[1]
|
Jebari-Benslaiman, S., Galicia-García, U., Larrea-Sebal, A., Olaetxea, J.R., Alloza, I., Vandenbroeck, K., et al. (2022) Pathophysiology of Atherosclerosis. International Journal of Molecular Sciences, 23, Article 3346. https://doi.org/10.3390/ijms23063346
|
[2]
|
Björkegren, J.L.M. and Lusis, A.J. (2022) Atherosclerosis: Recent Developments. Cell, 185, 1630-1645. https://doi.org/10.1016/j.cell.2022.04.004
|
[3]
|
Golforoush, P., Yellon, D.M. and Davidson, S.M. (2020) Mouse Models of Atherosclerosis and Their Suitability for the Study of Myocardial Infarction. Basic Research in Cardiology, 115, Article No. 73. https://doi.org/10.1007/s00395-020-00829-5
|
[4]
|
Ji, E. and Lee, S. (2021) Antibody-Based Therapeutics for Atherosclerosis and Cardiovascular Diseases. International Journal of Molecular Sciences, 22, Article 5770. https://doi.org/10.3390/ijms22115770
|
[5]
|
Zhu, Z. and Yu, W. (2020) Update in the Treatment of Extracranial Atherosclerotic Disease for Stroke Prevention. Stroke and Vascular Neurology, 5, 65-70.
|
[6]
|
Bergami, M., Cenko, E., Yoon, J., Mendieta, G., Kedev, S., Zdravkovic, M., et al. (2021) Statins for Primary Prevention among Elderly Men and Women. Cardiovascular Research, 118, 3000-3009. https://doi.org/10.1093/cvr/cvab348
|
[7]
|
Al-Abdouh, A., Abusnina, W., Mhanna, M., Radideh, Q., Alzu’bi, H., Rmilah, A.A., et al. (2022) P2Y12 Inhibitors versus Aspirin Monotherapy for Long-Term Secondary Prevention of Atherosclerotic Cardiovascular Disease Events: A Systematic Review and Meta-Analysis. Current Problems in Cardiology, 47, Article 101292. https://doi.org/10.1016/j.cpcardiol.2022.101292
|
[8]
|
Lovren, F., Pan, Y., Quan, A., Singh, K.K., Shukla, P.C., Gupta, N., et al. (2012) MicroRNA-145 Targeted Therapy Reduces Atherosclerosis. Circulation, 126, S81-S90. https://doi.org/10.1161/circulationaha.111.084186
|
[9]
|
Almeida, S.O. and Budoff, M. (2019) Effect of Statins on Atherosclerotic Plaque. Trends in Cardiovascular Medicine, 29, 451-455. https://doi.org/10.1016/j.tcm.2019.01.001
|
[10]
|
Attardo, S., Musumeci, O., Velardo, D. and Toscano, A. (2022) Statins Neuromuscular Adverse Effects. International Journal of Molecular Sciences, 23, Article 8364. https://doi.org/10.3390/ijms23158364
|
[11]
|
Lamprecht, D.G., Saseen, J.J. and Shaw, P.B. (2022) Clinical Conundrums Involving Statin Drug-Drug Interactions. Progress in Cardiovascular Diseases, 75, 83-89. https://doi.org/10.1016/j.pcad.2022.11.002
|
[12]
|
Björnsson, E., Jacobsen, E.I. and Kalaitzakis, E. (2012) Hepatotoxicity Associated with Statins: Reports of Idiosyncratic Liver Injury Post-Marketing. Journal of Hepatology, 56, 374-380. https://doi.org/10.1016/j.jhep.2011.07.023
|
[13]
|
Averbukh, L.D., Turshudzhyan, A., Wu, D.C. and Wu, G.Y. (2022) Statin-Induced Liver Injury Patterns: A Clinical Review. Journal of Clinical and Translational Hepatology, 10, 543-552. https://doi.org/10.14218/jcth.2021.00271
|
[14]
|
Liu, A., Wu, Q., Guo, J., Ares, I., Rodríguez, J., Martínez-Larrañaga, M., et al. (2019) Statins: Adverse Reactions, Oxidative Stress and Metabolic Interactions. Pharmacology & Therapeutics, 195, 54-84. https://doi.org/10.1016/j.pharmthera.2018.10.004
|
[15]
|
Mora, S., Shufelt, C.L. and Manson, J.E. (2022) Whom to Treat for Primary Prevention of Atherosclerotic Cardiovascular Disease: The Aspirin Dilemma. JAMA Internal Medicine, 182, 587-589. https://doi.org/10.1001/jamainternmed.2022.1365
|
[16]
|
