[1]
|
Lima, S.M., Kehm, R.D. and Terry, M.B. (2021) Global Breast Cancer Incidence and Mortality Trends by Region, Age-Groups, and Fertility Patterns. E Clinical Medicine, 38, Article 100985. https://doi.org/10.1016/j.eclinm.2021.100985
|
[2]
|
Sung, H., Ferlay, J., Siegel, R.L., Laversanne, M., Soerjomataram, I., Jemal, A., et al. (2021) Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA: A Cancer Journal for Clinicians, 71, 209-249. https://doi.org/10.3322/caac.21660
|
[3]
|
Siegel, R.L., Miller, K.D., Fuchs, H.E. and Jemal, A. (2022) Cancer Statistics, 2022. CA: A Cancer Journal for Clinicians, 72, 7-33. https://doi.org/10.3322/caac.21708
|
[4]
|
Sechopoulos, I., Teuwen, J. and Mann, R. (2021) Artificial Intelligence for Breast Cancer Detection in Mammography and Digital Breast Tomosynthesis: State of the Art. Seminars in Cancer Biology, 72, 214-225. https://doi.org/10.1016/j.semcancer.2020.06.002
|
[5]
|
Ren, W., Chen, M., Qiao, Y. and Zhao, F. (2022) Global Guidelines for Breast Cancer Screening: A Systematic Review. The Breast, 64, 85-99. https://doi.org/10.1016/j.breast.2022.04.003
|
[6]
|
Farkas, A.H. and Nattinger, A.B. (2023) Breast Cancer Screening and Prevention. Annals of Internal Medicine, 176, ITC161-ITC176. https://doi.org/10.7326/aitc202311210
|
[7]
|
Huntley, C., Torr, B., Sud, A., Houlston, R.S., Hingorani, A.D., Jones, M.E., et al. (2023) The Impact of Risk Stratification by Polygenic Risk and Age on Breast Cancer Screening in Women Aged 40-49 Years: A Modelling Study. The Lancet, 402, S54. https://doi.org/10.1016/s0140-6736(23)02103-7
|
[8]
|
Pashayan, N., Antoniou, A.C., Ivanus, U., Esserman, L.J., Easton, D.F., French, D., et al. (2020) Personalized Early Detection and Prevention of Breast Cancer: ENVISION Consensus Statement. Nature Reviews Clinical Oncology, 17, 687-705. https://doi.org/10.1038/s41571-020-0388-9
|
[9]
|
Zhang, J., Wu, J., Zhou, X.S., Shi, F. and Shen, D. (2023) Recent Advancements in Artificial Intelligence for Breast Cancer: Image Augmentation, Segmentation, Diagnosis, and Prognosis Approaches. Seminars in Cancer Biology, 96, 11-25. https://doi.org/10.1016/j.semcancer.2023.09.001
|
[10]
|
Aung, Y.Y.M., Wong, D.C.S. and Ting, D.S.W. (2021) The Promise of Artificial Intelligence: A Review of the Opportunities and Challenges of Artificial Intelligence in Healthcare. British Medical Bulletin, 139, 4-15. https://doi.org/10.1093/bmb/ldab016
|
[11]
|
Borys, K., Schmitt, Y.A., Nauta, M., Seifert, C., Krämer, N., Friedrich, C.M., et al. (2023) Explainable AI in Medical Imaging: An Overview for Clinical Practitioners—Saliency-Based XAI Approaches. European Journal of Radiology, 162, Article 110787. https://doi.org/10.1016/j.ejrad.2023.110787
|
[12]
|
Karim, M.R., Islam, T., Shajalal, M., Beyan, O., Lange, C., Cochez, M., et al. (2023) Explainable AI for Bioinformatics: Methods, Tools and Applications. Briefings in Bioinformatics, 24, bbad236. https://doi.org/10.1093/bib/bbad236
|
[13]
|
