[1]
|
Ahmed, I. and Anjum, F. (2023) Atrioventricular Septal Defect. StatPearls Publishing.
|
[2]
|
Hoffman, J.I.E., Kaplan, S. and Liberthson, R.R. (2004) Prevalence of Congenital Heart Disease. American Heart Journal, 147, 425-439. https://doi.org/10.1016/j.ahj.2003.05.003
|
[3]
|
Craig, B. (2006) Atrioventricular Septal Defect: From Fetus to Adult. Heart, 92, 1879-1885. https://doi.org/10.1136/hrt.2006.093344
|
[4]
|
Christensen, N., Andersen, H., Garne, E., Wellesley, D., Addor, M., Haeusler, M., et al. (2012) Atrioventricular Septal Defects among Infants in Europe: A Population-Based Study of Prevalence, Associated Anomalies, and Survival. Cardiology in the Young, 23, 560-567. https://doi.org/10.1017/s1047951112001400
|
[5]
|
孙慧超, 田杰. 先天性心脏病遗传机制研究进展[J]. 中华实用儿科临床杂志, 2019, 34(13): 970-975.
|
[6]
|
陈寄梅, 李守军. 先天性心脏病外科治疗中国专家共识(六): 完全型房室间隔缺损[J]. 中国胸心血管外科临床杂志, 2020, 27(7): 725-731.
|
[7]
|
Baufreton, C., Journois, D., Leca, F., Khoury, W., Tamisier, D. and Vouhé, P. (1996) Ten-Year Experience with Surgical Treatment of Partial Atrioventricular Septal Defect: Risk Factors in the Early Postoperative Period. The Journal of Thoracic and Cardiovascular Surgery, 112, 14-20. https://doi.org/10.1016/s0022-5223(96)70172-1
|
[8]
|
De Angelis, F., Savino, K., Colombo, A., Sardone, M. and Ambrosio, G. (2019) Never Too Grown-Up for a Congenital Heart Disease: Diagnosis of Transitional Atrioventricular Canal in a 50-Year-Old Male. Journal of Cardiovascular Echography, 29, 35-38. https://doi.org/10.4103/jcecho.jcecho_28_18
|
[9]
|
Calkoen, E.E., Hazekamp, M.G., Blom, N.A., Elders, B.B.L.J., Gittenberger-de Groot, A.C., Haak, M.C., et al. (2016) Atrioventricular Septal Defect: From Embryonic Development to Long-Term Follow-Up. International Journal of Cardiology, 202, 784-795. https://doi.org/10.1016/j.ijcard.2015.09.081
|
[10]
|
Peng, T., Wang, L., Zhou, S. and Li, X. (2010) Mutations of the GATA4 and NKX2.5 Genes in Chinese Pediatric Patients with Non-Familial Congenital Heart Disease. Genetica, 138, 1231-1240. https://doi.org/10.1007/s10709-010-9522-4
|
[11]
|
Chaix, M.A. (2016) Genetic Testing in Congenital Heart Disease: A Clinical Approach. World Journal of Cardiology, 8, 180-191. https://doi.org/10.4330/wjc.v8.i2.180
|
[12]
|
Robinson, S.W., Morris, C.D., Goldmuntz, E., Reller, M.D., Jones, M.A., Steiner, R.D., et al. (2003) Missense Mutations in CRELD1 Are Associated with Cardiac Atrioventricular Septal Defects. The American Journal of Human Genetics, 72, 1047-1052. https://doi.org/10.1086/374319
|
[13]
|
郭颖, 孙锟. CRELD1基因在心脏瓣膜发育过程中的作用及突变功能分析[D]: [博士学位论文]. 上海: 上海交通大学, 2008.
|
[14]
|
Guo, Y., Shen, J., Li, F., Wang, J., Wang, X., Guo, A. and Sun, K. (2014) Potential Role of CRELD1 Gene in the Pathogenesis of Atrioventricular Septal Defect. Chinese Journal of Medical Genetics, 31, 263-267.
|
[15]
|
Maslen, C.L. (2024) Human Genetics of Atrioventricular Septal Defect. In: Rickert-Sperling, S., Kelly, R.G. and Haas, N., Eds., Congenital Heart Diseases: The Broken Heart, Springer International Publishing, 559-571. https://doi.org/10.1007/978-3-031-44087-8_30
|
[16]
|
Asim, A., Agarwal, S., Panigrahi, I., Sarangi, A.N., Muthuswamy, S. and Kapoor, A. (2018) CRELD1 Gene Variants and Atrioventricular Septal Defects in down Syndrome. Gene, 641, 180-185. https://doi.org/10.1016/j.gene.2017.10.044
|
[17]
|
Chung, I. and Rajakumar, G. (2016) Genetics of Congenital Heart Defects: The NKX2-5 Gene, a Key Player. Genes, 7, Article 6. https://doi.org/10.3390/genes7020006
|
[18]
|
Cao, C., Li, L., Zhang, Q., Li, H., Wang, Z., Wang, A. and Liu, J. (2023) Nkx2.5: A Crucial Regulator of Cardiac Development, Regeneration and Diseases. Frontiers in Cardiovascular Medicine, 10, Article 1270951. https://doi.org/10.3389/fcvm.2023.1270951
|
[19]
|
Li, J., Dai, L., Tan, X., Wang, J., Zhu, X., Xiong, G., et al. (2022) A Novel Splicing Mutation c.335-1 G > A in the Cardiac Transcription Factor NKX2-5 Leads to Familial Atrial Septal Defect through miR-19 and PYK2. Stem Cell Reviews and Reports, 18, 2646-2661. https://doi.org/10.1007/s12015-022-10400-5
|
[20]
|
Wang, H., Liu, Y., Li, Y., Wang, W., Li, L., Meng, M., et al. (2019) Analysis of NKX2-5 in 439 Chinese Patients with Sporadic Atrial Septal Defect. Medical Science Monitor, 25, 2756-2763. https://doi.org/10.12659/msm.916052
|
[21]
|
Rozqie, R., Satwiko, M.G., Anggrahini, D.W., Sadewa, A.H., Gunadi, Hartopo, A.B., et al. (2022) NKX2-5 Variants Screening in Patients with Atrial Septal Defect in Indonesia. BMC Medical Genomics, 15, Article No. 91. https://doi.org/10.1186/s12920-022-01242-8
|
[22]
|
Ye, L., Yu, Y., Zhao, Z.A., Zhao, D., Ni, X., Wang, Y., et al. (2022) Patient-Specific iPSC-Derived Cardiomyocytes Reveal Abnormal Regulation of FGF16 in a Familial Atrial Septal Defect. Cardiovascular Research, 118, 859-871. https://doi.org/10.1093/cvr/cvab154
|
[23]
|
Chen, Y., Mao, J., Sun, Y., Zhang, Q., Cheng, H., Yan, W., et al. (2010) A Novel Mutation of GATA4 in a Familial Atrial Septal Defect. Clinica Chimica Acta, 411, 1741-1745. https://doi.org/10.1016/j.cca.2010.07.021
|