[1]
|
陈玮琪, 徐佳洁, 陆瑶, 等. 中国脑小血管病的神经影像学诊断标准及名词标准化定义——来自中国卒中学会的专家共识[J]. 中国卒中杂志, 2024, 19(4): 376-404.
|
[2]
|
周惠敏, 王艳, 宋芳星, 等. 脑小血管病的发病机制[J]. 国际脑血管病杂志, 2023(2): 146-150.
|
[3]
|
da Silva, P.H.R., Paschoal, A.M., Secchinatto, K.F., Zotin, M.C.Z., dos Santos, A.C., Viswanathan, A., et al. (2022) Contrast Agent‐Free State‐of‐the‐Art Magnetic Resonance Imaging on Cerebral Small Vessel Disease. Part 2: Diffusion Tensor Imaging and Functional Magnetic Resonance Imaging. NMR in Biomedicine, 35, e4743. https://doi.org/10.1002/nbm.4743
|
[4]
|
Zwartbol, M.H., van der Kolk, A.G., Kuijf, H.J., Witkamp, T.D., Ghaznawi, R., Hendrikse, J., et al. (2020) Intracranial Vessel Wall Lesions on 7T MRI and MRI Features of Cerebral Small Vessel Disease: The SMART-MR Study. Journal of Cerebral Blood Flow & Metabolism, 41, 1219-1228. https://doi.org/10.1177/0271678x20958517
|
[5]
|
Sproston, N.R. and Ashworth, J.J. (2018) Role of C-Reactive Protein at Sites of Inflammation and Infection. Frontiers in Immunology, 9, Article No. 754. https://doi.org/10.3389/fimmu.2018.00754
|
[6]
|
Soeki, T. and Sata, M. (2016) Inflammatory Biomarkers and Atherosclerosis. International Heart Journal, 57, 134-139. https://doi.org/10.1536/ihj.15-346
|
[7]
|
Kuppa, A., Tripathi, H., Al-Darraji, A., Tarhuni, W.M. and Abdel-Latif, A. (2023) C-Reactive Protein Levels and Risk of Cardiovascular Diseases: A Two-Sample Bidirectional Mendelian Randomization Study. International Journal of Molecular Sciences, 24, Article No. 9129. https://doi.org/10.3390/ijms24119129
|
[8]
|
Jaime Garcia, D., Chagnot, A., Wardlaw, J.M. and Montagne, A. (2023) A Scoping Review on Biomarkers of Endothelial Dysfunction in Small Vessel Disease: Molecular Insights from Human Studies. International Journal of Molecular Sciences, 24, Article No. 13114. https://doi.org/10.3390/ijms241713114
|
[9]
|
Moutachakkir, M., Lamrani Hanchi, A., Baraou, A., Boukhira, A. and Chellak, S. (2017) Immunoanalytical Characteristics of C-Reactive Protein and High Sensitivity C-Reactive Protein. Annales de Biologie Clinique, 75, 225-229. https://doi.org/10.1684/abc.2017.1232
|
[10]
|
Webb, N.R. (2021) High-Density Lipoproteins and Serum Amyloid a (SAA). Current Atherosclerosis Reports, 23, Article No. 7. https://doi.org/10.1007/s11883-020-00901-4
|
[11]
|
De Buck, M., Gouwy, M., Struyf, S., Opdenakker, G. and Van Damme, J. (2019) The Ectoenzyme-Side of Matrix Metalloproteinases (MMPs) Makes Inflammation by Serum Amyloid a (SAA) and Chemokines Go Round. Immunology Letters, 205, 1-8. https://doi.org/10.1016/j.imlet.2018.06.001
|
[12]
|
Sack, G.H. (2020) Serum Amyloid A (SAA) Proteins. In: Subcellular Biochemistry, Springer International Publishing, 421-436. https://doi.org/10.1007/978-3-030-41769-7_17
|
[13]
|
Luyendyk, J.P., Schoenecker, J.G. and Flick, M.J. (2019) The Multifaceted Role of Fibrinogen in Tissue Injury and Inflammation. Blood, 133, 511-520. https://doi.org/10.1182/blood-2018-07-818211
|
[14]
|
Wolberg, A.S. (2023) Fibrinogen and Fibrin: Synthesis, Structure, and Function in Health and Disease. Journal of Thrombosis and Haemostasis, 21, 3005-3015. https://doi.org/10.1016/j.jtha.2023.08.014
|
[15]
|
Held, C., White, H.D., Stewart, R.A.H., Budaj, A., Cannon, C.P., Hochman, J.S., et al. (2017) Inflammatory Biomarkers Interleukin‐6 and C‐Reactive Protein and Outcomes in Stable Coronary Heart Disease: Experiences from the STABILITY (Stabilization of Atherosclerotic Plaque by Initiation of Darapladib Therapy) Trial. Journal of the American Heart Association, 6, e005077. https://doi.org/10.1161/jaha.116.005077