Gurmessa, D.k. and Jimma, W. (2024) Explainable Machine Learning for Breast Cancer Diagnosis from Mammography and Ultrasound Images: A Systematic Review. BMJ Health & Care Informatics, 31, e100954. https://doi.org/10.1136/bmjhci-2023-100954
|
[14]
|
Gao, Y., Lin, J., Zhou, Y. and Lin, R. (2023) The Application of Traditional Machine Learning and Deep Learning Techniques in Mammography: A Review. Frontiers in Oncology, 13, Article 1213045. https://doi.org/10.3389/fonc.2023.1213045
|
[15]
|
Jin, X., Liu, C., Xu, T., Su, L. and Zhang, X. (2020) Artificial Intelligence Biosensors: Challenges and Prospects. Biosensors and Bioelectronics, 165, Article 112412. https://doi.org/10.1016/j.bios.2020.112412
|
[16]
|
Abas Mohamed, Y., Ee Khoo, B., Shahrimie Mohd Asaari, M., Ezane Aziz, M. and Rahiman Ghazali, F. (2025) Decoding the Black Box: Explainable AI (XAI) for Cancer Diagnosis, Prognosis, and Treatment Planning-A State-of-the Art Systematic Review. International Journal of Medical Informatics, 193, Article 105689. https://doi.org/10.1016/j.ijmedinf.2024.105689
|
[17]
|
Song, D., Yao, J., Jiang, Y., Shi, S., Cui, C., Wang, L., et al. (2023) A New Xai Framework with Feature Explainability for Tumors Decision-Making in Ultrasound Data: Comparing with Grad-CAM. Computer Methods and Programs in Biomedicine, 235, Article 107527. https://doi.org/10.1016/j.cmpb.2023.107527
|
[18]
|
Rodríguez-Pérez, R. and Bajorath, J. (2019) Interpretation of Compound Activity Predictions from Complex Machine Learning Models Using Local Approximations and Shapley Values. Journal of Medicinal Chemistry, 63, 8761-8777. https://doi.org/10.1021/acs.jmedchem.9b01101
|
[19]
|
Zaric, O., Hatamikia, S., George, G., Schwarzhans, F., Trattnig, S. and Woitek, R. (2023) AI-Based Time-Intensity-Curve Assessment of Breast Tumors on MRI. European Radiology, 34, 179-181. https://doi.org/10.1007/s00330-023-10298-8
|
[20]
|
Khalid, A., Mehmood, A., Alabrah, A., Alkhamees, B.F., Amin, F., AlSalman, H., et al. (2023) Breast Cancer Detection and Prevention Using Machine Learning. Diagnostics, 13, Article 3113. https://doi.org/10.3390/diagnostics13193113
|
[21]
|
Barredo Arrieta, A., Díaz-Rodríguez, N., Del Ser, J., Bennetot, A., Tabik, S., Barbado, A., et al. (2020) Explainable Artificial Intelligence (XAI): Concepts, Taxonomies, Opportunities and Challenges toward Responsible AI. Information Fusion, 58, 82-115. https://doi.org/10.1016/j.inffus.2019.12.012
|
[22]
|
Li, J., Sheng, D., Chen, J., You, C., Liu, S., Xu, H., et al. (2023) Artificial Intelligence in Breast Imaging: Potentials and Challenges. Physics in Medicine & Biology, 68, 23TR01. https://doi.org/10.1088/1361-6560/acfade
|
[23]
|
Woitek, R. and Brindle, K.M. (2023) Hyperpolarized Carbon-13 MRI in Breast Cancer. Diagnostics, 13, Article 2311. https://doi.org/10.3390/diagnostics13132311
|
[24]
|
Dong, F., She, R., Cui, C., Shi, S., Hu, X., Zeng, J., et al. (2021) One Step Further into the Blackbox: A Pilot Study of How to Build More Confidence around an AI-Based Decision System of Breast Nodule Assessment in 2D Ultrasound. European Radiology, 31, 4991-5000. https://doi.org/10.1007/s00330-020-07561-7
