
[86]
|
Fadini, G.P., Boscaro, E., de Kreutzenberg, S., Agostini, C., Seeger, F., Dimmeler, S., et al. (2010) Time Course and Mechanisms of Circulating Progenitor Cell Reduction in the Natural History of Type 2 Diabetes. Diabetes Care, 33, 1097-1102. https://doi.org/10.2337/dc09-1999
|
[87]
|
Fadini, G.P., Albiero, M., Vigili de Kreutzenberg, S., Boscaro, E., Cappellari, R., Marescotti, M., et al. (2013) Diabetes Impairs Stem Cell and Proangiogenic Cell Mobilization in Humans. Diabetes Care, 36, 943-949. https://doi.org/10.2337/dc12-1084
|
[88]
|
Rigato, M., Bittante, C., Albiero, M., Avogaro, A. and Fadini, G.P. (2015) Circulating Progenitor Cell Count Predicts Microvascular Outcomes in Type 2 Diabetic Patients. The Journal of Clinical Endocrinology & Metabolism, 100, 2666-2672. https://doi.org/10.1210/jc.2015-1687
|
[89]
|
Rigato, M., Avogaro, A. and Fadini, G.P. (2016) Levels of Circulating Progenitor Cells, Cardiovascular Outcomes and Death: A Meta-Analysis of Prospective Observational Studies. Circulation Research, 118, 1930-1939. https://doi.org/10.1161/circresaha.116.308366
|
[90]
|
Poulsom, R., Forbes, S.J., Hodivala-Dilke, K., Ryan, E., Wyles, S., Navaratnarasah, S., et al. (2001) Bone Marrow Contributes to Renal Parenchymal Turnover and Regeneration. The Journal of Pathology, 195, 229-235. https://doi.org/10.1002/path.976
|
[91]
|
Berezin, A.E., Kremzer, A.A., Samura, T.A., Berezina, T.A. and Martovitskaya, Y.V. (2014) Serum Uric Acid Predicts Declining of Circulating Proangiogenic Mononuclear Progenitor Cells in Chronic Heart Failure Patients. Journal of Cardiovascular and Thoracic Research, 6, 153-162. https://doi.org/10.15171/jcvtr.2014.004
|
[92]
|
Fadini, G.P. (2013) A Reappraisal of the Role of Circulating (Progenitor) Cells in the Pathobiology of Diabetic Complications. Diabetologia, 57, 4-15. https://doi.org/10.1007/s00125-013-3087-6
|