|
[16]
|
van Loo, G. and Bertrand, M.J.M. (2022) Death by TNF: A Road to Inflammation. Nature Reviews Immunology, 23, 289-303. https://doi.org/10.1038/s41577-022-00792-3
|
[17]
|
Pan, L., Cheng, Y., Yang, W., Wu, X., Zhu, H., Hu, M., et al. (2023) Nintedanib Ameliorates Bleomycin-Induced Pulmonary Fibrosis, Inflammation, Apoptosis, and Oxidative Stress by Modulating PI3K/Akt/mTOR Pathway in Mice. Inflammation, 46, 1531-1542. https://doi.org/10.1007/s10753-023-01825-2
|
[18]
|
Bui, T.M., Wiesolek, H.L. and Sumagin, R. (2020) ICAM-1: A Master Regulator of Cellular Responses in Inflammation, Injury Resolution, and Tumorigenesis. Journal of Leukocyte Biology, 108, 787-799. https://doi.org/10.1002/jlb.2mr0220-549r
|
[19]
|
Guieu, R., Ruf, J. and Mottola, G. (2022) Hyperhomocysteinemia and Cardiovascular Diseases. Annales de Biologie Clinique, 80, 7-14. https://doi.org/10.1684/abc.2021.1694
|
[20]
|
Tawfik, A., Elsherbiny, N.M., Zaidi, Y. and Rajpurohit, P. (2021) Homocysteine and Age-Related Central Nervous System Diseases: Role of Inflammation. International Journal of Molecular Sciences, 22, Article No. 6259. https://doi.org/10.3390/ijms22126259
|
[21]
|
Conway, E.M. (2011) Thrombomodulin and Its Role in Inflammation. Seminars in Immunopathology, 34, 107-125. https://doi.org/10.1007/s00281-011-0282-8
|
[22]
|
Ozaki, Y., Suzuki-Inoue, K. and Inoue, O. (2013) Platelet Receptors Activated via Mulitmerization: Glycoprotein VI, Gpib-ix-v, and Clec-2. Journal of Thrombosis and Haemostasis, 11, 330-339. https://doi.org/10.1111/jth.12235
|
[23]
|
Suidan, G.L., Brill, A., De Meyer, S.F., Voorhees, J.R., Cifuni, S.M., Cabral, J.E., et al. (2013) Endothelial Von Willebrand Factor Promotes Blood-Brain Barrier Flexibility and Provides Protection from Hypoxia and Seizures in Mice. Arteriosclerosis, Thrombosis, and Vascular Biology, 33, 2112-2120. https://doi.org/10.1161/atvbaha.113.301362
|
[24]
|
Yao, H., Mizoguchi, Y., Monji, A., Yakushiji, Y., Takashima, Y., Uchino, A., et al. (2019) Low-Grade Inflammation Is Associated with Apathy Indirectly via Deep White Matter Lesions in Community-Dwelling Older Adults: The Sefuri Study. International Journal of Molecular Sciences, 20, Article No. 1905. https://doi.org/10.3390/ijms20081905
|
[25]
|
Elkind, M.S.V., Luna, J.M., McClure, L.A., Zhang, Y., Coffey, C.S., Roldan, A., et al. (2014) C-Reactive Protein as a Prognostic Marker after Lacunar Stroke: Levels of Inflammatory Markers in the Treatment of Stroke Study. Stroke, 45, 707-716. https://doi.org/10.1161/strokeaha.113.004562
|
[26]
|
Gu, Y., Gutierrez, J., Meier, I.B., Guzman, V.A., Manly, J.J., Schupf, N., et al. (2019) Circulating Inflammatory Biomarkers Are Related to Cerebrovascular Disease in Older Adults. Neurology Neuroimmunology & Neuroinflammation, 6, e521. https://doi.org/10.1212/nxi.0000000000000521
|
[27]
|
Schweizer, J., Bustamante, A., Lapierre-Fétaud, V., Faura, J., Scherrer, N., Azurmendi Gil, L., et al. (2020) SAA (Serum Amyloid A): A Novel Predictor of Stroke-Associated Infections. Stroke, 51, 3523-3530. https://doi.org/10.1161/strokeaha.120.030064
|
[28]
|
Shridas, P. and Tannock, L.R. (2019) Role of Serum Amyloid A in Atherosclerosis. Current Opinion in Lipidology, 30, 320-325. https://doi.org/10.1097/mol.0000000000000616
|
[29]
|
Xu, W., Wang, J. and Yang, H. (2022) Correlation and Prognostic Action of SAA, Hcy, and BNP Levels with the Condition of Patients with Spontaneous Intracerebral Hemorrhage. Evidence-Based Complementary and Alternative Medicine, 2022, Article ID: 1126611. https://doi.org/10.1155/2022/1126611
