炎症生物标记物与脑小血管病的研究进展
Research Progress on Inflammatory Biomarkers and Cerebral Small Vessel Disease
DOI: 10.12677/acm.2025.152530, PDF, HTML, XML,   
作者: 周惠敏:济宁医学院临床医学院(附属医院),山东 济宁;闫中瑞*:济宁市第一人民医院神经内科,山东 济宁
关键词: 脑小血管病生物标记物炎症标记物影像学特征Cerebral Small Vessel Disease Biomarkers Inflammatory Markers Imaging Features
摘要: 脑小血管病是指各种病因导致大脑小动脉、小静脉和毛细血管的病变所致的一系列临床影像病理综合征。它是脑血管疾病最常见的亚型之一,与卒中的发生和复发、认知障碍、步态障碍、心理障碍和排尿困难有关。尽管脑小血管病对人们生活造成重大负担,但对其潜在病理生理机制的了解并不完全。目前,CSVD的诊断主要依靠神经影像学指标,但不能完全反映疾病的全貌。近年来,人们研究发现一些炎症标志物与CSVD有关,但其潜在机制尚不完全清楚。本文旨在系统地回顾和总结CSVD发病机制及相关炎症标志物,以期为CSVD的诊断和治疗提供思路。
Abstract: Cerebral small vessel disease is a series of clinico-imaging pathological syndromes resulting from various etiological factors causing lesions in the small arteries, veins and capillaries of the brain. It is one of the most common subtypes of cerebrovascular disease and is associated with the development and recurrence of stroke, cognitive impairment, gait disturbance, psychological disturbances, and urinary difficulties. Despite the significant burden of cerebral small vessel disease on people’s lives, the underlying pathophysiological mechanisms are incompletely understood. Currently, the diagnosis of CSVD relies on neuroimaging indices, which do not fully reflect the full picture of the disease. In recent years, some inflammatory markers have been investigated and found to be associated with CSVD, but the underlying mechanisms are still unclear. The aim of this paper is to systematically review and summarise the inflammatory markers related to the pathogenesis of CSVD, with a view to providing ideas for the diagnosis and treatment of CSVD.
文章引用:周惠敏, 闫中瑞. 炎症生物标记物与脑小血管病的研究进展[J]. 临床医学进展, 2025, 15(2): 1725-1733. https://doi.org/10.12677/acm.2025.152530

1. 引言

脑小血管病(Cerebral small vessel disease, CSVD)是一种在老年人群中常见的脑小血管病变导致的临床异质性疾病,会增加脑卒中、认知障碍和痴呆的风险。其影像学特征是腔隙性梗死(Lacunar infarction, LI)、白质高信号(White matter hyperintensities, WMH)、血管周围间隙(Perivascular space, PVS)、脑微出血(Cerebral microbleeds, CMBs)和脑萎缩[1]。目前对CSVD的病理生理过程还不完全了解,先前的研究显示CSVD的发生发展与动脉粥样硬化、血脑屏障功能障碍、慢性低灌注、遗传因素等有关[2]。炎症是对感染和损伤的自然生物反应。全身炎症过程与内皮功能障碍、血脑屏障通透性和脑血流自动调节密切相关,从而可能影响CSVD的病理生理过程。本文旨在综述炎症生物标志物与CSVD影像学特征相关性的研究进展,为进一步研究提供参考。

2. CSVD的影像学特征

脑小血管病(CSVD)是指由脑血管异常引起的一组异质性临床综合征,主要涉及小动脉、小静脉和毛细血管。目前,CSVD的临床诊断主要依赖于颅脑CT和颅脑MRI等成像技术。由于使用常规MRI技术无法在体内直接观察大脑小血管,因此CSVD通常根据潜在的脑实质损伤来表征。CSVD在MRI上的特征主要包括新近皮质下小梗死、WMH、EPVS、CMBs和脑萎缩。MRI上的这些CSVD病变可以在临床实践中用于诊断。更先进的成像方法例如扩散张量成像(DTI)、血管壁成像(VWI)和超高场MRI (如7-T MRI),比传统MRI序列能更早地检测微观结构损伤,在检测微梗死方面更敏感,这为早期逆转皮质下小梗死提供了可能性[3]。一项使用7-T血管壁MRI的研究表明,颅内动脉粥样硬化负荷与CSVD的MRI特征有关[4]

3. CSVD的炎症生物标志物

3.1. 全身炎症标志物

3.1.1. C反应蛋白

C反应蛋白(CRP)主要由肝细胞合成,在宿主防御细菌感染、组织损伤和自身免疫中起着重要的调节作用,是全身炎症的独立生物标志物[5]。越来越多的证据表明,CRP是动脉粥样硬化[6]和心脑血管疾病[7]的直接致病促炎介质。它能直接与内皮细胞相互作用,增加单核细胞募集到动脉粥样硬化斑块中,通过抑制内皮一氧化氮合酶(eNOS)的表达和生物活性,从而减少一氧化氮(NO)的产生,并增加血管收缩剂和黏附分子的释放[6] [8]。超敏C反应蛋白(hs-CRP)对炎症反应更敏感,可以在没有明显全身炎症或免疫疾病的情况下量化低级别的全身炎症。hsCRP本身也会增加血管内皮纤溶酶原激活剂抑制剂-1和其他黏附分子的表达,并改变巨噬细胞对低密度脂蛋白的摄取[8] [9]

