[1]
|
Nemeth, G. and Modis, L. (2020) Accuracy of the Hill-Radial Basis Function Method and the Barrett Universal II Formula. European Journal of Ophthalmology, 31, 566-571. https://doi.org/10.1177/1120672120902952
|
[2]
|
Olsen, T. (1992) Sources of Error in Intraocular Lens Power Calculation. Journal of Cataract and Refractive Surgery, 18, 125-129. https://doi.org/10.1016/s0886-3350(13)80917-0
|
[3]
|
Sahin, A. and Hamrah, P. (2012) Clinically Relevant Biometry. Current Opinion in Ophthalmology, 23, 47-53. https://doi.org/10.1097/icu.0b013e32834cd63e
|
[4]
|
Pathak, M., Sahu, V., Kumar, A., Kaur, K. and Gurnani, B. (2024) Current Concepts and Recent Updates of Optical Biometry—A Comprehensive Review. Clinical Ophthalmology, 18, 1191-1206. https://doi.org/10.2147/opth.s464538
|
[5]
|
Shammas, J.H., Ortiz, S., Shammas, M.C., Kim, S.H. and Chong, C. (2016) Biometry Measurements Using a New Large-Coherence-Length Swept-Source Optical Coherence Tomographer. Journal of Cataract and Refractive Surgery, 42, 50-61. https://doi.org/10.1016/j.jcrs.2015.07.042
|
[6]
|
Schmid, G.F., Petrig, B.L., Riva, C.E., Logean, E. and Wälti, R. (2001) Measurement of Eye Length and Eye Shape by Optical Low Coherence Reflectometry. International Ophthalmology, 23, 317-320. https://doi.org/10.1023/a:1014486126869
|
[7]
|
Montés-Micó, R., Carones, F., Buttacchio, A., Ferrer-Blasco, T. and Madrid-Costa, D. (2011) Comparison of Immersion Ultrasound, Partial Coherence Interferometry, and Low Coherence Reflectometry for Ocular Biometry in Cataract Patients. Journal of Refractive Surgery, 27, 665-671. https://doi.org/10.3928/1081597x-20110202-01
|
[8]
|
Lender, R., Mirsky, D., Greenberger, R., Boim, Z., Ben-Yaakov, L., Kashtan, C., et al. (2022) Evaluation of Three Biometric Devices: Ocular Parameters and Calculated Intraocular Lens Power. Scientific Reports, 12, Article No. 19478. https://doi.org/10.1038/s41598-022-24017-8
|
[9]
|
Song, M.Y., Noh, S.R. and Kim, K.Y. (2021) Refractive Prediction of Four Different Intraocular Lens Calculation Formulas Compared between New Swept Source Optical Coherence Tomography and Partial Coherence Interferometry. PLOS ONE, 16, e0251152. https://doi.org/10.1371/journal.pone.0251152
|
[10]
|
Arriola-Villalobos, P., Almendral-Gómez, J., Garzón, N., Ruiz-Medrano, J., Fernández-Pérez, C., Martínez-de-la-Casa, J.M., et al. (2016) Agreement and Clinical Comparison between a New Swept-Source Optical Coherence Tomography-Based Optical Biometer and an Optical Low-Coherence Reflectometry Biometer. Eye, 31, 437-442. https://doi.org/10.1038/eye.2016.241
|
[11]
|
Cooke, D.L. and Cooke, T.L. (2019) Approximating Sum-Of-Segments Axial Length from a Traditional Optical Low-Coherence Reflectometry Measurement. Journal of Cataract and Refractive Surgery, 45, 351-354. https://doi.org/10.1016/j.jcrs.2018.12.026
|
[12]
|
Wang, L., Shirayama, M., Ma, X.J., Kohnen, T. and Koch, D.D. (2011) Optimizing Intraocular Lens Power Calculations in Eyes with Axial Lengths above 25.0 mm. Journal of Cataract and Refractive Surgery, 37, 2018-2027. https://doi.org/10.1016/j.jcrs.2011.05.042