Borovac, J.A., D’Amario, D., Vergallo, R., Porto, I., Bisignani, A., Galli, M., et al. (2018) Neoatherosclerosis after Drug-Eluting Stent Implantation: A Novel Clinical and Therapeutic Challenge. European Heart Journal-Cardiovascular Pharmacotherapy, 5, 105-116. https://doi.org/10.1093/ehjcvp/pvy036
|
[17]
|
Colin, S., Chinetti‐Gbaguidi, G. and Staels, B. (2014) Macrophage Phenotypes in Atherosclerosis. Immunological Reviews, 262, 153-166. https://doi.org/10.1111/imr.12218
|
[18]
|
Chinetti-Gbaguidi, G., Colin, S. and Staels, B. (2014) Macrophage Subsets in Atherosclerosis. Nature Reviews Cardiology, 12, 10-17. https://doi.org/10.1038/nrcardio.2014.173
|
[19]
|
Schulz, C. and Massberg, S. (2014) Atherosclerosis—Multiple Pathways to Lesional Macrophages. Science Translational Medicine, 6, 239ps2. https://doi.org/10.1126/scitranslmed.3008922
|
[20]
|
Tang, J., Lobatto, M.E., Hassing, L., van der Staay, S., van Rijs, S.M., Calcagno, C., et al. (2015) Inhibiting Macrophage Proliferation Suppresses Atherosclerotic Plaque Inflammation. Science Advances, 1, e1400223. https://doi.org/10.1126/sciadv.1400223
|
[21]
|
Bhaskar, S., Sudhakaran, P.R. and Helen, A. (2016) Quercetin Attenuates Atherosclerotic Inflammation and Adhesion Molecule Expression by Modulating TLR-NF-κB Signaling Pathway. Cellular Immunology, 310, 131-140. https://doi.org/10.1016/j.cellimm.2016.08.011
|
[22]
|
Gao, C., Liu, C., Chen, Q., Wang, Y., Kwong, C.H.T., Wang, Q., et al. (2022) Cyclodextrin-Mediated Conjugation of Macrophage and Liposomes for Treatment of Atherosclerosis. Journal of Controlled Release, 349, 2-15. https://doi.org/10.1016/j.jconrel.2022.06.053
|
[23]
|
Wang, Y., Zhang, K., Li, T., Maruf, A., Qin, X., Luo, L., et al. (2021) Macrophage Membrane Functionalized Biomimetic Nanoparticles for Targeted Anti-Atherosclerosis Applications. Theranostics, 11, 164-180. https://doi.org/10.7150/thno.47841
|
[24]
|
Gao, C., Huang, Q., Liu, C., Kwong, C.H.T., Yue, L., Wan, J., et al. (2020) Treatment of Atherosclerosis by Macrophage-Biomimetic Nanoparticles via Targeted Pharmacotherapy and Sequestration of Proinflammatory Cytokines. Nature Communications, 11, Article No. 2622. https://doi.org/10.1038/s41467-020-16439-7
|
[25]
|
Burn, G.L., Foti, A., Marsman, G., Patel, D.F. and Zychlinsky, A. (2021) The Neutrophil. Immunity, 54, 1377-1391. https://doi.org/10.1016/j.immuni.2021.06.006
|
[26]
|
Liu, C., Jiang, Z., Pan, Z. and Yang, L. (2022) The Function, Regulation and Mechanism of Programmed Cell Death of Macrophages in Atherosclerosis. Frontiers in Cell and Developmental Biology, 9, Article 809516. https://doi.org/10.3389/fcell.2021.809516
|
[27]
|
Bot, I., Shi, G. and Kovanen, P.T. (2015) Mast Cells as Effectors in Atherosclerosis. Arteriosclerosis, Thrombosis, and Vascular Biology, 35, 265-271. https://doi.org/10.1161/atvbaha.114.303570
|
[28]
|
Drechsler, M., Megens, R.T.A., van Zandvoort, M., Weber, C. and Soehnlein, O. (2010) Hyperlipidemia-Triggered Neutrophilia Promotes Early Atherosclerosis. Circulation, 122, 1837-1845. https://doi.org/10.1161/circulationaha.110.961714
|
[29]
|
Leclercq, A., Houard, X., Philippe, M., Ollivier, V., Sebbag, U., Meilhac, O., et al. (2007) Involvement of Intraplaque Hemorrhage in Atherothrombosis Evolution via Neutrophil Protease Enrichment. Journal of Leukocyte Biology, 82, 1420-1429. https://doi.org/10.1189/jlb.1106671
|
[30]
|