|
[25]
|
Zhang, J., Cui, Z., Shi, Z., Jiang, Y., Zhang, Z., Dai, X., et al. (2023) A Robust and Efficient AI Assistant for Breast Tumor Segmentation from DCE-MRI via a Spatial-Temporal Framework. Patterns, 4, Article 100826. https://doi.org/10.1016/j.patter.2023.100826
|
[26]
|
Lowry, K.P., Coley, R.Y., Miglioretti, D.L., Kerlikowske, K., Henderson, L.M., Onega, T., et al. (2020) Screening Performance of Digital Breast Tomosynthesis vs Digital Mammography in Community Practice by Patient Age, Screening Round, and Breast Density. JAMA Network Open, 3, e2011792. https://doi.org/10.1001/jamanetworkopen.2020.11792
|
[27]
|
Oh, J., Kim, H., Lee, K.M. and Ryu, C. (2022) Reliable Quality Assurance of X-Ray Mammography Scanner by Evaluation the Standard Mammography Phantom Image Using an Interpretable Deep Learning Model. European Journal of Radiology, 154, Article 110369. https://doi.org/10.1016/j.ejrad.2022.110369
|
[28]
|
Schaffter, T., Buist, D.S.M., Lee, C.I., et al. (2020) Evaluation of Combined Artificial Intelligence and Radiologist Assessment to Interpret Screening Mammograms. JAMA Network Open, 3, e200265.
|
[29]
|
Rodriguez-Ruiz, A., Lång, K., Gubern-Merida, A., Broeders, M., Gennaro, G., Clauser, P., et al. (2019) Stand-Alone Artificial Intelligence for Breast Cancer Detection in Mammography: Comparison with 101 Radiologists. Journal of the National Cancer Institute, 111, 916-922. https://doi.org/10.1093/jnci/djy222
|
[30]
|
Sun, J., Sun, C., Tang, Y., Liu, T. and Lu, C. (2023) Application of SHAP for Explainable Machine Learning on Age-Based Subgrouping Mammography Questionnaire Data for Positive Mammography Prediction and Risk Factor Identification. Healthcare, 11, Article 2000. https://doi.org/10.3390/healthcare11142000
|
[31]
|
Berg, W.A., Bandos, A.I., Mendelson, E.B., Lehrer, D., Jong, R.A. and Pisano, E.D. (2015) Ultrasound as the Primary Screening Test for Breast Cancer: Analysis from ACRIN 6666. Journal of the National Cancer Institute, 108, djv367. https://doi.org/10.1093/jnci/djv367
|
[32]
|
Zhang, B., Vakanski, A. and Xian, M. (2023) BI-RADS-NET-V2: A Composite Multi-Task Neural Network for Computer-Aided Diagnosis of Breast Cancer in Ultrasound Images with Semantic and Quantitative Explanations. IEEE Access, 11, 79480-79494. https://doi.org/10.1109/access.2023.3298569
|
[33]
|
Shamir, S.B., Sasson, A.L., Margolies, L.R. and Mendelson, D.S. (2024) New Frontiers in Breast Cancer Imaging: The Rise of AI. Bioengineering, 11, Article 451. https://doi.org/10.3390/bioengineering11050451
|
[34]
|
Feig, S. (2010) Cost-Effectiveness of Mammography, MRI, and Ultrasonography for Breast Cancer Screening. Radiologic Clinics of North America, 48, 879-891. https://doi.org/10.1016/j.rcl.2010.06.002
|
[35]
|
Hirsch, L., Huang, Y., Makse, H.A., Martinez, D.F., Hughes, M., Eskreis-Winkler, S., et al. (2024) Early Detection of Breast Cancer in MRI Using AI. Academic Radiology, 20, 1-8. https://doi.org/10.1016/j.acra.2024.10.014