|
[13]
|
Martinez-Enriquez, E., Pérez-Merino, P., Durán-Poveda, S., Jiménez-Alfaro, I. and Marcos, S. (2018) Estimation of Intraocular Lens Position from Full Crystalline Lens Geometry: Towards a New Generation of Intraocular Lens Power Calculation Formulas. Scientific Reports, 8, Article No. 9829. https://doi.org/10.1038/s41598-018-28272-6
|
[14]
|
Kane, J.X., Van Heerden, A., Atik, A. and Petsoglou, C. (2017) Accuracy of 3 New Methods for Intraocular Lens Power Selection. Journal of Cataract and Refractive Surgery, 43, 333-339. https://doi.org/10.1016/j.jcrs.2016.12.021
|
[15]
|
Retzlaff, J.A., Sanders, D.R. and Kraff, M.C. (1990) Development of the SRK/T Intraocular Lens Implant Power Calculation Formula. Journal of Cataract and Refractive Surgery, 16, 333-340. https://doi.org/10.1016/s0886-3350(13)80705-5
|
[16]
|
Stopyra, W., Langenbucher, A. and Grzybowski, A. (2023) Intraocular Lens Power Calculation Formulas—A Systematic Review. Ophthalmology and Therapy, 12, 2881-2902. https://doi.org/10.1007/s40123-023-00799-6
|
[17]
|
Melles, R.B., Holladay, J.T. and Chang, W.J. (2018) Accuracy of Intraocular Lens Calculation Formulas. Ophthalmology, 125, 169-178. https://doi.org/10.1016/j.ophtha.2017.08.027
|
[18]
|
Hoffer, K.J. and Savini, G. (2017) IOL Power Calculation in Short and Long Eyes. The Asia-Pacific Journal of Ophthalmology (Phila), 6, 330-331.
|
[19]
|
Chen, C., Xu, X., Miao, Y., Zheng, G., Sun, Y. and Xu, X. (2015) Accuracy of Intraocular Lens Power Formulas Involving 148 Eyes with Long Axial Lengths: A Retrospective Chart-Review Study. Journal of Ophthalmology, 2015, Article ID: 976847. https://doi.org/10.1155/2015/976847
|
[20]
|
Hoffer, K.J. (2000) Clinical Results Using the Holladay 2 Intraocular Lens Power Formula. Journal of Cataract and Refractive Surgery, 26, 1233-1237. https://doi.org/10.1016/s0886-3350(00)00376-x
|
[21]
|
Gökce, S.E., Zeiter, J.H., Weikert, M.P., Koch, D.D., Hill, W. and Wang, L. (2017) Intraocular Lens Power Calculations in Short Eyes Using 7 Formulas. Journal of Cataract and Refractive Surgery, 43, 892-897. https://doi.org/10.1016/j.jcrs.2017.07.004
|
[22]
|
Kothari, S.S. and Reddy, J.C. (2022) Recent Developments in the Intraocular Lens Formulae: An Update. Seminars in Ophthalmology, 38, 143-150. https://doi.org/10.1080/08820538.2022.2094712
|
[23]
|
Roberts, T.V., Hodge, C., Sutton, G. and Lawless, M. (2017) Comparison of Hill‐Radial Basis Function, Barrett Universal and Current Third Generation Formulas for the Calculation of Intraocular Lens Power during Cataract Surgery. Clinical & Experimental Ophthalmology, 46, 240-246. https://doi.org/10.1111/ceo.13034
|
[24]
|
Darcy, K., Gunn, D., Tavassoli, S., Sparrow, J. and Kane, J.X. (2020) Assessment of the Accuracy of New and Updated Intraocular Lens Power Calculation Formulas in 10 930 Eyes from the UK National Health Service. Journal of Cataract & Refractive Surgery, 46, 2-7.
