[1]
|
McGlynn, K.A., Petrick, J.L. and London, W.T. (2015) Global Epidemiology of Hepatocellular Carcinoma: An Emphasis on Demographic and Regional Variability. Clinics in Liver Disease, 19, 223-238. https://doi.org/10.1016/j.cld.2015.01.001
|
[2]
|
Arnold, M., Abnet, C.C., Neale, R.E., Vignat, J., Giovannucci, E.L., McGlynn, K.A., et al. (2020) Global Burden of 5 Major Types of Gastrointestinal Cancer. Gastroenterology, 159, 335-349.e15. https://doi.org/10.1053/j.gastro.2020.02.068
|
[3]
|
Alemayehu, E., Fasil, A., Ebrahim, H., Mulatie, Z., Bambo, G.M., Gedefie, A., et al. (2024) Circulating MicroRNAs as Promising Diagnostic Biomarkers for Hepatocellular Carcinoma: A Systematic Review and Meta-Analysis. Frontiers in Molecular Biosciences, 11, Article ID: 1353547. https://doi.org/10.3389/fmolb.2024.1353547
|
[4]
|
Guan, M., Wang, M., Liu, S., Ouyang, W., Liang, L., Pawlik, T.M., et al. (2021) Early Diagnosis and Therapeutic Strategies for Hepatocellular Carcinoma: From Bench to Bedside. World Journal of Gastrointestinal Oncology, 13, 197-215. https://doi.org/10.4251/wjgo.v13.i4.197
|
[5]
|
Singal, A.G., Kanwal, F. and Llovet, J.M. (2023) Global Trends in Hepatocellular Carcinoma Epidemiology: Implications for Screening, Prevention and Therapy. Nature Reviews Clinical Oncology, 20, 864-884. https://doi.org/10.1038/s41571-023-00825-3
|
[6]
|
Petracci, E., Pasini, L., Urbini, M., Felip, E., Stella, F., Davoli, F., et al. (2024) Circulating Cell-Free and Extracellular Vesicles-Derived MicroRNA as Prognostic Biomarkers in Patients with Early-Stage NSCLC: Results from Resting Study. Journal of Experimental & Clinical Cancer Research, 43, Article No. 241. https://doi.org/10.1186/s13046-024-03156-y
|
[7]
|
Gramantieri, L., Giovannini, C., Piscaglia, F. and Fornari, F. (2021) MicroRNAs as Modulators of Tumor Metabolism, Microenvironment, and Immune Response in Hepatocellular Carcinoma. Journal of Hepatocellular Carcinoma, 8, 369-385. https://doi.org/10.2147/jhc.s268292
|
[8]
|
Zhang, L. and Yu, D. (2019) Exosomes in Cancer Development, Metastasis, and Immunity. Biochimica et Biophysica Acta (BBA)—Reviews on Cancer, 1871, 455-468. https://doi.org/10.1016/j.bbcan.2019.04.004
|
[9]
|
Zhao, Y., Zuo, X., Li, Q., Chen, F., Chen, Y., Deng, J., et al. (2020) Nucleic Acids Analysis. Science China Chemistry, 64, 171-203. https://doi.org/10.1007/s11426-020-9864-7
|
[10]
|
Wang, J., Zhang, K., Liu, S. and Sen, S. (2014) Tumor-Associated Circulating MicroRNAs as Biomarkers of Cancer. Molecules, 19, 1912-1938. https://doi.org/10.3390/molecules19021912
|
[11]
|
Angius, A., Cossu-Rocca, P., Arru, C., Muroni, M.R., Rallo, V., Carru, C., et al. (2020) Modulatory Role of MicroRNAs in Triple Negative Breast Cancer with Basal-Like Phenotype. Cancers, 12, Article No. 3298. https://doi.org/10.3390/cancers12113298
|
[12]
|
Chu, L., Peng, Y., Weng, X., Xie, J. and Xu, Y. (2020) Blood-Based Biomarkers for Early Detection of Esophageal Squamous Cell Carcinoma. World Journal of Gastroenterology, 26, 1708-1725. https://doi.org/10.3748/wjg.v26.i15.1708
|
[13]
|
Wang, R., Xu, M., Xu, C., Song, Z. and Jin, H. (2014) Decreased Expression of Mir216a Contributes to Non-Small-Cell Lung Cancer Progression. Clinical Cancer Research, 20, 4705-4716. https://doi.org/10.1158/1078-0432.ccr-14-0517
|
[14]
|
Sun, H., Cong, D., He, M., Chen, S., Liu, X. and Liu, X. (2015) Expression Profiles of Pivotal MicroRNAs and Targets in Thyroid Papillary Carcinoma: An Analysis of the Cancer Genome Atlas. OncoTargets and Therapy, 8, 2271-2277. https://doi.org/10.2147/ott.s85753
|
[15]
|
渠亚超, 闾军. 血清microRNA检测在肝细胞癌诊断中的研究进展[J]. 临床肝胆病杂志, 2014, 30(3): 228-232.
