[1]
|
Yang, Y., García-Cruzado, M., Zeng, H., Camprubí-Ferrer, L., Bahatyrevich-Kharitonik, B., Bachiller, S., et al. (2023) LPS Priming before Plaque Deposition Impedes Microglial Activation and Restrains Aβ Pathology in the 5xFAD Mouse Model of Alzheimer’s Disease. Brain, Behavior, and Immunity, 113, 228-247. https://doi.org/10.1016/j.bbi.2023.07.006
|
[2]
|
Possemato, E., La Barbera, L., Nobili, A., Krashia, P. and D’Amelio, M. (2023) The Role of Dopamine in NLRP3 Inflammasome Inhibition: Implications for Neurodegenerative Diseases. Ageing Research Reviews, 87, Article 101907. https://doi.org/10.1016/j.arr.2023.101907
|
[3]
|
Brown, G.C. and Heneka, M.T. (2024) The Endotoxin Hypothesis of Alzheimer’s Disease. Molecular Neurodegeneration, 19, Article No. 30. https://doi.org/10.1186/s13024-024-00722-y
|
[4]
|
Aaldijk, E. and Vermeiren, Y. (2022) The Role of Serotonin within the Microbiota-Gut-Brain Axis in the Development of Alzheimer’s Disease: A Narrative Review. Ageing Research Reviews, 75, Article 101556. https://doi.org/10.1016/j.arr.2021.101556
|
[5]
|
Sun, J., Zhang, Y., Kong, Y., Ye, T., Yu, Q., Kumaran Satyanarayanan, S., et al. (2022) Microbiota-Derived Metabolite Indoles Induced Aryl Hydrocarbon Receptor Activation and Inhibited Neuroinflammation in APP/PS1 Mice. Brain, Behavior, and Immunity, 106, 76-88. https://doi.org/10.1016/j.bbi.2022.08.003
|
[6]
|
Liang, Y., Liu, C., Cheng, M., Geng, L., Li, J., Du, W., et al. (2024) The Link between Gut Microbiome and Alzheimer’s Disease: From the Perspective of New Revised Criteria for Diagnosis and Staging of Alzheimer’s Disease. Alzheimer’s & Dementia, 20, 5771-5788. https://doi.org/10.1002/alz.14057
|
[7]
|
Mulak, A. (2021) Bile Acids as Key Modulators of the Brain-Gut-Microbiota Axis in Alzheimer’s Disease. Journal of Alzheimer’s Disease, 84, 461-477. https://doi.org/10.3233/jad-210608
|
[8]
|
Wu, J., Zhu, X., Lin, H., Chen, Z., Tang, H. and Wang, Y. (2020) Gender Differences in the Bile Acid Profiles of APP/PS1 Transgenic AD Mice. Brain Research Bulletin, 161, 116-126. https://doi.org/10.1016/j.brainresbull.2020.05.003
|
[9]
|
Li, C., Wang, L., Xie, W., Chen, E., Chen, Y., Li, H., et al. (2024) TGR5 Deficiency in Excitatory Neurons Ameliorates Alzheimer’s Pathology by Regulating APP Processing. Science Advances, 10, eado1855. https://doi.org/10.1126/sciadv.ado1855
|
[10]
|
Chen, Y., Li, Y., Fan, Y., Chen, S., Chen, L., Chen, Y., et al. (2024) Gut Microbiota-Driven Metabolic Alterations Reveal Gut-Brain Communication in Alzheimer’s Disease Model Mice. Gut Microbes, 16, Article 2302310. https://doi.org/10.1080/19490976.2024.2302310
|
[11]
|
Baloni, P., Funk, C.C., Yan, J., Yurkovich, J.T., Kueider-Paisley, A., Nho, K., et al. (2020) Metabolic Network Analysis Reveals Altered Bile Acid Synthesis and Metabolism in Alzheimer’s Disease. Cell Reports Medicine, 1, Article 100138. https://doi.org/10.1016/j.xcrm.2020.100138
|
[12]
|
Nabizadeh, F., Valizadeh, P. and Fallahi, M.S. (2024) Bile Acid Profile Associated with CSF and PET Biomarkers in Alzheimer’s Disease. Aging Clinical and Experimental Research, 36, Article No. 62. https://doi.org/10.1007/s40520-024-02729-3
|
[13]
|
李锐. 基于菌群移植探讨自主运动改善高脂高胆固醇膳食诱导小鼠认知功能障碍的机制研究[D]: [硕士学位论文]. 苏州: 苏州大学, 2023.