3.1.2. 血清淀粉样蛋白-A

血清淀粉样蛋白A (SAA)是由肝脏产生的多态性炎症反应蛋白,能够敏感地识别微弱炎症的刺激,其敏感性和特异性与CRP相当[10]。目前发现SAA参与机体脂质代谢、炎性细胞的趋化及介质释放、免疫调节等病理生理过程,致使SAA在如糖尿病、冠心病、风湿免疫疾病、肿瘤及移植排斥反应等多种疾病的发生、发展、诊断及预后中扮演了重要角色[11]。SAA可刺激白细胞分泌多种促炎因子、组织特异性或全身性的趋化因子、黏附因子和基质金属蛋白酶从而诱发炎症反应[12]

3.1.3. 纤维蛋白原

纤维蛋白原是由肝细胞合成的高分子量的血浆黏附蛋白,血浆半衰期为3~4天[13]。炎症可引起外周血中纤维蛋白原的释放。纤维蛋白原水平升高可导致血浆黏度和红细胞聚集增加,血小板血栓形成和血管反应性增强,内皮层完整性破坏,导致血管功能障碍。纤维蛋白与小胶质细胞上的CD11b/CD18受体结合并浸润巨噬细胞激活多种信号转导途径以促进炎症反应[14]。此外,纤维蛋白原形成的一部分释放的肽,如被凝血酶从纤维蛋白原上切割的纤维蛋白肽B,可以作为白细胞的化学引诱剂,从而独立调节炎症反应[13]

3.1.4. 细胞因子

细胞因子家族由多种在炎症中发挥重要作用的蛋白质组成。白细胞介素(IL)是一组极其多样化的细胞因子,在炎症反应中发挥重要的生物学效应[15]。肿瘤坏死因子(TNF)是由小胶质细胞、星形胶质细胞和神经元在各种刺激下产生的促炎细胞因子,通过两种细胞膜受体TNF-R1和TNF-R2在慢性炎性反应中发挥重要作用。这种促炎和组织破坏性细胞因子对少突胶质细胞有害,从而介导髓鞘损伤和白质退化[16]。血管内皮生长因子(VEGF)是一种有效的血管生成和血管通透性因子,被称为血管生成的主要诱导剂。动物研究表明,VEGF表达增加与血脑屏障通透性增加有关,导致血管源性水肿和血液来源物质泄漏到脑实质中[17]

3.2. 血管炎症和内皮功能障碍标志物

3.2.1. 黏附分子

血管内皮激活在炎症相关的病理状态中起着关键作用。炎症触发因素可引起持续性的血管内皮激活,进而导致黏附分子过表达[6]。细胞间黏附松动会增加溶质通透性,进而增加白细胞募集、黏附和浸润,导致间质性水肿,从而损害脉管系统和局部组织。选择素E和选择素P是黏附分子选择素家族的成员,有助于白细胞沿着血管内皮滚动和可逆黏附,而细胞间黏附分子-1 (ICAM-1)和血管细胞黏附分子-1 (VCAM-1)属于免疫球蛋白基因超家族,介导T细胞和巨噬细胞等白细胞的黏附、激活和跨内皮迁移[18]

3.2.2. 同型半胱氨酸

同型半胱氨酸(Hcy)是一种在蛋氨酸代谢过程中产生的含巯基氨基酸,正常人的血浆Hcy浓度范围为5至15 μmol/L,Hcy水平升高15 μmol/L或更高被认为是高同型半胱氨酸血症。Hcy水平的升高可通过血管舒缩功能障碍、氧化应激、血管炎症等多种病理途径损害内皮细胞,从而对免疫细胞进行高代谢诱导、脂肪细胞和血小板等代谢重塑,使膜磷脂分解加快,膜磷脂被分解成具有致炎活性溶血磷脂酰胆碱,增加膜磷脂被氧化及糖基化修饰,最终加快脂肪组织慢性炎症。此外,Hcy氧化还原受体存在于人体血管平滑肌上,Hcy可以与之结合,导致血管平滑肌增生并损害血管和内皮功能[19] [20]