|
[36]
|
Diakogiannis, F.I., Waldner, F., Caccetta, P. and Wu, C. (2020) ResuNet-A: A Deep Learning Framework for Semantic Segmentation of Remotely Sensed Data. ISPRS Journal of Photogrammetry and Remote Sensing, 162, 94-114. https://doi.org/10.1016/j.isprsjprs.2020.01.013
|
[37]
|
Salim, M., Liu, Y., Sorkhei, M., Ntoula, D., Foukakis, T., Fredriksson, I., et al. (2024) AI-Based Selection of Individuals for Supplemental MRI in Population-Based Breast Cancer Screening: The Randomized Screentrustmri Trial. Nature Medicine, 30, 2623-2630. https://doi.org/10.1038/s41591-024-03093-5
|
[38]
|
Qin, Y., Wu, F., Hu, Q., He, L., Huo, M., Tang, C., et al. (2023) Histogram Analysis of Multi-Model High-Resolution Diffusion-Weighted MRI in Breast Cancer: Correlations with Molecular Prognostic Factors and Subtypes. Frontiers in Oncology, 13, Article 1139189. https://doi.org/10.3389/fonc.2023.1139189
|
[39]
|
Zhang, Y., Weng, Y. and Lund, J. (2022) Applications of Explainable Artificial Intelligence in Diagnosis and Surgery. Diagnostics, 12, Article 237. https://doi.org/10.3390/diagnostics12020237
|
[40]
|
Lo Gullo, R., Marcus, E., Huayanay, J., Eskreis-Winkler, S., Thakur, S., Teuwen, J., et al. (2024) Artificial Intelligence-Enhanced Breast MRI. Investigative Radiology, 59, 230-242. https://doi.org/10.1097/rli.0000000000001010
|
[41]
|
Meyer‐Base, A., Morra, L., Tahmassebi, A., Lobbes, M., Meyer-Base, U. and Pinker, K. (2020) AI-Enhanced Diagnosis of Challenging Lesions in Breast MRI: A Methodology and Application Primer. Journal of Magnetic Resonance Imaging, 54, 686-702. https://doi.org/10.1002/jmri.27332
|
[42]
|
Brunetti, N., Calabrese, M., Martinoli, C. and Tagliafico, A.S. (2022) Artificial Intelligence in Breast Ultrasound: From Diagnosis to Prognosis—A Rapid Review. Diagnostics, 13, Article 58. https://doi.org/10.3390/diagnostics13010058
|
[43]
|
Borys, K., Schmitt, Y.A., Nauta, M., Seifert, C., Krämer, N., Friedrich, C.M., et al. (2023) Explainable AI in Medical Imaging: An Overview for Clinical Practitioners—Beyond Saliency-Based XAI Approaches. European Journal of Radiology, 162, Article 110786. https://doi.org/10.1016/j.ejrad.2023.110786
|
[44]
|
Wang, X., Chou, K., Zhang, G., Zuo, Z., Zhang, T., Zhou, Y., et al. (2023) Breast Cancer Pre-Clinical Screening Using Infrared Thermography and Artificial Intelligence: A Prospective, Multicentre, Diagnostic Accuracy Cohort Study. International Journal of Surgery, 109, 3021-3031. https://doi.org/10.1097/js9.0000000000000594
|
[45]
|
Pfeuffer, N., Baum, L., Stammer, W., Abdel-Karim, B.M., Schramowski, P., Bucher, A.M., et al. (2023) Explanatory Interactive Machine Learning. Business & Information Systems Engineering, 65, 677-701. https://doi.org/10.1007/s12599-023-00806-x
|
[46]
|
Wang, W. and Wang, Y. (2023) Deep Learning-Based Modified YOLACT Algorithm on Magnetic Resonance Imaging Images for Screening Common and Difficult Samples of Breast Cancer. Diagnostics, 13, Article 1582. https://doi.org/10.3390/diagnostics13091582
|