Williams, M.R., Azcutia, V., Newton, G., Alcaide, P. and Luscinskas, F.W. (2011) Emerging Mechanisms of Neutrophil Recruitment across Endothelium. Trends in Immunology, 32, 461-469. https://doi.org/10.1016/j.it.2011.06.009
|
[31]
|
Kolaczkowska, E. and Kubes, P. (2013) Neutrophil Recruitment and Function in Health and Inflammation. Nature Reviews Immunology, 13, 159-175. https://doi.org/10.1038/nri3399
|
[32]
|
Soehnlein, O. (2012) Multiple Roles for Neutrophils in Atherosclerosis. Circulation Research, 110, 875-888. https://doi.org/10.1161/circresaha.111.257535
|
[33]
|
Xue, Y., Wu, Y., Wang, Q., Xue, L., Su, Z. and Zhang, C. (2019) Cellular Vehicles Based on Neutrophils Enable Targeting of Atherosclerosis. Molecular Pharmaceutics, 16, 3109-3120. https://doi.org/10.1021/acs.molpharmaceut.9b00342
|
[34]
|
Eulalio, A., Mano, M., Ferro, M.D., Zentilin, L., Sinagra, G., Zacchigna, S., et al. (2012) Functional Screening Identifies Mirnas Inducing Cardiac Regeneration. Nature, 492, 376-381. https://doi.org/10.1038/nature11739
|
[35]
|
Giacca, M. and Zacchigna, S. (2015) Harnessing the MicroRNA Pathway for Cardiac Regeneration. Journal of Molecular and Cellular Cardiology, 89, 68-74. https://doi.org/10.1016/j.yjmcc.2015.09.017
|
[36]
|
Fernandez-Piñeiro, I., Badiola, I. and Sanchez, A. (2017) Nanocarriers for MicroRNA Delivery in Cancer Medicine. Biotechnology Advances, 35, 350-360. https://doi.org/10.1016/j.biotechadv.2017.03.002
|
[37]
|
忻锦霞. 仿生中性粒细胞纳米囊泡靶向递送miR-199a-3p治疗心肌梗死[D]: [硕士学位论文]. 杭州: 浙江大学医学院, 2021.
|
[38]
|
Kooiman, K., Foppen-Harteveld, M., van der Steen, A.F.W. and de Jong, N. (2011) Sonoporation of Endothelial Cells by Vibrating Targeted Microbubbles. Journal of Controlled Release, 154, 35-41. https://doi.org/10.1016/j.jconrel.2011.04.008
|
[39]
|
Ullah, M., Kodam, S.P., Mu, Q. and Akbar, A. (2021) Microbubbles versus Extracellular Vesicles as Therapeutic Cargo for Targeting Drug Delivery. ACS Nano, 15, 3612-3620. https://doi.org/10.1021/acsnano.0c10689
|
[40]
|
Liu, F., Mao, Y., Yan, J., Sun, Y., Xie, Z., Li, F., et al. (2022) Bionic Microbubble Neutrophil Composite for Inflammation-Responsive Atherosclerotic Vulnerable Plaque Pluripotent Intervention. Research, 2022, Article ID: 9830627. https://doi.org/10.34133/2022/9830627
|
[41]
|
Hemmat, N., Ebadi, A., Badalzadeh, R., Memar, M.Y. and Baghi, H.B. (2018) Viral Infection and Atherosclerosis. European Journal of Clinical Microbiology & Infectious Diseases, 37, 2225-2233. https://doi.org/10.1007/s10096-018-3370-z
|
[42]
|
Rauff, B., Malik, A., Bhatti, Y.A., Chudhary, S.A., Fatima, K., Rafiq, S., et al. (2021) Association of Viruses in the Development of Cardiovascular Diseases. Current Pharmaceutical Design, 27, 3913-3923. https://doi.org/10.2174/1381612827666210426094502
|
[43]
|
Ison, M.G. and Hayden, R.T. (2016) Adenovirus. Microbiology Spectrum, 4. https://doi.org/10.1128/microbiolspec.dmih2-0020-2015
|
[44]
|
Gallardo, J., Pérez-Illana, M., Martín-González, N. and San Martín, C. (2021) Adenovirus Structure: What Is New? International Journal of Molecular Sciences, 22, Article 5240. https://doi.org/10.3390/ijms22105240
|
[45]
|
Arnberg, N. (2012) Adenovirus Receptors: Implications for Targeting of Viral Vectors. Trends in Pharmacological Sciences, 33, 442-448. https://doi.org/10.1016/j.tips.2012.04.005
|
[46]
|
Douglas, J. and Curiel, D. (1997) Targeted Adenoviral Vectors for Cancer Gene Therapy (Review). International Journal of Oncology, 11, 341-348. https://doi.org/10.3892/ijo.11.2.341