|
[14]
|
Wang, S., Xu, C., Liu, H., Wei, W., Zhou, X., Qian, H., et al. (2023) Connecting the Gut Microbiota and Neurodegenerative Diseases: The Role of Bile Acids. Molecular Neurobiology, 60, 4618-4640. https://doi.org/10.1007/s12035-023-03340-9
|
[15]
|
李悦, 豆小文, 纪翔. 胆汁酸稳态失衡与阿尔茨海默病研究新进展[J]. 阿尔茨海默病及相关病杂志, 2022, 5(3): 242-247.
|
[16]
|
Hyunjung, C. and Inhee, M. (2023) Functional Effects of Gut Microbiota-Derived Metabolites in Alzheimer’s Disease. Current Opinion in Neurobiology, 81, 102730.
|
[17]
|
李林青, 叶秋燕, 高嘉悦, 等. 肠道菌群及其代谢产物在阿尔茨海默病中的研究进展[J]. 成都医学院学报, 2025, 20(1): 173-176+180.
|
[18]
|
Zhou, S., Liu, L., Zhang, Y., Zhang, Z., Li, H., Fan, F., et al. (2023) Integrated Untargeted and Targeted Metabolomics to Reveal Therapeutic Effect and Mechanism of Alpiniae Oxyphyllae Fructus on Alzheimer’s Disease in APP/PS1 Mice. Frontiers in Pharmacology, 13, Article 1104954. https://doi.org/10.3389/fphar.2022.1104954
|
[19]
|
Mahmoudian Dehkordi, S., Arnold, M., Nho, K., et al. (2019) Alzheimer’s Disease Neuroimaging Initiative and the Alzheimer Disease Metabolomics Consortium. Altered Bile Acid Profile Associates with Cognitive Impairment in Alzheimer’s Disease—An Emerging Role for Gut Microbiome. Alzheimer’s & Dementia, 15, 76-92. https://doi.org/10.1016/j.jalz.2018.07.217
|
[20]
|
赵飞燕, 赵佳, 马蕊, 等. 肠道微生物间互作及其代谢物发挥作用的研究进展[J/OL]. 科学通报: 1-13. http://kns.cnki.net/kcms/detail/11.1784.n.20241122.0952.014.html, 2024-11-25.
|
[21]
|
Zhang, Y., Qi, H., Wang, L., Hu, C., Gao, A., Wu, Q., et al. (2023) Fasting and Refeeding Triggers Specific Changes in Bile Acid Profiles and Gut Microbiota. Journal of Diabetes, 15, 165-180. https://doi.org/10.1111/1753-0407.13356
|
[22]
|
Qi, L. and Chen, Y. (2022) Circulating Bile Acids as Biomarkers for Disease Diagnosis and Prevention. The Journal of Clinical Endocrinology & Metabolism, 108, 251-270. https://doi.org/10.1210/clinem/dgac659
|
[23]
|
邓珊, 潘丽雅, 覃露, 等. 外泌体在阿尔茨海默病诊治中的研究进展[J]. 中华老年心脑血管病杂志, 2023, 25(3): 331-333.
|
[24]
|
祁鑫洋, 施梦烨, 宋钰, 等. 轻度Alzheimer’s病患者血浆氨水平对脑脊液β-淀粉样蛋白含量及认知功能的影响[J]. 临床神经病学杂志, 2023, 36(6): 437-440.
|
[25]
|
王梦依, 汪卓, 刘洋. 肠道菌群调控脂质代谢作用与机制的研究进展[J/OL]. 微生物学通报, 1-17. https://doi.org/10.13344/j.microbiol.china.240399, 2024-11-27.
|
[26]
|
鞠彦秀. CPT1A介导脂肪酸代谢在阿尔茨海默病中作用及机制研究[D]: [博士学位论文]. 长春: 吉林大学, 2024.
|
[27]
|
黄钰媛, 郁金泰. 阿尔茨海默病靶向Aβ疾病修饰治疗: 曙光初现[J]. 中华神经科杂志, 2023, 56(9): 959-964.
|
[28]
|
陈佳悦, 黄雪燕, 姚倩倩, 等. β-淀粉样蛋白耐受在阿尔茨海默病中的研究进展[J]. 中华神经医学杂志, 2024, 23(8): 837-841.
|
[29]
|
徐敏, 徐珊. 主观认知下降的相关因素及其与Alzheimer’s病进展的关系[J]. 临床神经病学杂志, 2024, 37(1): 69-72.