|
[30]
|
Guo, X., Deng, B., Zhong, L., Xie, F., Qiu, Q., Wei, X., et al. (2021) Fibrinogen Is an Independent Risk Factor for White Matter Hyperintensities in CADASIL but Not in Sporadic Cerebral Small Vessel Disease Patients. Aging and Disease, 12, 801-811. https://doi.org/10.14336/ad.2020.1110
|
[31]
|
Xu, M., Li, J., Xu, B., Zheng, Q. and Sun, W. (2024) Association of Coagulation Markers with the Severity of White Matter Hyperintensities in Cerebral Small Vessel Disease. Frontiers in Neurology, 15, Article ID: 1331733. https://doi.org/10.3389/fneur.2024.1331733
|
[32]
|
Shen, M., Wei, G., Cheng, M. and Jiang, H. (2020) Association between Enlarged Perivascular Spaces and Internal Carotid Artery Stenosis: A Study in Patients Diagnosed by Digital Subtraction Angiography. Journal of Stroke and Cerebrovascular Diseases, 29, Article ID: 104635. https://doi.org/10.1016/j.jstrokecerebrovasdis.2019.104635
|
[33]
|
Liu, J., Wang, D., Xiong, Y., Liu, B., Lin, J., Zhang, S., et al. (2017) Association between Coagulation Function and Cerebral Microbleeds in Ischemic Stroke Patients with Atrial Fibrillation And/or Rheumatic Heart Disease. Aging and disease, 8, 131-135. https://doi.org/10.14336/ad.2016.0715
|
[34]
|
Georgakis, M.K., Malik, R., Gill, D., et al. (2020) Interleukin-6 Signaling Effects on Ischemic Stroke and Other Cardiovascular Outcomes: A Mendelian Randomization Study. Circulation: Genomic and Precision Medicine, 13, e002872.
|
[35]
|
Palta, P., Xue, Q., Deal, J.A., Fried, L.P., Walston, J.D. and Carlson, M.C. (2014) Interleukin-6 and C-Reactive Protein Levels and 9-Year Cognitive Decline in Community-Dwelling Older Women: The Women’s Health and Aging Study Ii. The Journals of Gerontology: Series A, 70, 873-878. https://doi.org/10.1093/gerona/glu132
|
[36]
|
Noz, M.P., ter Telgte, A., Wiegertjes, K., Joosten, L.A.B., Netea, M.G., de Leeuw, F., et al. (2018) Trained Immunity Characteristics Are Associated with Progressive Cerebral Small Vessel Disease. Stroke, 49, 2910-2917. https://doi.org/10.1161/strokeaha.118.023192
|
[37]
|
Satizabal, C.L., Zhu, Y.C., Mazoyer, B., Dufouil, C. and Tzourio, C. (2012) Circulating IL-6 and CRP Are Associated with MRI Findings in the Elderly: The 3C-Dijon Study. Neurology, 78, 720-727. https://doi.org/10.1212/wnl.0b013e318248e50f
|
[38]
|
Hervella, P., Alonso-Alonso, M.L., Sampedro-Viana, A., Rodríguez-Yáñez, M., López-Dequidt, I., Pumar, J.M., et al. (2024) Differential Blood-Based Biomarkers of Subcortical and Deep Brain Small Vessel Disease. Therapeutic Advances in Neurological Disorders, 17, Article ID: 61442934. https://doi.org/10.1177/17562864241243274
|
[39]
|
Shoamanesh, A., Preis, S.R., Beiser, A.S., Vasan, R.S., Benjamin, E.J., Kase, C.S., et al. (2015) Inflammatory Biomarkers, Cerebral Microbleeds, and Small Vessel Disease: Framingham Heart Study. Neurology, 84, 825-832. https://doi.org/10.1212/wnl.0000000000001279
|
[40]
|
Manukjan, N., Majcher, D., Leenders, P., Caiment, F., van Herwijnen, M., Smeets, H.J., et al. (2023) Hypoxic Oligodendrocyte Precursor Cell-Derived VEGFA Is Associated with Blood–brain Barrier Impairment. Acta Neuropathologica Communications, 11, Article No. 128. https://doi.org/10.1186/s40478-023-01627-5
|
[41]
|
Zhang, J.B., Li, M.F., Zhang, H.X., Li, Z.G., Sun, H.R., Zhang, J.S., et al. (2016) Association of Serum Vascular Endothelial Growth Factor Levels and Cerebral Microbleeds in Patients with Alzheimer’s Disease. European Journal of Neurology, 23, 1337-1342. https://doi.org/10.1111/ene.13030