|
[47]
|
Shan, L., Cui, S., Du, C., Wan, S., Qian, Z., Achilefu, S., et al. (2012) A Paclitaxel-Conjugated Adenovirus Vector for Targeted Drug Delivery for Tumor Therapy. Biomaterials, 33, 146-162. https://doi.org/10.1016/j.biomaterials.2011.09.025
|
[48]
|
Sasaki, T., Tazawa, H., Hasei, J., Osaki, S., Kunisada, T., Yoshida, A., et al. (2012) A Simple Detection System for Adenovirus Receptor Expression Using a Telomerase-Specific Replication-Competent Adenovirus. Gene Therapy, 20, 112-118. https://doi.org/10.1038/gt.2011.213
|
[49]
|
Toivonen, R., Mäyränpää, M.I., Kovanen, P.T. and Savontaus, M. (2009) Dilated Cardiomyopathy Alters the Expression Patterns of CAR and Other Adenoviral Receptors in Human Heart. Histochemistry and Cell Biology, 133, 349-357. https://doi.org/10.1007/s00418-009-0666-1
|
[50]
|
Tomko, R.P., Xu, R. and Philipson, L. (1997) HCAR and MCAR: The Human and Mouse Cellular Receptors for Subgroup C Adenoviruses and Group B Coxsackieviruses. Proceedings of the National Academy of Sciences, 94, 3352-3356. https://doi.org/10.1073/pnas.94.7.3352
|
[51]
|
Tang, C., Liu, Y., Kessler, P.S., Vaughan, A.M. and Oram, J.F. (2009) The Macrophage Cholesterol Exporter ABCA1 Functions as an Anti-Inflammatory Receptor. Journal of Biological Chemistry, 284, 32336-32343. https://doi.org/10.1074/jbc.m109.047472
|
[52]
|
Millar, J.S. and Cuchel, M. (2015) ApoA-I-Directed Therapies for the Management of Atherosclerosis. Current Atherosclerosis Reports, 17, Article No. 60. https://doi.org/10.1007/s11883-015-0539-0
|
[53]
|
Schwartze, J.T., Havenga, M., Bakker, W.A.M., Bradshaw, A.C. and Nicklin, S.A. (2022) Adenoviral Vectors for Cardiovascular Gene Therapy Applications: A Clinical and Industry Perspective. Journal of Molecular Medicine, 100, 875-901. https://doi.org/10.1007/s00109-022-02208-0
|
[54]
|
Flynn, R., Buckler, J.M., Tang, C., Kim, F. and Dichek, D.A. (2010) Helper-Dependent Adenoviral Vectors Are Superior in vitro to First-Generation Vectors for Endothelial Cell-Targeted Gene Therapy. Molecular Therapy, 18, 2121-2129. https://doi.org/10.1038/mt.2010.176
|
[55]
|
Zinn, E. and Vandenberghe, L.H. (2014) Adeno-Associated Virus: Fit to Serve. Current Opinion in Virology, 8, 90-97. https://doi.org/10.1016/j.coviro.2014.07.008
|
[56]
|
Skubis-Zegadło, J., Stachurska, A. and Małecki, M. (2013) Vectrology of Adeno-Associated Viruses (AAV). Medycyna Wieku Rozwo-Jowego, 17, 202-206.
|
[57]
|
Bish, L.T., Sweeney, H.L., Müller, O.J. and Bekeredjian, R. (2011) Adeno-Associated Virus Vector Delivery to the Heart. In: Snyder, R. and Moullier, P., Eds., Methods in Molecular Biology, Humana Press, 219-237. https://doi.org/10.1007/978-1-61779-370-7_9
|
[58]
|
Nayerossadat, N., Maedeh, T. and Ali, P. (2012) Viral and Nonviral Delivery Systems for Gene Delivery. Advanced Biomedical Research, 1, 27. https://doi.org/10.4103/2277-9175.98152
|
[59]
|
Katz, M.G., Fargnoli, A.S., Williams, R.D. and Bridges, C.R. (2013) Gene Therapy Delivery Systems for Enhancing Viral and Nonviral Vectors for Cardiac Diseases: Current Concepts and Future Applications. Human Gene Therapy, 24, 914-927. https://doi.org/10.1089/hum.2013.2517
|
[60]
|
Thaci, B., Ulasov, I.V., Wainwright, D.A. and Lesniak, M.S. (2011) The Challenge for Gene Therapy: Innate Immune Response to Adenoviruses. Oncotarget, 2, 113-121. https://doi.org/10.18632/oncotarget.231
|
[61]
|
冯辰昀, 李旭东, 郑妤婕, 刘慧, 龚夏丹, 高瑜. 纳米材料的毒理学研究进展[J]. 中国科学(化学), 2022, 52(1): 15-22.