|
[25]
|
Paritekar, P., Nayak, A., Umesh, Y., Sirivella, I., Manoharan, S. and Khatib, Z. (2022) Comparison of Newer Kane Formula with Sanders Retzlaff Kraff/Theoretical and Barrett Universal II for Calculation of Intraocular Lens Power in Indian Eyes. Indian Journal of Ophthalmology, 70, 1203-1207. https://doi.org/10.4103/ijo.ijo_2014_21
|
[26]
|
Olsen, T. and Hoffmann, P. (2014) C Constant: New Concept for Ray Tracing-Assisted Intraocular Lens Power Calculation. Journal of Cataract and Refractive Surgery, 40, 764-773. https://doi.org/10.1016/j.jcrs.2013.10.037
|
[27]
|
Cooke, D.L. and Cooke, T.L. (2016) Comparison of 9 Intraocular Lens Power Calculation Formulas. Journal of Cataract and Refractive Surgery, 42, 1157-1164. https://doi.org/10.1016/j.jcrs.2016.06.029
|
[28]
|
Aristodemou, P., Knox Cartwright, N.E., Sparrow, J.M. and Johnston, R.L. (2011) Formula Choice: Hoffer Q, Holladay 1, or SRK/T and Refractive Outcomes in 8108 Eyes after Cataract Surgery with Biometry by Partial Coherence Interferometry. Journal of Cataract and Refractive Surgery, 37, 63-71. https://doi.org/10.1016/j.jcrs.2010.07.032
|
[29]
|
Wang, Q., Jiang, W., Lin, T., Wu, X., Lin, H. and Chen, W. (2017) Meta‐Analysis of Accuracy of Intraocular Lens Power Calculation Formulas in Short Eyes. Clinical & Experimental Ophthalmology, 46, 356-363. https://doi.org/10.1111/ceo.13058
|
[30]
|
Kenny, P.I., Kozhaya, K., Truong, P., Weikert, M.P., Wang, L., Hill, W.E., et al. (2023) Efficacy of Segmented Axial Length and Artificial Intelligence Approaches to Intraocular Lens Power Calculation in Short Eyes. Journal of Cataract and Refractive Surgery, 49, 697-703. https://doi.org/10.1097/j.jcrs.0000000000001185
|
[31]
|
Stopyra, W. (2021) Comparison of the Accuracy of Six Intraocular Lens Power Calculation Formulas for Eyes of Axial Length Exceeding 25.0 mm. Journal Français d’Ophtalmologie, 44, 1332-1339. https://doi.org/10.1016/j.jfo.2021.04.009
|
[32]
|
Terzi, E., Wang, L. and Kohnen, T. (2009) Accuracy of Modern Intraocular Lens Power Calculation Formulas in Refractive Lens Exchange for High Myopia and High Hyperopia. Journal of Cataract and Refractive Surgery, 35, 1181-1189. https://doi.org/10.1016/j.jcrs.2009.02.026
|
[33]
|
Chu, Y., Huang, T., Chang, P., Ho, W., Hsu, Y., Chang, S., et al. (2022) Predictability of 6 Intraocular Lens Power Calculation Formulas in People with Very High Myopia. Frontiers in Medicine, 9, Article ID: 762761. https://doi.org/10.3389/fmed.2022.762761
|
[34]
|
Rong, X., He, W., Zhu, Q., Qian, D., Lu, Y. and Zhu, X. (2019) Intraocular Lens Power Calculation in Eyes with Extreme Myopia: Comparison of Barrett Universal II, Haigis, and Olsen Formulas. Journal of Cataract and Refractive Surgery, 45, 732-737. https://doi.org/10.1016/j.jcrs.2018.12.025
|
[35]
|
Stopyra, W., Voytsekhivskyy, O. and Grzybowski, A. (2024) Accuracy of 20 Intraocular Lens Power Calculation Formulas in Medium-Long Eyes. Ophthalmology and Therapy, 13, 1893-1907. https://doi.org/10.1007/s40123-024-00954-7
|
[36]
|
Li, X., Song, C., Wang, Y., Wang, J., Tang, Q., Wu, Z., et al. (2024) Accuracy of 14 Intraocular Lens Power Calculation Formulas in Extremely Long Eyes. Graefe’s Archive for Clinical and Experimental Ophthalmology, 262, 3619-3628. https://doi.org/10.1007/s00417-024-06506-w
|
[37]
|
Wang, Q., Jiang, W., Lin, T., Zhu, Y., Chen, C., Lin, H., et al. (2018) Accuracy of Intraocular Lens Power Calculation Formulas in Long Eyes: A Systematic Review and Meta‐Analysis. Clinical & Experimental Ophthalmology, 46, 738-749. https://doi.org/10.1111/ceo.13184
|