|
[42]
|
Ma, C., Yang, L. and Wang, L. (2022) Correlation of Serum C‐Peptide, Soluble Intercellular Adhesion Molecule‐1, and NLRP3 Inflammasome‐Related Inflammatory Factor Interleukin‐1β after Brain Magnetic Resonance Imaging Examination with Cerebral Small Vessel Disease. Contrast Media & Molecular Imaging, 2022, Article ID: 4379847. https://doi.org/10.1155/2022/4379847
|
[43]
|
Han, J.H., Wong, K.S., Wang, Y.Y., Fu, J.H., Ding, D. and Hong, Z. (2009) Plasma Level of Sicam-1 Is Associated with the Extent of White Matter Lesion among Asymptomatic Elderly Subjects. Clinical Neurology and Neurosurgery, 111, 847-851. https://doi.org/10.1016/j.clineuro.2009.08.018
|
[44]
|
Ji, Y., Li, X., Teng, Z., Li, X., Jin, W. and Lv, P.Y. (2020) Homocysteine Is Associated with the Development of Cerebral Small Vessel Disease: Retrospective Analyses from Neuroimaging and Cognitive Outcomes. Journal of Stroke and Cerebrovascular Diseases, 29, Article ID: 105393. https://doi.org/10.1016/j.jstrokecerebrovasdis.2020.105393
|
[45]
|
Staszewski, J., Piusińska-Macoch, R., Brodacki, B., Skrobowska, E. and Stepien, A. (2018) IL-6, PF-4, Scd40 L, and Homocysteine Are Associated with the Radiological Progression of Cerebral Small-Vessel Disease: A 2-Year Follow-Up Study. Clinical Interventions in Aging, 13, 1135-1141. https://doi.org/10.2147/cia.s166773
|
[46]
|
Hassan, A. (2003) Markers of Endothelial Dysfunction in Lacunar Infarction and Ischaemic Leukoaraiosis. Brain, 126, 424-432. https://doi.org/10.1093/brain/awg040
|
[47]
|
Wang, X., Chappell, F.M., Valdes Hernandez, M., Lowe, G., Rumley, A., Shuler, K., et al. (2016) Endothelial Function, Inflammation, Thrombosis, and Basal Ganglia Perivascular Spaces in Patients with Stroke. Journal of Stroke and Cerebrovascular Diseases, 25, 2925-2931. https://doi.org/10.1016/j.jstrokecerebrovasdis.2016.08.007
|
[48]
|
Gottesman, R.F., Cummiskey, C., Chambless, L., Wu, K.K., Aleksic, N., Folsom, A.R., et al. (2009) Hemostatic Factors and Subclinical Brain Infarction in a Community-Based Sample: The ARIC Study. Cerebrovascular Diseases, 28, 589-594. https://doi.org/10.1159/000247603
|
[49]
|
Rouhl, R.P.W., Damoiseaux, J.G.M.C., Lodder, J., Theunissen, R.O., Knottnerus, I.L.H., Staals, J., et al. (2012) Vascular Inflammation in Cerebral Small Vessel Disease. Neurobiology of Aging, 33, 1800-1806. https://doi.org/10.1016/j.neurobiolaging.2011.04.008
|
[50]
|
Zhang, C.E., Wong, S.M., Uiterwijk, R., Backes, W.H., Jansen, J.F.A., Jeukens, C.R.L.P.N., et al. (2018) Blood-Brain Barrier Leakage in Relation to White Matter Hyperintensity Volume and Cognition in Small Vessel Disease and Normal Aging. Brain Imaging and Behavior, 13, 389-395. https://doi.org/10.1007/s11682-018-9855-7
|
[51]
|
Wardlaw, J.M., Benveniste, H., Nedergaard, M., Zlokovic, B.V., Mestre, H., Lee, H., et al. (2020) Perivascular Spaces in the Brain: Anatomy, Physiology and Pathology. Nature Reviews Neurology, 16, 137-153. https://doi.org/10.1038/s41582-020-0312-z
|
[52]
|
Wei, C., Cui, P., Li, H., Lang, W., Liu, G. and Ma, X. (2019) Shared Genes between Alzheimer’s Disease and Ischemic Stroke. CNS Neuroscience & Therapeutics, 25, 855-864. https://doi.org/10.1111/cns.13117
|
[53]
|
Cuadrado-Godia, E., Dwivedi, P., Sharma, S., Ois Santiago, A., Roquer Gonzalez, J., Balcells, M., et al. (2018) Cerebral Small Vessel Disease: A Review Focusing on Pathophysiology, Biomarkers, and Machine Learning Strategies. Journal of Stroke, 20, 302-320. https://doi.org/10.5853/jos.2017.02922
|