|
[62]
|
Oberdörster, G. (2009) Safety Assessment for Nanotechnology and Nanomedicine: Concepts of Nanotoxicology. Journal of Internal Medicine, 267, 89-105. https://doi.org/10.1111/j.1365-2796.2009.02187.x
|
[63]
|
Lu, Y., Thavarajah, T., Gu, W., Cai, J. and Xu, Q. (2018) Impact of miRNA in Atherosclerosis. Arteriosclerosis, Thrombosis, and Vascular Biology, 38, e159-e170. https://doi.org/10.1161/atvbaha.118.310227
|
[64]
|
Leal, B.H., Velasco, B., Cambón, A., Pardo, A., Fernandez-Vega, J., Arellano, L., et al. (2022) Combined Therapeutics for Atherosclerosis Treatment Using Polymeric Nanovectors. Pharmaceutics, 14, Article 258. https://doi.org/10.3390/pharmaceutics14020258
|
[65]
|
Allen, S.D., Liu, Y., Kim, T., Bobbala, S., Yi, S., Zhang, X., et al. (2019) Celastrol-Loaded PEG-b-PPS Nanocarriers as an Anti-Inflammatory Treatment for Atherosclerosis. Biomaterials Science, 7, 657-668. https://doi.org/10.1039/c8bm01224e
|
[66]
|
Kojima, Y., Volkmer, J., McKenna, K., Civelek, M., Lusis, A.J., Miller, C.L., et al. (2016) CD47-Blocking Antibodies Restore Phagocytosis and Prevent Atherosclerosis. Nature, 536, 86-90. https://doi.org/10.1038/nature18935
|
[67]
|
Chen, L., Zhou, Z., Hu, C., Maitz, M.F., Yang, L., Luo, R., et al. (2022) Platelet Membrane-Coated Nanocarriers Targeting Plaques to Deliver Anti-CD47 Antibody for Atherosclerotic Therapy. Research, 2022, Article ID: 9845459. https://doi.org/10.34133/2022/9845459
|
[68]
|
Bourquin, J., Milosevic, A., Hauser, D., Lehner, R., Blank, F., Petri‐Fink, A., et al. (2018) Biodistribution, Clearance, and Long‐Term Fate of Clinically Relevant Nanomaterials. Advanced Materials, 30, Article ID: 1704307. https://doi.org/10.1002/adma.201704307
|
[69]
|
Moyano, D.F., Liu, Y., Peer, D. and Rotello, V.M. (2015) Modulation of Immune Response Using Engineered Nanoparticle Surfaces. Small, 12, 76-82. https://doi.org/10.1002/smll.201502273
|
[70]
|
Mo, J., Xie, Q., Wei, W. and Zhao, J. (2018) Revealing the Immune Perturbation of Black Phosphorus Nanomaterials to Macrophages by Understanding the Protein Corona. Nature Communications, 9, Article No. 2480. https://doi.org/10.1038/s41467-018-04873-7
|
[71]
|
Sharifi, S., Behzadi, S., Laurent, S., Laird Forrest, M., Stroeve, P. and Mahmoudi, M. (2012) Toxicity of Nanomaterials. Chemical Society Reviews, 41, 2323-2343. https://doi.org/10.1039/c1cs15188f
|
[72]
|
Wu, D., Ma, Y., Cao, Y. and Zhang, T. (2020) Mitochondrial Toxicity of Nanomaterials. Science of the Total Environment, 702, Article 134994. https://doi.org/10.1016/j.scitotenv.2019.134994
|
[73]
|
Fan, G., Fan, M., Wang, Q., Jiang, J., Wan, Y., Gong, T., et al. (2016) Bio-Inspired Polymer Envelopes around Adenoviral Vectors to Reduce Immunogenicity and Improve in Vivo Kinetics. Acta Biomaterialia, 30, 94-105. https://doi.org/10.1016/j.actbio.2015.11.005
|
[74]
|
Kreppel, F. and Hagedorn, C. (2021) Capsid and Genome Modification Strategies to Reduce the Immunogenicity of Adenoviral Vectors. International Journal of Molecular Sciences, 22, Article 2417. https://doi.org/10.3390/ijms22052417
|