|
[16]
|
Xu, J., Zhu, X., Wu, L., Yang, R., Yang, Z., Wang, Q., et al. (2012) MicroRNA‐122 Suppresses Cell Proliferation and Induces Cell Apoptosis in Hepatocellular Carcinoma by Directly Targeting WNT/β‐Catenin Pathway. Liver International, 32, 752-760. https://doi.org/10.1111/j.1478-3231.2011.02750.x
|
[17]
|
Kim, S., Lee, U.J., Kim, M.N., Lee, E., Kim, J.Y., Lee, M.Y., et al. (2008) MicroRNA mIR-199a* Regulates the MET Proto-Oncogene and the Downstream Extracellular Signal-Regulated Kinase 2 (Erk2). Journal of Biological Chemistry, 283, 18158-18166. https://doi.org/10.1074/jbc.m800186200
|
[18]
|
肖海静, 王观宇, 董庆华. 人肝细胞肝癌和癌旁正常组织microRNA表达差异的分析[J]. 肿瘤防治研究, 2012, 39(8): 947-949.
|
[19]
|
Tomimaru, Y., Eguchi, H., Nagano, H., Wada, H., Kobayashi, S., Marubashi, S., et al. (2012) Circulating MicroRNA-21 as a Novel Biomarker for Hepatocellular Carcinoma. Journal of Hepatology, 56, 167-175. https://doi.org/10.1016/j.jhep.2011.04.026
|
[20]
|
张婷婷, 尤斌, 李超. 外泌体miRNA在缺血性脑血管病中作用的研究进展[J]. 临床医药文献电子杂志, 2020, 7(7): 198.
|
[21]
|
Loudig, O., Mitchell, M.I., Ben-Dov, I.Z., Liu, C. and Fineberg, S. (2022) Mirna Expression Deregulation Correlates with the Oncotype DX® DCIS Score. Breast Cancer Research, 24, Article No. 62. https://doi.org/10.1186/s13058-022-01558-4
|
[22]
|
廖银花, 邓石军, 胡玉林. miR-128在原发性肝癌组织中的表达及临床意义[J]. 齐齐哈尔医学院学报, 2014(5): 629-630.
|
[23]
|
黄健, 黄海欣, 黄东宁, 等. miR-144-3p通过靶向FZD4阻断Wnt/β-catenin通路抑制肝癌Huh-7细胞的恶性生物学行为[J]. 中国肿瘤生物治疗杂志, 2019, 26(10): 1101-1106.
|
[24]
|
汪旭伟, 马沛. miR-21在原发性肝癌组织中的表达及对细胞生物学行为的影响[J]. 临床医学工程, 2020, 27(11): 1457-1458.
|
[25]
|
曾芳, 黎运呈, 杨祥康, 等. 干扰miR-21靶向调控PDCD4、PTEN和TPM1抑制肝癌细胞增殖和侵袭能力[J]. 中国卫生检验杂志, 2019, 29(19): 2316-2320.
|
[26]
|
石睿, 张斌. miR-221-3p对肝癌细胞增殖的影响及相关机制研究[J]. 徐州医科大学学报, 2023, 43(1): 48-53.
|
[27]
|
王磊. MicroRNA-198在原发性肝癌患者中的表达及对肝癌细胞株增殖、迁移的研究[D]: [博士学位论文]. 郑州: 郑州大学医学院, 2019.