3.2.3. 止血因子

血小板调节蛋白(TM)、组织因子(TF)和组织因子通路抑制剂(TFPI)是内皮激活和损伤的标志物。TM由血管内皮细胞合成,是附于内皮细胞表面的单链糖蛋白。它可以通过与凝血酶结合形成复合物而抑制凝血酶的活性,从而维护机体凝血与纤溶平衡、减轻脑血管损伤、保护缺血脑组织[21]。TF可在单核细胞和内皮细胞上表达,响应TNF等因子的刺激。TFPI是TF的生理抑制剂,它与凝血因子结合,从而预防血栓形成[22]。血管性血友病因子(vWF)是血浆中的一种大的多聚体糖蛋白,通过介导血小板与受损和活化的血管的黏附,在止血和血栓形成中发挥关键作用[22] [23]

4. 炎症生物标志物与CSVD的关系

4.1. CRP、hsCRP与CSVD

血清CRP、hsCRP水平与WMH、CMBs在内的CSVD亚临床影像改变均有关。Yao [24]等人的Sefuri研究分析了259名社区老年人的脑磁共振成像结果,通过定量酶联免疫吸附法测定血清hsCRP浓度发现hsCRP与WHM独立相关。在SPS3试验的一项子研究中,hsCRP与腔隙性梗死后复发性卒中独立相关[25]。Gu等人在多种族队列研究中发现CRP高的受试者有更多的腔隙性梗死,并且高水平CRP与发生CSVD相关CMB的几率显著关联,尤其是大叶CMB [26]。一项基于前瞻性、基于人群的研究证实,在调整了心血管风险因素和颈动脉粥样硬化后,较高的CRP水平也与WMHs的存在和进展显著相关。此外,与CRP水平较低的参与者相比,CRP水平较高的参与者往往更容易发生腔隙性梗死[8]

4.2. SAA与CSVD

过往的研究证实,SAA与缺血性脑卒中[27]和动脉粥样硬化[28]密切相关,但其与CSVD的MRI特征之间的关系尚不清楚。Xu [29]等研究发现SAA水平与CMB有关,是判断其预后的可行指标。这表明血清SAA水平与CSVD患者的严重程度和预后有一定的相关性,SAA水平有利于及早及时判断CSVD患者的进展和预后。SAA作为一种新型的炎性标志物,仍有更多的运用价值等待进一步研究,使之能更好服务于临床,依然具有广阔的探索空间。

4.3. 纤维蛋白原与CSVD

WMHs反应了缺血性CSVD,然而,关于纤维蛋白原与WMHs之间关系的研究结果并不一致。一项横断面研究表明,纤维蛋白原是遗传性CSVD患者WMHs严重程度的独立风险因素,但在散发性CSVD患者中不是[30]。最新的一项研究用双样本孟德尔随机化的方法分析了纤维蛋白原对WMH的遗传预测效果,结果显示遗传预测的纤维蛋白原水平增加与WMH风险增加无关[31]。这种不一致可能与样本量、研究人群特征以及检测方法和标准的差异有关。样本量较小的研究可能因统计效能不足而无法准确反映两者之间的关系。此外,不同研究纳入的人群在年龄、性别、基础疾病等方面存在差异,这些因素可能影响炎症标志物的表达和WMHs的发生。因此,在评估纤维蛋白原与WMHs关系时,需要综合考虑这些因素的影响。Shen及其团队的研究表明,纤维蛋白原水平可能与白质EPVS的程度相关,而与基底节EPVS的程度无关。此外,纤维蛋白原水平和EPVS之间的相关性在调整混杂因素后消失[32]。Liu及其同事揭示,在患有房颤和风湿性心脏病的缺血性脑卒中患者发现纤维蛋白原含量与存在CMBs严重程度独立相关,且纤维蛋白原含量越高,CMBs越严重[33]。未来,关于纤维蛋白原与CSVD不同影像学特征之间的关系需要进一步研究证实。

4.4. 细胞因子与CSVD

4.4.1. IL-6与CSVD

既往多项研究已证实,炎症因子IL-6与CSVD具有显著相关性。一项针对200,000名个体的全基因组关联研究表明,下调的IL-6信号转导与缺血性卒中风险降低11%相关[34]。一项对 960 例无中风老年人的横断面研究表明,IL-6水平高低与WMH的严重程度有关,较高水平的IL-6可导致WMH体积增加[35]。Noz等人的研究也证实了这一点[36]。Jacek等[37]人在成年CSVD患者中进行的一项为期两年的单中心、前瞻性队列研究中发现,超过三分之一的有症状CSVD的老年人的WMH和LI都在两年内进展,且IL-6都与任何水平的放射学进展相关。最新研究发现,IL-6是LI和WMH的血液生物标志物,并且皮质下LI和深部LI的IL-6水平存在差异,这也表明脑深部结构中LI的病理生理机制与皮质LI不同[38]。这些研究提示未来可能通过测定IL-6水平或靶向IL-6作为脑白质损伤或腔隙性脑梗死的一种新的治疗策略。