|
[30]
|
Zhang, L., Wei, J., Liu, X., Li, D., Pang, X., Chen, F., et al. (2024) Gut Microbiota-Astrocyte Axis: New Insights into Age-Related Cognitive Decline. Neural Regeneration Research, 20, 990-1008. https://doi.org/10.4103/nrr.nrr-d-23-01776
|
[31]
|
雷森林, 陈平, 谌晓安. 运动调控BDNF表达改善阿尔茨海默病的潜在作用机制研究进展[J]. 中国细胞生物学学报, 2024, 46(6): 1303-1316.
|
[32]
|
樊小瑞. 高脂饮食对阿尔茨海默症的影响及黄连解毒汤的干预作用[D]: [博士学位论文]. 北京: 北京中医药大学, 2021.
|
[33]
|
Xiao, L., Tang, R., Wang, J., Wan, D., Yin, Y. and Xie, L. (2023) Gut Microbiota Bridges the Iron Homeostasis and Host Health. Science China Life Sciences, 66, 1952-1975. https://doi.org/10.1007/s11427-022-2302-5
|
[34]
|
Varma, V.R., Wang, Y., An, Y., Varma, S., Bilgel, M., Doshi, J., et al. (2021) Bile Acid Synthesis, Modulation, and Dementia: A Metabolomic, Transcriptomic, and Pharmacoepidemiologic Study. PLOS Medicine, 18, e1003615. https://doi.org/10.1371/journal.pmed.1003615
|
[35]
|
Qi, L. and Chen, Y. (2022) Circulating Bile Acids as Biomarkers for Disease Diagnosis and Prevention. The Journal of Clinical Endocrinology & Metabolism, 108, 251-270. https://doi.org/10.1210/clinem/dgac659
|
[36]
|
Baloni, P., Funk, C.C., Yan, J., Yurkovich, J.T., Kueider-Paisley, A., Nho, K., et al. (2020) Metabolic Network Analysis Reveals Altered Bile Acid Synthesis and Metabolism in Alzheimer’s Disease. Cell Reports Medicine, 1, Article 100138. https://doi.org/10.1016/j.xcrm.2020.100138
|
[37]
|
Lirong, W., Mingliang, Z., Mengci, L., Qihao, G., Zhenxing, R., Xiaojiao, Z., et al. (2022) The Clinical and Mechanistic Roles of Bile Acids in Depression, Alzheimer’s Disease, and Stroke. Proteomics, 22, Article 2100324. https://doi.org/10.1002/pmic.202100324
|
[38]
|
Nho, K., Kueider-Paisley, A., MahmoudianDehkordi, S., Arnold, M., Risacher, S.L., Louie, G., et al. (2018) Altered Bile Acid Profile in Mild Cognitive Impairment and Alzheimer’s Disease: Relationship to Neuroimaging and CSF Biomarkers. Alzheimer’s & Dementia, 15, 232-244. https://doi.org/10.1016/j.jalz.2018.08.012
|
[39]
|
Wu, M., Cheng, Y., Zhang, R., Han, W., Jiang, H., Bi, C., et al. (2024) Molecular Mechanism and Therapeutic Strategy of Bile Acids in Alzheimer’s Disease from the Emerging Perspective of the Microbiota-Gut-Brain Axis. Biomedicine & Pharmacotherapy, 178, Article 117228. https://doi.org/10.1016/j.biopha.2024.117228
|
[40]
|
Wu, J., Zhu, X., Lin, H., Chen, Z., Tang, H. and Wang, Y. (2020) Gender Differences in the Bile Acid Profiles of APP/PS1 Transgenic AD Mice. Brain Research Bulletin, 161, 116-126. https://doi.org/10.1016/j.brainresbull.2020.05.003
|
[41]
|
Zangerolamo, L., Vettorazzi, J.F., Solon, C., Bronczek, G.A., Engel, D.F., Kurauti, M.A., et al. (2021) The Bile Acid TUDCA Improves Glucose Metabolism in Streptozotocin-Induced Alzheimer’s Disease Mice Model. Molecular and Cellular Endocrinology, 521, Article 111116. https://doi.org/10.1016/j.mce.2020.111116
|
[42]
|
Song, H., Liu, J., Wang, L., Hu, X., Li, J., Zhu, L., et al. (2024) Tauroursodeoxycholic Acid: A Bile Acid That May Be Used for the Prevention and Treatment of Alzheimer’s Disease. Frontiers in Neuroscience, 18, Article 1348844. https://doi.org/10.3389/fnins.2024.1348844
|
[43]
|
Hurley, M.J., Bates, R., Macnaughtan, J. and Schapira, A.H.V. (2022) Bile Acids and Neurological Disease. Pharmacology & Therapeutics, 240, Article 108311. https://doi.org/10.1016/j.pharmthera.2022.108311
|