|
[28]
|
陈秀华, 吴健晖, 陈良, 等. circRNA-PTPRM靶向miR-139-5p调控肝癌细胞增殖、迁移和侵袭的研究[J]. 解放军医学院学报, 2024, 45(9): 960-968.
|
[29]
|
秦焕蓉, 吴祥锴, 江哲宇, 等. 微小核糖核酸-155对肝癌细胞增殖、侵袭迁移和凋亡的影响[J]. 介入放射学杂志, 2024, 33(1): 44-51.
|
[30]
|
刘晓晖, 何勇, 符奉川, 等. circNOLC1靶向miR-485-5p对肝癌细胞紫杉醇耐药性的影响[J]. 中西医结合肝病杂志, 2023, 33(1): 41-46.
|
[31]
|
张天红, 杨红菊. 外泌体miRNA在肝细胞癌中的研究进展[J]. 昆明医科大学学报, 2022, 43(2): 150-153.
|
[32]
|
孔祥宇, 李怡君, 周灏溦, 等. 基于癌症基因组图谱数据库构建肝细胞癌相关miRNA-mRNA调控网络[J]. 中华老年多器官疾病杂志, 2023, 22(3): 201-208.
|
[33]
|
miR-34a对肝癌转移有抑制作用[J]. 中国医药科学, 2012, 2(18): 8.
|
[34]
|
王瞿辉. miR-760通过HMGA2调控肝癌细胞增殖和转移的作用机制[D]: [博士学位论文]. 苏州: 苏州大学医学院, 2022.
|
[35]
|
Yi, M., Xu, L., Jiao, Y., Luo, S., Li, A. and Wu, K. (2020) The Role of Cancer-Derived MicroRNAs in Cancer Immune Escape. Journal of Hematology & Oncology, 13, Article No. 25. https://doi.org/10.1186/s13045-020-00848-8
|
[36]
|
赵亮, 艾尔哈提·胡赛音, 布祖克拉·阿布都艾尼, 等. miRNA-211通过BIN1介导肝癌细胞PD-L1依赖的免疫逃逸研究[J]. 局解手术学杂志, 2023, 32(3): 201-207.
|
[37]
|
王晓露, 张缨, 江龙委, 等. 肝癌组织miR-200家族的表达水平及其与免疫检查点分子PD-L1的关系[J]. 医学研究生学报, 2021, 34(2): 166-170.
|
[38]
|
张壮苗, 张岩. miR-618靶向SOCS1对肝癌患者中树突状细胞表型及功能的调控机制[J]. 中国免疫学杂志, 2020, 36(23): 2913-2918.
|
[39]
|
Xue, X., Wang, J., Fu, K., Dai, S., Wu, R., Peng, C., et al. (2023) The Role of Mir-155 on Liver Diseases by Modulating Immunity, Inflammation and Tumorigenesis. International Immunopharmacology, 116, Article ID: 109775. https://doi.org/10.1016/j.intimp.2023.109775
|
[40]
|
Muhammad, S.A., Mohammed, J.S. and Rabiu, S. (2023) Exosomes as Delivery Systems for Targeted Tumour Therapy: A Systematic Review and Meta-Analysis of in Vitro Studies. Pharmaceutical Nanotechnology, 11, 93-104. https://doi.org/10.2174/2211738510666220930155253
|
[41]
|
Hirsova, P., Ibrahim, S.H., Verma, V.K., Morton, L.A., Shah, V.H., LaRusso, N.F., et al. (2016) Extracellular Vesicles in Liver Pathobiology: Small Particles with Big Impact. Hepatology, 64, 2219-2233. https://doi.org/10.1002/hep.28814
|
[42]
|
Yu, X., Odenthal, M. and Fries, J. (2016) Exosomes as MiRNA Carriers: Formation-Function-Future. International Journal of Molecular Sciences, 17, Article No. 2028. https://doi.org/10.3390/ijms17122028
|
[43]
|
楼国华. 携带miRNA的间充质干细胞来源外泌体抗肝癌研究[D]: [博士学位论文]. 杭州: 浙江大学医学院, 2016.
|