4.4.2. TNF与CSVD

TNF能够调节中枢神经系统的神经炎症反应水平,对中枢神经系统具有有益和破坏性特性。越来越多的证据表明TNF在缺血性卒中发展中的重要作用。Shoamanesh等[39]人发现,在1763名没有中风的人群中,患有CMBs的参与者的循环TNF水平更高,二次分析进一步表明,这种关联在只有深度CMBs参与者中最为突出。此外,TNF和CMBs之间的关联随着CMBs负担的增加而增加。与没有CMBs相比,TNF的每单位增加与具有≥2个CMB的几率增加3.3倍和具有≥3个CMBs几率增加5.7倍有关。这表明TNF水平升高与CSVD的发生相关。

4.4.3. VEGF与CSVD

脑小血管疾病的特征是脑血流量减少和血脑屏障损伤,这在WMH的发展中起着关键作用。一项研究表明,CSVD患者中的血浆VEGF水平升高。VEGF血浆水平与正常患者白质的血脑屏障通透性增加有关,脑灌注不足通过Hif1α/Epas1信号传导介导缺氧诱导少突胶质细胞前体细胞中VEGF表达。VEGF反过来可以增加血脑屏障的渗透性[40]。Zhang [41]等研究表明,VEGF水平升高与CMBs的存在显著且独立相关。在控制混杂因素后,CMBs存在时VEGF水平增加10 pg/ml。多因素回归分析进一步证明了临床因素和VEGF水平的组合与CMBs数量之间的显著相关性。

4.5. 黏附分子与CSVD

血脑屏障的通透性增加和内皮细胞功能障碍与CSVD的发生发展有关。ICAM-1是一种细胞表面唾液糖蛋白,由大脑血管和小脑血管上的细胞因子激活的内皮表达,介导白细胞–内皮细胞黏附和信号转导[6] [18]。ICAM-1在动脉粥样硬化的发展中具有重要作用,其在内皮功能障碍中的作用也得到了证实。Ma等人选取72例CSVD患者为病例组,另选72例同期健康人作为对照组,采集两组患者血清标本,检测血清ICAM-1发现,ICAM-1水平升高与CSVD相关,ICAM-1是CSVD的独立危险因素,通过绘制ROC曲线,ICAM-1曲线下面积大于其他单一指标[42]。Han及其同事证明,在175名无神经功能缺损的老年人中,ICAM-1水平与WMH呈正相关。多变量分析显示,较高的ICAM-1水平是WMH存在和严重程度的独立风险因素[43]。这与Noz等[36]人的研究结果一致。

4.6. Hcy与CSVD

越来越多的证据表明,Hcy与CSVD直接和间接相关,内皮功能障碍在这种关联中起积极作用。Hcy在早期通过氧化应激、炎症途径和表观遗传改变影响内皮功能,甚至在小血管损伤和疾病发作之前[19]。高水平的Hcy会损害脑小血管,从而增加CSVD的发病率[44]。其机制包括炎症、动脉粥样硬化斑块形成、内皮功能障碍、平滑肌细胞增殖和氧化应激反应[2] [19]。横断面和纵向研究都发现,较高水平的Hcy可预测LI的患病率和进展。在CSVD相关的卒中中,WMH体积大的患者血清Hcy水平显著高于WMH体积小的患者。Hcy会损伤内皮细胞并诱导跨膜蛋白的异常分泌,破坏内皮连接,导致BBB渗漏,为WMH、EPVS、LI和CMB提供重要的病理基础[19] [45]。因此,Hcy可能是cSVD的重要治疗靶点,推测 Hcy治疗可能逆转或阻止CSVD病变的进展,未来,需要大规模前瞻性研究来证实我们这一猜想。

4.7. 止血因子与CSVD

近年来,研究发现止血因素与CSVD影像学特征相关。Hassan等[46]人发现CSVD的患者的ICAM-1、TM和TFPI水平升高。WMH与TF水平和TF/TFPI比值呈正相关。在一项涉及100名CSVD患者的研究中,vWF与EPVS计数呈负相关,vWF可促进脑内皮完整性,而缺乏vWF可能表明脑内皮功能障碍、血脑屏障通透性增加和EPVS增加[47]。Gottesman [48]评估了社区动脉粥样硬化风险队列中止血因子水平与LI之间的关联,vWF与D-二聚体水平与LI程度呈正相关,但纤溶酶原与其无显著负相关。这表明进一步研究这些止血因子在CSVD影像学特征发展中的作用可能有助于阐明这些损伤背后的机制,甚至可能指出未来干预的潜在目标。

5. 炎症与其他治病因素的相互作用

炎症在CSVD的发病机制中起重要作用,但其作用在不同CSVD亚型中表现出显著异质性。WMH患者中常观察到IL-6和TNF-α水平升高,而CMBs患者中则以CRP和氧化应激标志物(如8-OHdG)的升高更为显著[49] [50]。此外,炎症与氧化应激之间存在复杂的相互作用,炎症反应可通过激活NADPH氧化酶加剧氧化应激,进而导致血脑屏障破坏和内皮功能障碍[51]。遗传因素(如NOTCH3和COL4A1基因突变)也被证明可调控炎症反应,进一步影响CSVD的进展[52] [53]。这些发现提示,炎症在CSVD中的作用需结合其他致病因素进行综合分析。

