[1]
|
Ross, J.T., Matthay, M.A. and Harris, H.W. (2018) Secondary Peritonitis: Principles of Diagnosis and Intervention. BMJ, 361, k1407. https://doi.org/10.1136/bmj.k1407
|
[2]
|
De Waele, J., Lipman, J., Sakr, Y., Marshall, J.C., Vanhems, P., Barrera Groba, C., et al. (2014) Abdominal Infections in the Intensive Care Unit: Characteristics, Treatment and Determinants of Outcome. BMC Infectious Diseases, 14, Article No. 420. https://doi.org/10.1186/1471-2334-14-420
|
[3]
|
Chow, A.W., Evans, G.A., Nathens, A.B., Ball, C.G., Hansen, G., Harding, G.K., et al. (2010) Canadian Practice Guidelines for Surgical Intra‐Abdominal Infections. Canadian Journal of Infectious Diseases and Medical Microbiology, 21, 11-37. https://doi.org/10.1155/2010/580340
|
[4]
|
Solomkin, J.S., Mazuski, J.E., Bradley, J.S., Rodvold, K.A., Goldstein, E.J.C., Baron, E.J., et al. (2010) Diagnosis and Management of Complicated Intra-Abdominal Infection in Adults and Children: Guidelines by the Surgical Infection Society and the Infectious Diseases Society of America. Clinical Infectious Diseases, 50, 133-164. https://doi.org/10.1086/649554
|
[5]
|
Dellinger, R.P., Levy, M.M., Rhodes, A., Annane, D., Gerlach, H., Opal, S.M., et al. (2013) Surviving Sepsis Campaign: International Guidelines for Management of Severe Sepsis and Septic Shock, 2012. Intensive Care Medicine, 39, 165-228. https://doi.org/10.1007/s00134-012-2769-8
|
[6]
|
Montravers, P., Dupont, H., Leone, M., Constantin, J., Mertes, P., Laterre, P., et al. (2015) Guidelines for Management of Intra-Abdominal Infections. Anaesthesia Critical Care & Pain Medicine, 34, 117-130. https://doi.org/10.1016/j.accpm.2015.03.005
|
[7]
|
Rivers, E., Nguyen, B., Havstad, S., Ressler, J., Muzzin, A., Knoblich, B., et al. (2001) Early Goal-Directed Therapy in the Treatment of Severe Sepsis and Septic Shock. New England Journal of Medicine, 345, 1368-1377. https://doi.org/10.1056/nejmoa010307
|
[8]
|
Karzai, W., Oberhoffer, M., Meier-Hellmann, A. and Reinhart, K. (1997) Procalcitonin—A New Indicator of the Systemic Response to Severe Infections. Infection, 25, 329-334. https://doi.org/10.1007/bf01740811
|
[9]
|
Bozza, F.A., Salluh, J.I., Japiassu, A.M., Soares, M., Assis, E.F., Gomes, R.N., et al. (2007) Cytokine Profiles as Markers of Disease Severity in Sepsis: A Multiplex Analysis. Critical Care, 11, R49. https://doi.org/10.1186/cc5783
|
[10]
|
O’Grady, N.P., Barie, P.S., Bartlett, J.G., Bleck, T., Carroll, K., Kalil, A.C., et al. (2008) Guidelines for Evaluation of New Fever in Critically Ill Adult Patients: 2008 Update from the American College of Critical Care Medicine and the Infectious Diseases Society of America. Critical Care Medicine, 36, 1330-1349. https://doi.org/10.1097/ccm.0b013e318169eda9
|
[11]
|
Hou, N., Li, M., He, L., Xie, B., Wang, L., Zhang, R., et al. (2020) Predicting 30-Days Mortality for MIMIC-III Patients with Sepsis-3: A Machine Learning Approach Using Xgboost. Journal of Translational Medicine, 18, Article No. 462. https://doi.org/10.1186/s12967-020-02620-5
|
[12]
|
Zhang, W., Chen, Z., An, X., Li, H., Zhang, H., Wu, S., et al. (2023) Analysis and Validation of Diagnostic Biomarkers and Immune Cell Infiltration Characteristics in Pediatric Sepsis by Integrating Bioinformatics and Machine Learning. World Journal of Pediatrics, 19, 1094-1103. https://doi.org/10.1007/s12519-023-00717-7
|
[13]
|
Ning, J., Fan, X., Sun, K., Wang, X., Li, H., Jia, K., et al. (2023) Single-Cell Sequence Analysis Combined with Multiple Machine Learning to Identify Markers in Sepsis Patients: Lilra5. Inflammation, 46, 1236-1254. https://doi.org/10.1007/s10753-023-01803-8
|
[14]
|
Montravers, P., Blot, S., Dimopoulos, G., Eckmann, C., Eggimann, P., Guirao, X., et al. (2016) Therapeutic Management of Peritonitis: A Comprehensive Guide for Intensivists. Intensive Care Medicine, 42, 1234-1247. https://doi.org/10.1007/s00134-016-4307-6
|
[15]
|
Blazek, K., van Zwieten, A., Saglimbene, V. and Teixeira-Pinto, A. (2021) A Practical Guide to Multiple Imputation of Missing Data in Nephrology. Kidney International, 99, 68-74. https://doi.org/10.1016/j.kint.2020.07.035