结语:炎症在CSVD的发展和进展中发挥重要的作用,随着先进MRI技术的发展,CSVD的病理机制可能会得到进一步揭示。炎症生物标志物通常在不同的炎症途径中相互作用,而不是单独起作用,因此应该同时测试多种生物标志物评估每种生物标志物对CSVD的贡献。

虽然CSVD的诊断仍主要依靠神经影像学,但炎症生物标志物的研究,特别是其与神经影像标志物的关联,结合多模态影像学技术(如高分辨率MRI和PET),可能实现对CSVD的精准分型和个体化治疗,帮助我们更好地早期识别、预测和评估CSVD的发生,并可能找到新的治疗靶点。

未来的研究还需从神经心理学、神经病理学、神经影像学、神经生物学等多个角度,结合临床表现、基因水平、随访时间增加、动物模型优化等多个方面深入探索CSVD的发病机制。这将有助于提高CSVD的早期确诊率,为患者的临床诊治提供更多的理论基础,并指导制定合理的预防策略和治疗方案,从而减轻患者的痛苦和家庭负担。

NOTES

*通讯作者。

参考文献

[1] 陈玮琪, 徐佳洁, 陆瑶, 等. 中国脑小血管病的神经影像学诊断标准及名词标准化定义——来自中国卒中学会的专家共识[J]. 中国卒中杂志, 2024, 19(4): 376-404.
[2] 周惠敏, 王艳, 宋芳星, 等. 脑小血管病的发病机制[J]. 国际脑血管病杂志, 2023(2): 146-150.
[3] da Silva, P.H.R., Paschoal, A.M., Secchinatto, K.F., Zotin, M.C.Z., dos Santos, A.C., Viswanathan, A., et al. (2022) Contrast Agent‐Free State‐of‐the‐Art Magnetic Resonance Imaging on Cerebral Small Vessel Disease. Part 2: Diffusion Tensor Imaging and Functional Magnetic Resonance Imaging. NMR in Biomedicine, 35, e4743.
https://doi.org/10.1002/nbm.4743
[4] Zwartbol, M.H., van der Kolk, A.G., Kuijf, H.J., Witkamp, T.D., Ghaznawi, R., Hendrikse, J., et al. (2020) Intracranial Vessel Wall Lesions on 7T MRI and MRI Features of Cerebral Small Vessel Disease: The SMART-MR Study. Journal of Cerebral Blood Flow & Metabolism, 41, 1219-1228.
https://doi.org/10.1177/0271678x20958517
[5] Sproston, N.R. and Ashworth, J.J. (2018) Role of C-Reactive Protein at Sites of Inflammation and Infection. Frontiers in Immunology, 9, Article No. 754.
https://doi.org/10.3389/fimmu.2018.00754
[6] Soeki, T. and Sata, M. (2016) Inflammatory Biomarkers and Atherosclerosis. International Heart Journal, 57, 134-139.
https://doi.org/10.1536/ihj.15-346
[7] Kuppa, A., Tripathi, H., Al-Darraji, A., Tarhuni, W.M. and Abdel-Latif, A. (2023) C-Reactive Protein Levels and Risk of Cardiovascular Diseases: A Two-Sample Bidirectional Mendelian Randomization Study. International Journal of Molecular Sciences, 24, Article No. 9129.
https://doi.org/10.3390/ijms24119129
[8] Jaime Garcia, D., Chagnot, A., Wardlaw, J.M. and Montagne, A. (2023) A Scoping Review on Biomarkers of Endothelial Dysfunction in Small Vessel Disease: Molecular Insights from Human Studies. International Journal of Molecular Sciences, 24, Article No. 13114.
https://doi.org/10.3390/ijms241713114
[9] Moutachakkir, M., Lamrani Hanchi, A., Baraou, A., Boukhira, A. and Chellak, S. (2017) Immunoanalytical Characteristics of C-Reactive Protein and High Sensitivity C-Reactive Protein. Annales de Biologie Clinique, 75, 225-229.
https://doi.org/10.1684/abc.2017.1232
[10] Webb, N.R. (2021) High-Density Lipoproteins and Serum Amyloid a (SAA). Current Atherosclerosis Reports, 23, Article No. 7.
https://doi.org/10.1007/s11883-020-00901-4
[11] De Buck, M., Gouwy, M., Struyf, S., Opdenakker, G. and Van Damme, J. (2019) The Ectoenzyme-Side of Matrix Metalloproteinases (MMPs) Makes Inflammation by Serum Amyloid a (SAA) and Chemokines Go Round. Immunology Letters, 205, 1-8.
https://doi.org/10.1016/j.imlet.2018.06.001
[12] Sack, G.H. (2020) Serum Amyloid A (SAA) Proteins. In: Subcellular Biochemistry, Springer International Publishing, 421-436.
https://doi.org/10.1007/978-3-030-41769-7_17
[13] Luyendyk, J.P., Schoenecker, J.G. and Flick, M.J. (2019) The Multifaceted Role of Fibrinogen in Tissue Injury and Inflammation. Blood, 133, 511-520.
https://doi.org/10.1182/blood-2018-07-818211
[14] Wolberg, A.S. (2023) Fibrinogen and Fibrin: Synthesis, Structure, and Function in Health and Disease. Journal of Thrombosis and Haemostasis, 21, 3005-3015.
https://doi.org/10.1016/j.jtha.2023.08.014
[15] Held, C., White, H.D., Stewart, R.A.H., Budaj, A., Cannon, C.P., Hochman, J.S., et al. (2017) Inflammatory Biomarkers Interleukin‐6 and C‐Reactive Protein and Outcomes in Stable Coronary Heart Disease: Experiences from the STABILITY (Stabilization of Atherosclerotic Plaque by Initiation of Darapladib Therapy) Trial. Journal of the American Heart Association, 6, e005077.
https://doi.org/10.1161/jaha.116.005077
[16] van Loo, G. and Bertrand, M.J.M. (2022) Death by TNF: A Road to Inflammation. Nature Reviews Immunology, 23, 289-303.
https://doi.org/10.1038/s41577-022-00792-3
[17] Pan, L., Cheng, Y., Yang, W., Wu, X., Zhu, H., Hu, M., et al. (2023) Nintedanib Ameliorates Bleomycin-Induced Pulmonary Fibrosis, Inflammation, Apoptosis, and Oxidative Stress by Modulating PI3K/Akt/mTOR Pathway in Mice. Inflammation, 46, 1531-1542.
https://doi.org/10.1007/s10753-023-01825-2
[18] Bui, T.M., Wiesolek, H.L. and Sumagin, R. (2020) ICAM-1: A Master Regulator of Cellular Responses in Inflammation, Injury Resolution, and Tumorigenesis. Journal of Leukocyte Biology, 108, 787-799.
https://doi.org/10.1002/jlb.2mr0220-549r
[19] Guieu, R., Ruf, J. and Mottola, G. (2022) Hyperhomocysteinemia and Cardiovascular Diseases. Annales de Biologie Clinique, 80, 7-14.
https://doi.org/10.1684/abc.2021.1694
[20] Tawfik, A., Elsherbiny, N.M., Zaidi, Y. and Rajpurohit, P. (2021) Homocysteine and Age-Related Central Nervous System Diseases: Role of Inflammation. International Journal of Molecular Sciences, 22, Article No. 6259.
https://doi.org/10.3390/ijms22126259
[21] Conway, E.M. (2011) Thrombomodulin and Its Role in Inflammation. Seminars in Immunopathology, 34, 107-125.
https://doi.org/10.1007/s00281-011-0282-8
[22] Ozaki, Y., Suzuki-Inoue, K. and Inoue, O. (2013) Platelet Receptors Activated via Mulitmerization: Glycoprotein VI, Gpib-ix-v, and Clec-2. Journal of Thrombosis and Haemostasis, 11, 330-339.
https://doi.org/10.1111/jth.12235
[23] Suidan, G.L., Brill, A., De Meyer, S.F., Voorhees, J.R., Cifuni, S.M., Cabral, J.E., et al. (2013) Endothelial Von Willebrand Factor Promotes Blood-Brain Barrier Flexibility and Provides Protection from Hypoxia and Seizures in Mice. Arteriosclerosis, Thrombosis, and Vascular Biology, 33, 2112-2120.
https://doi.org/10.1161/atvbaha.113.301362
[24] Yao, H., Mizoguchi, Y., Monji, A., Yakushiji, Y., Takashima, Y., Uchino, A., et al. (2019) Low-Grade Inflammation Is Associated with Apathy Indirectly via Deep White Matter Lesions in Community-Dwelling Older Adults: The Sefuri Study. International Journal of Molecular Sciences, 20, Article No. 1905.
https://doi.org/10.3390/ijms20081905
[25] Elkind, M.S.V., Luna, J.M., McClure, L.A., Zhang, Y., Coffey, C.S., Roldan, A., et al. (2014) C-Reactive Protein as a Prognostic Marker after Lacunar Stroke: Levels of Inflammatory Markers in the Treatment of Stroke Study. Stroke, 45, 707-716.
https://doi.org/10.1161/strokeaha.113.004562
[26] Gu, Y., Gutierrez, J., Meier, I.B., Guzman, V.A., Manly, J.J., Schupf, N., et al. (2019) Circulating Inflammatory Biomarkers Are Related to Cerebrovascular Disease in Older Adults. Neurology Neuroimmunology & Neuroinflammation, 6, e521.
https://doi.org/10.1212/nxi.0000000000000521
[27] Schweizer, J., Bustamante, A., Lapierre-Fétaud, V., Faura, J., Scherrer, N., Azurmendi Gil, L., et al. (2020) SAA (Serum Amyloid A): A Novel Predictor of Stroke-Associated Infections. Stroke, 51, 3523-3530.
https://doi.org/10.1161/strokeaha.120.030064
[28] Shridas, P. and Tannock, L.R. (2019) Role of Serum Amyloid A in Atherosclerosis. Current Opinion in Lipidology, 30, 320-325.
https://doi.org/10.1097/mol.0000000000000616