|
[16]
|
Dong, M. and Mitani, A. (2023) Multiple Imputation Methods for Missing Multilevel Ordinal Outcomes. BMC Medical Research Methodology, 23, Article No. 112. https://doi.org/10.1186/s12874-023-01909-5
|
[17]
|
Lei, J., Sun, T., Jiang, Y., Wu, P., Fu, J., Zhang, T., et al. (2021) Risk Identification of Bronchopulmonary Dysplasia in Premature Infants Based on Machine Learning. Frontiers in Pediatrics, 9, Article ID: 719352. https://doi.org/10.3389/fped.2021.719352
|
[18]
|
Yue, S., Li, S., Huang, X., Liu, J., Hou, X., Wang, Y., et al. (2022) Construction and Validation of a Risk Prediction Model for Acute Kidney Injury in Patients Suffering from Septic Shock. Disease Markers, 2022, Article ID: 9367873. https://doi.org/10.1155/2022/9367873
|
[19]
|
Fleischmann, C., Scherag, A., Adhikari, N.K.J., Hartog, C.S., Tsaganos, T., Schlattmann, P., et al. (2016) Assessment of Global Incidence and Mortality of Hospital-Treated Sepsis. Current Estimates and Limitations. American Journal of Respiratory and Critical Care Medicine, 193, 259-272. https://doi.org/10.1164/rccm.201504-0781oc
|
[20]
|
Pandey, S. (2024) Sepsis, Management & Advances in Metabolomics. Nanotheranostics, 8, 270-284. https://doi.org/10.7150/ntno.94071
|
[21]
|
Anaya, D.A. and Nathens, A.B. (2003) Risk Factors for Severe Sepsis in Secondary Peritonitis. Surgical Infections, 4, 355-362. https://doi.org/10.1089/109629603322761418
|
[22]
|
Jawad, I., Lukšić, I. and Rafnsson, S.B. (2012) Assessing Available Information on the Burden of Sepsis: Global Estimates of Incidence, Prevalence and Mortality. Journal of Global Health, 2, Article ID: 010404. https://doi.org/10.7189/jogh.01.010404
|
[23]
|
Pierrakos, C. and Vincent, J. (2010) Sepsis Biomarkers: A Review. Critical Care, 14, R15. https://doi.org/10.1186/cc8872
|
[24]
|
Kofoed, K., Andersen, O., Kronborg, G., Tvede, M., Petersen, J., Eugen-Olsen, J., et al. (2007) Use of Plasma C-Reactive Protein, Procalcitonin, Neutrophils, Macrophage Migration Inhibitory Factor, Soluble Urokinase-Type Plasminogen Activator Receptor, and Soluble Triggering Receptor Expressed on Myeloid Cells-1 in Combination to Diagnose Infections: A Prospective Study. Critical Care, 11, R38. https://doi.org/10.1186/cc5723
|
[25]
|
Shapiro, N.I., Trzeciak, S., Hollander, J.E., Birkhahn, R., Otero, R., Osborn, T.M., et al. (2009) A Prospective, Multicenter Derivation of a Biomarker Panel to Assess Risk of Organ Dysfunction, Shock, and Death in Emergency Department Patients with Suspected Sepsis. Critical Care Medicine, 37, 96-104. https://doi.org/10.1097/ccm.0b013e318192fd9d
|
[26]
|
Yue, S., Li, S., Huang, X., Liu, J., Hou, X., Zhao, Y., et al. (2022) Machine Learning for the Prediction of Acute Kidney Injury in Patients with Sepsis. Journal of Translational Medicine, 20, Article No. 215. https://doi.org/10.1186/s12967-022-03364-0
|
[27]
|
Zhang, L., Huang, T., Xu, F., Li, S., Zheng, S., Lyu, J., et al. (2022) Prediction of Prognosis in Elderly Patients with Sepsis Based on Machine Learning (Random Survival Forest). BMC Emergency Medicine, 22, Article No. 26. https://doi.org/10.1186/s12873-022-00582-z
|
[28]
|
Lim, S.H., Kim, M.J., Choi, W.H., Cheong, J.C., Kim, J.W., Lee, K.J., et al. (2023) Explainable Machine Learning Using Perioperative Serial Laboratory Results to Predict Postoperative Mortality in Patients with Peritonitis-Induced Sepsis. Annals of Surgical Treatment and Research, 105, 237-244. https://doi.org/10.4174/astr.2023.105.4.237
|
[29]
|
De La Rica, A.S., Gilsanz, F. and Maseda, E. (2016) Epidemiologic Trends of Sepsis in Western Countries. Annals of Translational Medicine, 4, 325-325. https://doi.org/10.21037/atm.2016.08.59
|
[30]
|
Zhou, F., Mao, Z., Zeng, X., Kang, H., Liu, H., Pan, L., et al. (2015) Vasopressors in Septic Shock: A Systematic Review and Network Meta-Analysis. Therapeutics and Clinical Risk Management, 11, 1047-1059. https://doi.org/10.2147/tcrm.s80060
|