[29] Xu, W., Wang, J. and Yang, H. (2022) Correlation and Prognostic Action of SAA, Hcy, and BNP Levels with the Condition of Patients with Spontaneous Intracerebral Hemorrhage. Evidence-Based Complementary and Alternative Medicine, 2022, Article ID: 1126611.
https://doi.org/10.1155/2022/1126611
[30] Guo, X., Deng, B., Zhong, L., Xie, F., Qiu, Q., Wei, X., et al. (2021) Fibrinogen Is an Independent Risk Factor for White Matter Hyperintensities in CADASIL but Not in Sporadic Cerebral Small Vessel Disease Patients. Aging and Disease, 12, 801-811.
https://doi.org/10.14336/ad.2020.1110
[31] Xu, M., Li, J., Xu, B., Zheng, Q. and Sun, W. (2024) Association of Coagulation Markers with the Severity of White Matter Hyperintensities in Cerebral Small Vessel Disease. Frontiers in Neurology, 15, Article ID: 1331733.
https://doi.org/10.3389/fneur.2024.1331733
[32] Shen, M., Wei, G., Cheng, M. and Jiang, H. (2020) Association between Enlarged Perivascular Spaces and Internal Carotid Artery Stenosis: A Study in Patients Diagnosed by Digital Subtraction Angiography. Journal of Stroke and Cerebrovascular Diseases, 29, Article ID: 104635.
https://doi.org/10.1016/j.jstrokecerebrovasdis.2019.104635
[33] Liu, J., Wang, D., Xiong, Y., Liu, B., Lin, J., Zhang, S., et al. (2017) Association between Coagulation Function and Cerebral Microbleeds in Ischemic Stroke Patients with Atrial Fibrillation And/or Rheumatic Heart Disease. Aging and disease, 8, 131-135.
https://doi.org/10.14336/ad.2016.0715
[34] Georgakis, M.K., Malik, R., Gill, D., et al. (2020) Interleukin-6 Signaling Effects on Ischemic Stroke and Other Cardiovascular Outcomes: A Mendelian Randomization Study. Circulation: Genomic and Precision Medicine, 13, e002872.
[35] Palta, P., Xue, Q., Deal, J.A., Fried, L.P., Walston, J.D. and Carlson, M.C. (2014) Interleukin-6 and C-Reactive Protein Levels and 9-Year Cognitive Decline in Community-Dwelling Older Women: The Women’s Health and Aging Study Ii. The Journals of Gerontology: Series A, 70, 873-878.
https://doi.org/10.1093/gerona/glu132
[36] Noz, M.P., ter Telgte, A., Wiegertjes, K., Joosten, L.A.B., Netea, M.G., de Leeuw, F., et al. (2018) Trained Immunity Characteristics Are Associated with Progressive Cerebral Small Vessel Disease. Stroke, 49, 2910-2917.
https://doi.org/10.1161/strokeaha.118.023192
[37] Satizabal, C.L., Zhu, Y.C., Mazoyer, B., Dufouil, C. and Tzourio, C. (2012) Circulating IL-6 and CRP Are Associated with MRI Findings in the Elderly: The 3C-Dijon Study. Neurology, 78, 720-727.
https://doi.org/10.1212/wnl.0b013e318248e50f
[38] Hervella, P., Alonso-Alonso, M.L., Sampedro-Viana, A., Rodríguez-Yáñez, M., López-Dequidt, I., Pumar, J.M., et al. (2024) Differential Blood-Based Biomarkers of Subcortical and Deep Brain Small Vessel Disease. Therapeutic Advances in Neurological Disorders, 17, Article ID: 61442934.
https://doi.org/10.1177/17562864241243274
[39] Shoamanesh, A., Preis, S.R., Beiser, A.S., Vasan, R.S., Benjamin, E.J., Kase, C.S., et al. (2015) Inflammatory Biomarkers, Cerebral Microbleeds, and Small Vessel Disease: Framingham Heart Study. Neurology, 84, 825-832.
https://doi.org/10.1212/wnl.0000000000001279
[40] Manukjan, N., Majcher, D., Leenders, P., Caiment, F., van Herwijnen, M., Smeets, H.J., et al. (2023) Hypoxic Oligodendrocyte Precursor Cell-Derived VEGFA Is Associated with Blood–brain Barrier Impairment. Acta Neuropathologica Communications, 11, Article No. 128.
https://doi.org/10.1186/s40478-023-01627-5
[41] Zhang, J.B., Li, M.F., Zhang, H.X., Li, Z.G., Sun, H.R., Zhang, J.S., et al. (2016) Association of Serum Vascular Endothelial Growth Factor Levels and Cerebral Microbleeds in Patients with Alzheimer’s Disease. European Journal of Neurology, 23, 1337-1342.
https://doi.org/10.1111/ene.13030
[42] Ma, C., Yang, L. and Wang, L. (2022) Correlation of Serum C‐Peptide, Soluble Intercellular Adhesion Molecule‐1, and NLRP3 Inflammasome‐Related Inflammatory Factor Interleukin‐1β after Brain Magnetic Resonance Imaging Examination with Cerebral Small Vessel Disease. Contrast Media & Molecular Imaging, 2022, Article ID: 4379847.
https://doi.org/10.1155/2022/4379847
[43] Han, J.H., Wong, K.S., Wang, Y.Y., Fu, J.H., Ding, D. and Hong, Z. (2009) Plasma Level of Sicam-1 Is Associated with the Extent of White Matter Lesion among Asymptomatic Elderly Subjects. Clinical Neurology and Neurosurgery, 111, 847-851.
https://doi.org/10.1016/j.clineuro.2009.08.018
[44] Ji, Y., Li, X., Teng, Z., Li, X., Jin, W. and Lv, P.Y. (2020) Homocysteine Is Associated with the Development of Cerebral Small Vessel Disease: Retrospective Analyses from Neuroimaging and Cognitive Outcomes. Journal of Stroke and Cerebrovascular Diseases, 29, Article ID: 105393.
https://doi.org/10.1016/j.jstrokecerebrovasdis.2020.105393
[45] Staszewski, J., Piusińska-Macoch, R., Brodacki, B., Skrobowska, E. and Stepien, A. (2018) IL-6, PF-4, Scd40 L, and Homocysteine Are Associated with the Radiological Progression of Cerebral Small-Vessel Disease: A 2-Year Follow-Up Study. Clinical Interventions in Aging, 13, 1135-1141.
https://doi.org/10.2147/cia.s166773
[46] Hassan, A. (2003) Markers of Endothelial Dysfunction in Lacunar Infarction and Ischaemic Leukoaraiosis. Brain, 126, 424-432.
https://doi.org/10.1093/brain/awg040
[47] Wang, X., Chappell, F.M., Valdes Hernandez, M., Lowe, G., Rumley, A., Shuler, K., et al. (2016) Endothelial Function, Inflammation, Thrombosis, and Basal Ganglia Perivascular Spaces in Patients with Stroke. Journal of Stroke and Cerebrovascular Diseases, 25, 2925-2931.
https://doi.org/10.1016/j.jstrokecerebrovasdis.2016.08.007
[48] Gottesman, R.F., Cummiskey, C., Chambless, L., Wu, K.K., Aleksic, N., Folsom, A.R., et al. (2009) Hemostatic Factors and Subclinical Brain Infarction in a Community-Based Sample: The ARIC Study. Cerebrovascular Diseases, 28, 589-594.
https://doi.org/10.1159/000247603
[49] Rouhl, R.P.W., Damoiseaux, J.G.M.C., Lodder, J., Theunissen, R.O., Knottnerus, I.L.H., Staals, J., et al. (2012) Vascular Inflammation in Cerebral Small Vessel Disease. Neurobiology of Aging, 33, 1800-1806.
https://doi.org/10.1016/j.neurobiolaging.2011.04.008
[50] Zhang, C.E., Wong, S.M., Uiterwijk, R., Backes, W.H., Jansen, J.F.A., Jeukens, C.R.L.P.N., et al. (2018) Blood-Brain Barrier Leakage in Relation to White Matter Hyperintensity Volume and Cognition in Small Vessel Disease and Normal Aging. Brain Imaging and Behavior, 13, 389-395.
https://doi.org/10.1007/s11682-018-9855-7
[51] Wardlaw, J.M., Benveniste, H., Nedergaard, M., Zlokovic, B.V., Mestre, H., Lee, H., et al. (2020) Perivascular Spaces in the Brain: Anatomy, Physiology and Pathology. Nature Reviews Neurology, 16, 137-153.
https://doi.org/10.1038/s41582-020-0312-z
[52] Wei, C., Cui, P., Li, H., Lang, W., Liu, G. and Ma, X. (2019) Shared Genes between Alzheimer’s Disease and Ischemic Stroke. CNS Neuroscience & Therapeutics, 25, 855-864.
https://doi.org/10.1111/cns.13117
[53] Cuadrado-Godia, E., Dwivedi, P., Sharma, S., Ois Santiago, A., Roquer Gonzalez, J., Balcells, M., et al. (2018) Cerebral Small Vessel Disease: A Review Focusing on Pathophysiology, Biomarkers, and Machine Learning Strategies. Journal of Stroke, 20, 302-320.
https://doi.org/10.5853/jos.2017.02922